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Overview

• Time series analysis

• Intro to Machine learning
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Stream Data Processing

Data streams—continuous, ordered, changing, fast, 
huge amount

• Huge volumes of continuous data, possibly infinite

• Fast changing and requires fast, real-time response

Applications
• Telecommunication records

• Network monitoring and traffic engineering

• Industrial processes: power & manufacturing

• Sensor, monitoring & surveillance
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Time-series in WSN
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Problems

• Type 1:  patterns, periodicities, and/or compress
• Wearable, Smart city

• Type 2:  forecast, find motifs, quantify similarity
• Activity recognition

• Type 3: Multiple time series analysis
• Sensor networks
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“Predictions are very difficult… especially about the future”
Niels Bohr



Applications
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Time series: sequence of observations st ∈ R  ordered in time t=1…N

Applications

• Weather, economic, marketing, web, envirometrics, sensor networks

Representations

Time-Series data
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Sliding windows Histograms Transform coding



• Given a time series, individual subsequences are extracted with a 
sliding window

Sliding window
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Sliding window
All subsequences



Sliding windows embedding
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Autoregressive Models (AR)

Thus for stationary time series the mean value function is constant and 
the covariance function is only a function of the distance in time (t – s)

The “order” of the AR(p) models is the number of prior values used in 
the model.

Univariate AR model

• AR(1) 𝑥𝑡 = 𝑏0 + 𝑏1𝑥𝑡−1 + ε𝑡

• AR(2) 𝑥𝑡 = 𝑏0 + 𝑏1𝑥𝑡−1 + 𝑏2𝑥𝑡−2 + ε𝑡

• AR(p)

Solutions: Yule–Walker equations

Estimation of autocovariances, least squares regression
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Matrix formulation
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Matrix formulation
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Vector Autoregressive Models (VAR)

Vector AR (VAR) extension to multiple time series

• least squares: B1=(Yt-1
T Yt-1)-1 Yt-1

T Yt (under conditions)

• Determination of lag length is a trade-off 

Granger causality: statistical hypothesis test for determining whether 
one time series X is useful in forecasting another time series Y, (‘60)
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Similarity between time-Series

Euclidean Distance

(+) Efficient computation

(-) Time shift, scaling 

Dynamic Time Warping
• Nonlinear alignments are possible.
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DTW: Euclidean Distance 

• Each cell c = (i, j) is a pair of 

indices whose corresponding 

values will be computed, (xi–yj)
2, 

and included in the sum for the 

distance.

• Euclidean path:

• i = j always.

• Ignores off-diagonal cells.
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DTW: Dynamic time warping

DTW allows any path.

Dynamic Programming approach

D(i, j) = | xi – yj | + min { D(i – 1, j), 
D(i – 1, j – 1), 
D(i, j – 1) }

• Extend sequences by repeating 
elements

• Euclidean distance between 
extended sequences
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DTW example
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DTW based activity recognition
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Wang, Liang, et al. "A hierarchical approach to real-time activity 
recognition in body sensor networks." Pervasive and Mobile 
Computing 8.1 (2012): 115-130.



Stream Data Processing
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Segmentation into 4 segments

Homogeneity: points are 
close to the mean value 
(small error)



The K-segmentation problem

• A K-segmentation S: a partition of T into K contiguous segments 
{s1,s2,…,sK}. 

• Similar to K-means clustering, but now we need the points in the 
clusters to respect the order of the sequence

Solve via Dynamic Programming:

• Construct the solution of the problem by using solutions to problems of 
smaller size

• Build the solution bottom up from smaller to larger instances

 Given a sequence T of length N and a value K, find a 
K-segmentation S = {s1, s2, …,sK} of T such that the SSE
error E is minimized.
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Outlier detection

Definition (anomaly/novelty detection)

“those measurements that significantly deviate from the normal
pattern of the sensed data”

Types:  Noise, Errors, Events & Attacks

Outlier Detection Event Detection

No prior knowledge semantics

comparative Threshold based

False alarms Detection 
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The birth of a child to Mrs. Hadlum
happened 349 days (11,5 months) after
Mr. Hadlum left for military service.



Types of outliers
• First Order Anomalies: 

• Partial data measurements are 
anomalous at a sensor node

• Second Order Anomalies: 
• All data measurements at a sensor 

node are anomalous

• Third Order Anomalies: 
• Data from a set of sensor nodes are 

anomalous
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Type 1: Incidental absolute errors: 
• A short-term extremely high anomalous
Type 2: Clustered absolute errors: 
• A continuous sequence of type 1 errors
Type 3: Random errors: 
• Short-term observations outside normal  range 
Type 4: Long term errors: 
• A continuous sequence of type 3 errors



Outlier detection in WSNs

Objectives 

 Data reliability

 Quality of Service

 Communications overhead

 Adaptive sampling rates

 Security alert

Applications

• Environmental monitoring (e.g. fire)

• Health monitoring (e.g. heart attack)

• Industrial monitoring (e.g. malfunctions)
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Outlier detection in WSNs

Challenges

• Low cost & quality

• Processing vs Transmitting

• Distributed streaming data

• Network topology
• Failures, 

• Disconnections, 

• Mobility

• Deployment scale

• Type detection 

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
32



Statistical

Gaussian-based models

• Send measurements -> model

• Build model -> send parameters

Non-Gaussian

• Symmetric α-stable distributions

Mixtures

Clusters

Detection Thresholds
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Non-parametric modeling

Histogram based

1. Obtain vmin and vmax information

2. Collect histogram

3. Collect outliers and potential outliers

4. Diffuse potential outliers and count the number of neighbors within d

• Number of bins

• Thresholds

Kernel Density Estimation
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Machine Learning
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Machine Learning

Machine learning: construction and study of algorithms that
can learn from data

• Models of example inputs (training data) → make
predictions or decisions on new inputs (testing data)

•Data:  characteristics

•Prior assumptions:  a priori knowledge

•Representation:  How do we represent the data

•Model / Hypothesis space:  Hypotheses to explain the data

•Feedback / learning signal:  Learning signal (delayed, labels)

•Learning algorithm:  Model update

•Evaluation:  Check quality
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Types of ML

Supervised learning: present example inputs and their
desired outputs (labels) → learn a general rule that maps
inputs to outputs.
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Types of ML

Unsupervised learning: no labels are given → find structure in
input.
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Types of ML

Reinforcement learning: system interacts with environment
and must perform a certain goal without explicitly telling it
whether it has come close to its goal or not.
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Applications in WSNs

Network performance optimization

• Routing

• Distributed regression framework

• Data Aggregation

• Localization and Objects Targeting

• Medium Access Control

Data Mining

• Activity recognition

• Event Detection and Query Processing
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Unsupervised learning - Clustering

What is a cluster?

groups of data instances that are similar to each other in one 
cluster and data instances that are very different from each 
other into different clusters

Hard vs. Soft

• Hard: belong to single cluster

• Soft: belong to multiple clusters

Flat vs. Hierarchical

• Flat: clusters are flat

• Hierarchical: clusters form a tree
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K-means clustering

•K-means is a partitional clustering algorithm

• Let the set of data points (or instances) D be 

{x1, x2, …, xn}, 
where xi = (xi1, xi2, …, xir) is a vector in a real-valued space 
X  Rr, and r is the number of attributes (dimensions) in 
the data. 

•The k-means algorithm partitions the given data 
into k clusters. 
• Each cluster has a cluster center, called centroid.
• k is specified by the user 

CS-541 Wireless Sensor Networks University of Crete, 
Computer Science Department
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K-means algorithm

Given k, the k-means algorithm works as follows:
1)Randomly choose k data points (seeds) to be the initial 

centroids, cluster centers
2)Assign each data point to the closest centroid
3)Re-compute the centroids using the current cluster 

memberships.
4)If a convergence criterion is not met, go to 2).

Stopping criteria

• no re-assignments of data points to different clusters 

• no change of centroids 

• minimum decrease in the 

CS-541 Wireless Sensor Networks University of Crete, 
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K-means example
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Complexity is O( n * K * I * d )
n = number of points, K = number of clusters, 
I = number of iterations, d = dimensionality



Issues with K-means

• Random initialization -> different clusters each time

• Data points are assigned to only one cluster

• Implicit assumptions about the “shapes” of clusters

• You have to pick the number of clusters…

Cluster tightness
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Distance Between Two Clusters

single-link clustering: distance between clusters -> shortest distance 
between any two members. 

complete-link clustering: distance between clusters -> longest 
distance between any two members.

average-link clustering: distance between clusters  -> average 
distance between any two members
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Hierarchical Agglomerative Clustering

• We start with every data point in a separate cluster

• We keep merging the most similar pairs of data 
points/clusters until we have one big cluster left

• This is called a bottom-up or agglomerative method
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Hierarchical Clustering (cont.)

• This produces a binary 
tree or dendrogram

• The final cluster is the 
root and each data item 
is a leaf

• The height of the bars 
indicate how close the 
items are
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• Scalability: 
• Reduce routing tables to within cluster

• Data Aggregation
• Energy reduction vs. full data transmission
• CH based data fusion 
• multi-hop tree structure aggregation

• Load Balancing
• Eliminate redundant data transmissions
• Communications between CHs

• Energy reduction 
• Selective sampling within cluster
• Short-range communications with CH

• Robustness & Fault tolerance
• Support node failure/recovery
• mobility of sensors 
• noisy measurements etc.

• Efficiency
• Collision avoidance (intra vs. inter cluster communications)
• Latency reduction by reducing hops
• Network life-time maximization
• Quality-of-service

Clustering in WSN
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Reading List

• Esling, Philippe, and Carlos Agon. "Time-series data mining." ACM 
Computing Surveys (CSUR) 45.1 (2012): 12.
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