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Overview

* Time series analysis

* Intro to Machine learning
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Stream Data Processing

Data streams—continuous, ordered, changing, fast,
huge amount

* Huge volumes of continuous data, possibly infinite
* Fast changing and requires fast, real-time response

Applications

* Telecommunication records

* Network monitoring and traffic engineering //!X\\

* Industrial processes: power & manufacturing V// TN

. . . EESsSSEREs:=
* Sensor, monitoring & surveillance FEEEES TRy
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Time-series in WSN
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Problems

* Type 1: patterns, periodicities, and/or compress
* Wearable, Smart city

* Type 2: forecast, find motifs, quantify similarity
* Activity recognition

e Type 3: Multiple time series analysis
» Sensor networks

“Predictions are very difficult... especially about the future”
Niels Bohr
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Applications

Prediction - Forecasting
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Segmentation - Clustering
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Time-Series data

Time series: sequence of observations s, € R ordered in time t=1...N
Applications

» Weather, economic, marketing, web, envirometrics, sensor networks

Representations

=) NN
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Sliding windows Histograms Transform coding
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Sliding window

* Given a time series, individual subsequences are extracted with a
sliding window

All subsequences

Sliding window
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Sliding windows embedding
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Sliding Windows and Persistence: An application of topology to signal analysis, ). Perea and J. Harer, 2015
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@ Sensor stream

Spring Semester 2017-2018

Data stream
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Data stream

@ Sensor stream

@ Temporal windowing

© Hankelization process H ‘ ‘ ‘ ‘ ‘ ‘

i |

|
v [m] lagged temporal 1t window
windows of [ny] samples 2]
ol e | | -
H
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Data stream

@ Sensor stream

. . |
@ Temporal windowing i
© Hankelization process H | .'
f
v [n1] lagged temporal 1** window
windows of [ny] samples [n,]
['nl]{ h[] h]_ o hnl 500 hnz—l hnz
H
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Data stream

@ Sensor stream

@ Temporal windowing

© Hankelization process H
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Data stream

@ Sensor stream

@ Temporal windowing

© Hankelization process H -

|
v’ [n1] lagged temporal 3¢ window
windows of [ny] samples ;] 3
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Data stream

@ Test sensor stream

@ I r‘ltI’Od UCtion Of m iSSi ng Data stream with missing values
lag 2" window
values :
© Temporal windowing | 1 window
. . Hankel matrix
@ Hankelization process H with missing values

@ Undersampled Hankel matrices — ‘
that need to be reconstructed! ‘

4

Matrix Completion

Completed Hankel matrix
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Accelerometer x
Single stream recovery
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Single streqql recovery
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Accelerometer x
Single stream recovery
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Autoregressive Models (AR)

Thus for stationary time series the mean value function is constant and
the covariance function is only a function of the distance in time (t —s)

The “order” of the AR(p) models is the number of prior values used in
the model.

Univariate AR model
* AR(1)2> x; = by + byxi_1 + &
* AR(2)2 x; = by + b1 Xi—1 + boxs_p + &
* AR(p)> Xi= icp;Xf_,; + &4
Solutions: YuIe—W:Ilker equations
Estimation of autocovariances, least squares regression

' FORTH

nstitute o f Computer Science



Matrix formulation

>

* XN X 4 “YNxp T

Ind-varl Ind-var-w

time 1> 712> 2
a

w
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Matrix formulation
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Vector Autoregressive Models (VAR)

Vector AR (VAR) extension to multiple time series
ye = ¢+ Ay + Aoypo+ -+ Apye—p + €4,

* least squares: B;=(Y, 'Y, ;) !Y,,"Y, (under conditions)
e Determination of lag length is a trade-off

Granger causality: statistical hypothesis test for determining whether
one time series X is useful in forecasting another time series Y, (‘60)

Z — 05+¢1Yt—1 +181)(t—1 €,

“if B;=0 then past values of X have no
explanatory power for Y beyond that provided
by past values of Y”.
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Similarity between time-Series

Euclidean Distance a \

]
D(x,y) = E (x; = 3)°
=

(+) Efficient computation C
(-) Time shift, scaling

Dynamic Time Warping

* Nonlinear alignments are possible.
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DTW: Euclidean Distance

e Each cell c = (i, j) is a pair of

indices whose corresponding

values will be computed, (x~y;)?,

Y and included in the sum for the

distance.

* Euclidean path:

Yi
\ * j =j always.
/ X * Ignores off-diagonal cells.
(Xz_yz) + (X1_y1)2
(x;=Y4)? S
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DTW: Dynamic timpe warping

N\

DTW allows any path.

)

N

_____

T (1

Dynamic Prdgramfning épproach

D(i,j)= | x—y; | +min{ D(i—1,j),

D(i—-1,j-1),

* Extend sequences by repeating

elements

e Euclidean distance between
extended sequences
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DTW example
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DTW based activity recognition

Fixed window of 1s Distance between T1

by DTW

Select the gesture

L
. —> with minimun distance

Distance between Tn

by DTW
Templates
T1,T2, ..., Tn
100 % T T T
: : —%*— EP single- layer
90 % -o---- e e R [ R [ —o— EP two-layer
. . : —O— HMMs

3t
80 % - 9%sx.

Y IR fs . YO

60% [ [ PR PR Ceee L

50 % I omsee

accuracy

40% -

30% oo

0% fooeeees

0% R S S S S
Wang, Liang, et al. "A hierarchical approach to real-time activity ©o 5 10 15 20 25 30 35 40 45 50
recognition in body sensor networks." Pervasive and Mobile window size

Computing 8.1 (2012): 115-130.
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Stream Data Processing

A

R
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The K-segmentation problem

* A K-segmentation S: a partition of T into K contiguous segments
{51,525, --»S¢}-

 Similar to K-means clustering, but now we need the points in the
clusters to respect the order of the sequence

Given a sequence T of length N and a value K, find a

-segmentation of T such that the
error £ is minimized.

Solve via Dynamic Programming:

* Construct the solution of the problem by using solutions to problems of
smaller size

* Build the solution bottom up from smaller to larger instances

Spring Semester 2017-2018
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Outlier detection

Definition (anomaly/novelty detection)

“those measurements that significantly deviate from the normal
pattern of the sensed data”

Types: Noise, Errors, Events & Attacks | The birth of a child to Mrs. Hadlum
happened 349 days (11,5 months) after

Outlier Detection Event Detection Mr. Hadlum left for miIitary service.

. . [Percentage (n=13,634)
No prior knowledge semantics

comparative Threshold based

o ZOJ'
False alarms Detection

Distribution of human gestation periods.
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Types of outliers

< _ > <_—>>
* First Order Anomalies: / /

08

* Partial data measurements are
anomalous at a sensor node

0.6

* Second Order Anomalies:

* All data measurements at a sensor | | §
node are anomalous 02 o AR WALV PN A

 Third Order Anomalies: 1

1 1
0 20 40 60 80 100

* Data from a set of sensor nodes are Time
anomalous 1 - ———— -

Sensor Measurement

[
|
| |
| |
| |
| |
L vt rey ,ca s y . \
04ps B 1"' ‘o‘,r“_, s LAPRASY ”'|~"‘4' AR
| |
| |
|

Sensor Node 1

----- Sensor Node 2

----- Sensor Node 3
I

Type 3- Type 4-
Type 1: Incidental absolute errors: el et s ﬁ
* A short-term extremely high anomalous
Type 2: Clustered absolute errors:
* A continuous sequence of type 1 errors
Type 3: Random errors: 4
* Short-term observations outside normal range I A A A N
Type 4: Long term errors: Normal Heasurement
* A continuous sequence of type 3 errors 0

0.6

Sensor Measurement

0 20 40 60 80 100
Time
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Outlier detection in WSNSs

w10

Objectives .
» Data reliability . s

» Quality of Service sl m d’"‘«\

» Communications overhead

RAux [Arb. Units]
o
=

» Adaptive sampling rates \WM%W
» Security alert |
Applications e

* Environmental monitoring (e.g. fire)
* Health monitoring (e.g. heart attack)

* Industrial monitoring (e.g. malfunctions)

 FORTH

nstitute o f Computer Science



Outlier detection in WSNSs

Challenges

Low cost & quality

Network topology
* Failures,
* Disconnections,
* Mobility

Deployment scale

Type detection

Spring Semester 2017-2018

Gaussian-based

Processing vs Transmitting
Distributed streaming data

‘ Outlier Detection Techniques for Wireless Sensor Networks ‘

| Statistica

I-based ‘ |N‘earesf Nefghbor—based| |Cfusferr'ng—based| | Classification-based

Spectral Decom-

postition-based

| Parametric-based |

‘ Non-Parametric-based

Support Veector
Machine-based

Bayesian Network-based

Principal Component
Analysis-based

Non-Gaussian-
based

Kernel-based | |H{s!ogram—based

CS-541 Wireless Sensor Networks
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Naive Bayesian
Network-based

Bayesian Belief
Network-based

Dynamic Bayesian
Network-based
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Statistical

Gaussian-based models

* Send measurements -> model

* Build model -> send parameters

Non-Gaussian
* Symmetric a-stable distributions

Mixtures

Clusters

Detection Thresholds

. CS-541 Wireless Sensor Networks Kk
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Non-parametric modeling

Histogram based
1. Obtain v, and v, ., information
2. Collect histogram

3. Collect outliers and potential outliers bl
4. Diffuse potential outliers and count the number of nelghbors within d

* Number of bins F I
* Thresholds ST
Kernel Density Estimation S
past =—= future tme PDF
1G1,, X=X
f(X):—Z K ( S R B
n4< hi hi Gaussian  K(u) = N
Kernel Bandwidth
- FORTH
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Machine Learning

At last — a computer program that
can beat a champion Go player PAGE 434

ALL SYSTEMS 90

”‘LL!W-CJ”
=IYEEATII=ai
‘ﬂlﬂﬂ-Fm b
“Yemb@l ¥Ki°

hidden layer 1

. hidden layer 2 hidden layver 3
input layer

output layver

b
”
»
_/ »
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Machine Learning

Machine learning: construction and study of algorithms that
can learn from data

* Models of example inputs (training data) —> make
predictions or decisions on new inputs (testing data)

e Data: characteristics

e Prior assumptions: a priori knowledge

e Representation: How do we represent the data

* Model / Hypothesis space: Hypotheses to explain the data
e Feedback / learning signal: Learning signal (delayed, labels)
e Learning algorithm: Model update

N Institute of Computer Science


http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Learning

Types of ML

Supervised learning: present example inputs and their

desired outputs (labels) - learn a general rule that maps
inputs to outputs.

v

v
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Types of ML

Unsupervised learning: no labels are given = find structure in
input.

s mgsp enbeddling

Swissroll data

15 =

10 -

—10 }

v
v

=5 L L s L s L L L
—80—60—40—20 O 20 40 60 80 100

CS-541 Wireless Sensor Networks

Spring Semester 2017-2018
pning University of Crete, Computer Science Department

FORTH 39

. Institute of Computer Science




Types of ML

Reinforcement learning: system interacts with environment
and must perform a certain goal without explicitly telling it
whether it has come close to its goal or not.

*reward
p &

l enwron ment

Internal state

learning rate o
inverse temperature 8
discount rate v

observation

CS-541 Wireless Sensor Networks
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Applications in WSNs

Network performance optimization
* Routing

* Distributed regression framework

* Data Aggregation

* Localization and Objects Targeting

* Medium Access Control

Data Mining

* Activity recognition

* Event Detection and Query Processing

N Institute of Computer Science



Unsupervised learning - Clustering

What is a cluster?

groups of data instances that are similar to each other in one
cluster and data instances that are very different from each
other into different clusters

Hard vs. Soft
* Hard: belong to single cluster
* Soft: belong to multiple clusters

Flat vs. Hierarchical
e Flat: clusters are flat

e Hierarchical: clusters form a tree

CS-541 Wireless Sensor Networks
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K-means clustering

* K-means is a partitional clustering algorithm
* Let the set of data points (or instances) D be

{Xy, X5, ..., X},
where x; = (x;,, X,,, ..., X;,) is @ vector in a real-valued space
X C R’, and ris the number of attributes (dimensions) in
the data.
* The k-means algorithm partitions the given data
into k clusters.
» Each cluster has a cluster center, called centroid.
* k is specified by the user

Spring Semester 2017-2018 .
Computer Science Department
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K-means algorithm

Given k, the k-means algorithm works as follows:

1)Randomly choose k data points (seeds) to be the initial
centroids, cluster centers

2)Assign each data point to the closest centroid

3)Re-compute the centroids using the current cluster
memberships.

4)If a convergence criterion is not met, go to 2).
Stopping criteria
* no re-assignments of data points to different clusters

* no change of centroids
* minimum decrease in the SSE = ZZ diS’[(X,mj)2

i=

N Institute of Computer Science



ComplexityisO(n*K*1*d)
K-means exam P | e n = number of points, K = number of clusters,

| = number of iterations, d = dimensionality
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Issues with K-means

* Random initialization -> different clusters each time
* Data points are assigned to only one cluster

* Implicit assumptions about the “shapes” of clusters
* You have to pick the number of clusters...

Cluster tightness
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Distance Between Two Clusters

single-link clustering: distance between clusters -> shortest distance
between any two members.

complete-link clustering: distance between clusters -> longest
distance between any two members.

average-link clustering: distance between clusters -> average
distance between any two members

- LY
x x
x X x X

University of Crete, Computer Science Department
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Hierarchical Agglomerative Clustering

* We start with every data point in a separate cluster

* We keep merging the most similar pairs of data
points/clusters until we have one big cluster left

* This is called a bottom-up or agglomerative method

?tepO ?tepl ?tepZ |Step?) |Step4 agglomerative
- (AGNES)
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Hierarchical Clustering (cont.)

* This produces a binary
tree or dendrogram

* The final cluster is the
root and each data item
is a leaf

* The height of the bars
indicate how close the
items are

M 12 13 14 15 16
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Clustering in WSN

Scalability:

* Reduce routing tables to within cluster

Data Aggregation

* Energy reduction vs. full data transmission

* CH based data fusion

* multi-hop tree structure aggregation

Load Balancing

e Eliminate redundant data transmissions

e Communications between CHs
Energy reduction

» Selective sampling within cluster
* Short-range communications with CH

Robustness & Fault tolerance
* Support node failure/recovery
* mobility of sensors
* noisy measurements etc.

Efficiency

s

(b)

 Collision avoidance (intra vs. inter cluster communications)
* Latency reduction by reducing hops

* Network life-time maximization
* Quality-of-service

Spring Semester 2017-2018
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Reading List

* Esling, Philippe, and Carlos Agon. "Time-series data mining." ACM
Computing Surveys (CSUR) 45.1 (2012): 12.
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