

CS-541 Wireless Sensor Networks

Lecture 10: Time-series analysis

Spring Semester 2017-2018

Prof Panagiotis Tsakalides, Dr Athanasia Panousopoulou, Dr Gregory Tsagkatakis

Overview

- Time series analysis
- Intro to Machine learning

Stream Data Processing

Data streams—continuous, ordered, changing, fast, huge amount

- Huge *volumes* of continuous data, possibly infinite
- Fast *changing* and requires fast, real-time response

Applications

- Telecommunication records
- Network monitoring and traffic engineering
- Industrial processes: power & manufacturing
- Sensor, monitoring & surveillance

Time-series in WSN

Problems

- *Type 1*: patterns, periodicities, and/or compress
	- Wearable, Smart city
- *Type 2*: forecast, find motifs, quantify similarity
	- Activity recognition
- *Type 3*: Multiple time series analysis
	- Sensor networks

"Predictions are very difficult… especially about the future" Niels Bohr

Time-Series data

Time series: sequence of observations $s_t \in R$ ordered in time t=1...N Applications

• Weather, economic, marketing, web, envirometrics, sensor networks

Representations

Sliding window

• Given a time series, individual subsequences are extracted with a sliding window

Sliding windows embedding

Sliding Windows and Persistence: An application of topology to signal analysis, J. Perea and J. Harer, 2015

Data stream

1 Sensor stream

CS-541 Wireless Sensor Networks University of Crete, Computer Science Department
University of Crete, Computer Science Department

University of Crete, Computer Science Department

Sensor stream \bullet

- ² Temporal windowing
- **3** Hankelization process H \mathcal{V} [n₁] lagged temporal windows of $[n_2]$ samples

Spring Semester 2017

Data stream

- Sensor stream \blacksquare
- ² Temporal windowing
- **3** Hankelization process H \mathcal{V} [n₁] lagged temporal windows of $[n_2]$ samples

Spring Semester 2017

Data stream **4** Sensor stream ² Temporal windowing **3** Hankelization process H \mathcal{V} [n₁] lagged temporal 2nd window windows of $[n_2]$ samples $[n_2]$ h_1 h_0 h_{n_1} $|h_{n_2-1}| h_{n_2}$ $[n_1]$

Spring Semester 2017

 h_1

...

Η

- **4** Sensor stream
- ² Temporal windowing
- **3** Hankelization process H \mathcal{V} [n₁] lagged temporal windows of $[n_2]$ samples

н

- **1** Test sensor stream
- **2** Introduction of missing values
- **3** Temporal windowing
- **4** Hankelization process H

3 Undersampled Hankel matrices that need to be reconstructed! **Matrix Completion**

Spring Semester 2017

Autoregressive Models (AR)

Thus for *stationary* time series the mean value function is **constant** and the covariance function is only a **function of the distance in time** $(t - s)$

The "order" of the AR(*p*) models is the number of prior values used in the model.

Univariate AR model

•
$$
AR(1) \rightarrow x_t = b_0 + b_1 x_{t-1} + \varepsilon_t
$$

- **AR(2)** $\rightarrow x_t = b_0 + b_1x_{t-1} + b_2x_{t-2} + \varepsilon_t$
- **AR(p)** $X_t = \sum_{i=1}^p \varphi_i X_{t-i} + \varepsilon_t$.

Solutions: Yule–Walker equations

Estimation of autocovariances, least squares regression

Matrix formulation

http://www.cs.kumamoto-u.ac.jp/ ~yasuko/TALKS/15-SIGMOD-tut/

© 2015 Sakurai, Matsubara & Faloutsos

128

Matrix formulation

$$
\mathbf{X}_{\begin{bmatrix} \mathbf{N} \times \mathbf{W} \end{bmatrix}} \times \mathbf{a}_{\begin{bmatrix} \mathbf{W} \times \mathbf{1} \end{bmatrix}} = \mathbf{y}_{\begin{bmatrix} \mathbf{N} \times \mathbf{1} \end{bmatrix}}
$$

Ind- var1
time

$$
\begin{bmatrix} X_{11}, X_{12}, \dots, X_{1w} \\ \vdots \\ X_{21}, X_{22}, \dots, X_{2w} \\ \vdots \\ X_{N1}, X_{N2}, \dots, X_{Nw} \end{bmatrix} \times \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_w \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}
$$

//www.cs.kumamoto-u.ac.jp/
ko/TALKS/15-SIGMOD-tut/

© 2015 Sakurai, Matsubara & Faloutsos

129

Vector Autoregressive Models (VAR)

Vector AR (VAR) extension to multiple time series

$$
y_t = c + A_1 y_{t-1} + A_2 y_{t-2} + \cdots + A_p y_{t-p} + e_t,
$$

- least squares: $B_1 = (Y_{t-1}^\top Y_{t-1})^{-1} Y_{t-1}^\top Y_t$ (under conditions)
- Determination of lag length is a trade-off

Granger causality: statistical hypothesis test for determining whether one time series X is useful in forecasting another time series Y, ('60)

$$
Y_t = \alpha + \phi_1 Y_{t-1} + \beta_1 X_{t-1} + e_t
$$

"if $\beta_1=0$ then past values of X have \mathbf{n} explanatory power for Y beyond that provided by past values of Y".

Similarity between time-Series

Euclidean Distance

$$
D(\vec{x}, \vec{y}) = \sum_{i=1}^{n} (x_i - y_i)^2
$$

(+) *Efficient computation* (-) *Time shift, scaling*

Dynamic Time Warping

• *Nonlinear alignments are possible.*

DTW: Euclidean Distance

- Each cell $c = (i, j)$ is a pair of indices whose corresponding values will be computed, $(x_i-y_j)^2$, and included in the sum for the distance.
- Euclidean path:
	- \bullet *i* = *j* always.
	- Ignores off-diagonal cells.

University of Crete, Computer Science Department

Spring Semester 2017-2018 (CS-541 Wireless Sensor Networks University of Crete, Computer Science Department

DTW example

DTW based activity recognition

Wang, Liang, et al. "A hierarchical approach to real-time activity recognition in body sensor networks." *Pervasive and Mobile Computing* 8.1 (2012): 115-130.

Spring Semester 2017-2018 (CS-541 Wireless Sensor Networks University of Crete, Computer Science Department
University of Crete, Computer Science Department

window size

Stream Data Processing

The K-segmentation problem

- A K-segmentation S: a partition of T into K contiguous segments ${s_1, s_2, ..., s_k}.$
- Similar to K-means clustering, but now we need the points in the clusters to respect the order of the sequence

Given a sequence $\mathsf T$ of length N and a value K, find a K-segmentation $S = \{s_1, s_2, ..., s_k\}$ of T such that the SSE error E is minimized.

Solve via Dynamic Programming:

- Construct the solution of the problem by using solutions to problems of smaller size
- Build the solution bottom up from smaller to larger instances

Outlier detection

Definition (anomaly/novelty detection)

"those measurements that significantly deviate from the normal pattern of the sensed data"

Types of outliers

- First Order Anomalies:
	- Partial data measurements are anomalous at a sensor node
- Second Order Anomalies:
	- All data measurements at a sensor node are anomalous
- Third Order Anomalies:
	- Data from a set of sensor nodes are anomalous

Type 1: Incidental absolute errors:

- A short-term extremely high anomalous Type 2: Clustered absolute errors:
- A continuous sequence of *type 1* errors Type 3: Random errors:
- Short-term observations outside normal range Type 4: Long term errors:
- A continuous sequence of *type 3* errors

Outlier detection in WSNs

Objectives

- \triangleright Data reliability
- **≻ Quality of Service**
- \triangleright Communications overhead
- \triangleright Adaptive sampling rates
- \triangleright Security alert

Applications

- Environmental monitoring (e.g. fire)
- Health monitoring (e.g. heart attack)
- Industrial monitoring (e.g. malfunctions)

Outlier detection in WSNs

Challenges

- Low cost & quality
- Processing vs Transmitting
- Distributed streaming data
- Network topology
	- Failures,
	- Disconnections,
	- Mobility
- Deployment scale
- Type detection

Statistical

Gaussian-based models

- Send measurements -> model
- Build model -> send parameters Non-Gaussian
- Symmetric α-stable distributions **Mixtures**

Clusters

Detection Thresholds

Non-parametric modeling

Histogram based

- 1. Obtain v_{min} and v_{max} information
- 2. Collect histogram
- 3. Collect outliers and potential outliers
- 4. Diffuse potential outliers and count the number of neighbors within d
- Number of bins
- Thresholds
- Kernel Density Estimation

$$
f(x) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h_i} K(\frac{x - x_i}{h_i})
$$

Kernel Bandwidth

Spring Semester 2017-2018 (CS-541 Wireless Sensor Networks
University of Crete, Computer Science Department

Time series

Machine Learning

University of Crete, Computer Science Department 36 and the state of Computer Science 30

TP

Machine Learning

Machine learning: construction and study of [algorithms](http://en.wikipedia.org/wiki/Algorithm) that can [learn](http://en.wikipedia.org/wiki/Learning) from data

- Models of example inputs (training data) \rightarrow make predictions or decisions on new inputs (testing data)
- •Data: characteristics
- •Prior assumptions: a priori knowledge
- •Representation: How do we represent the data
- Model / Hypothesis space: Hypotheses to explain the data
- •Feedback / learning signal: Learning signal (delayed, labels)
- •Learning algorithm: Model update
- •Evaluation: Check quality

Types of ML

Supervised learning: present example inputs and their desired outputs (**labels**) → learn a general rule that maps inputs to outputs.

Types of ML

Unsupervised learning: no labels are given \rightarrow find structure in input.

Types of ML

Reinforcement learning: system interacts with environment and must perform a certain goal without explicitly telling it whether it has come close to its goal or not.

observation

Applications in WSNs

Network performance optimization

- Routing
- Distributed regression framework
- Data Aggregation
- Localization and Objects Targeting
- Medium Access Control

Data Mining

- Activity recognition
- Event Detection and Query Processing

Unsupervised learning - Clustering

What is a cluster?

groups of data instances that are similar to each other in one cluster and data instances that are very different from each other into different clusters

Hard vs. Soft

- *Hard*: belong to single cluster
- *Soft*: belong to multiple clusters
- Flat vs. Hierarchical
- *Flat*: clusters are flat
- *Hierarchical*: clusters form a tree

K-means clustering

- K-means is a partitional clustering algorithm
- Let the set of data points (or instances) *D* be

 $\{x_1, x_2, ..., x_n\},\$ where $\mathbf{x}_i = (x_{i1}, x_{i2}, ..., x_{ir})$ is a vector in a real-valued space $X \subseteq R^r$, and r is the number of attributes (dimensions) in the data.

- The *k*-means algorithm partitions the given data into *k* clusters.
	- Each cluster has a cluster **center**, called **centroid**.
	- *k* is specified by the user

K-means algorithm

Given *k*, the *k-means* algorithm works as follows:

- 1)Randomly choose *k* data points (seeds) to be the initial centroids, cluster centers
- 2)Assign each data point to the closest centroid
- 3)Re-compute the centroids using the current cluster memberships.

4) If a convergence criterion is not met, go to 2).

Stopping criteria

Spring Semester 2017-2018

- no re-assignments of data points to different clusters
- no change of centroids
- minimum decrease in the

18. Solve

\n
$$
SSE = \sum_{j=1}^{k} \sum_{\mathbf{x} \in C_j} dist(\mathbf{x}, \mathbf{m}_j)^2
$$
\nless sensor NetworkS University of Crete, Computer Science Department

\n**19.1**

\n**19.1**

\n**10.1**

\n**11.2**

\n**12.3**

\n**13.4**

\n**14.4**

K-means example

Complexity is $O(n * K * l * d)$ $n =$ number of points, $K =$ number of clusters, $I =$ number of iterations, $d =$ dimensionality

Issues with K-means

- Random initialization -> different clusters each time
- Data points are assigned to only one cluster
- Implicit assumptions about the "shapes" of clusters
- You have to pick the number of clusters…

Distance Between Two Clusters

single-link clustering: distance between clusters -> shortest distance between any two members.

complete-link clustering: distance between clusters -> longest distance between any two members.

average-link clustering: distance between clusters -> average distance between any two members

Hierarchical Agglomerative Clustering

- We start with every data point in a separate cluster
- We keep merging the most similar pairs of data points/clusters until we have one big cluster left
- This is called a bottom-up or agglomerative method

Hierarchical Clustering (cont.)

- This produces a binary tree or *dendrogram*
- The final cluster is the root and each data item is a leaf
- The height of the bars indicate how close the items are

Clustering in WSN

- Scalability:
	- Reduce routing tables to within cluster
- Data Aggregation
	- Energy reduction vs. full data transmission
	- CH based data fusion
	- multi-hop tree structure aggregation
- Load Balancing
	- Eliminate redundant data transmissions
	- Communications between CHs
- Energy reduction
	- Selective sampling within cluster
	- Short-range communications with CH
- Robustness & Fault tolerance
	- Support node failure/recovery
	- mobility of sensors
	- noisy measurements etc.
- Efficiency
	- Collision avoidance (intra vs. inter cluster communications)
	- Latency reduction by reducing hops
	- Network life-time maximization
	- Quality-of-service

 (c)

 (d)

Reading List

• Esling, Philippe, and Carlos Agon. "Time-series data mining." *ACM Computing Surveys (CSUR)* 45.1 (2012): 12.

