- Terms & Definitions
- Bayes Theorem Simple Example
- Naïve Bayes Classifier SOS Example
- Q. Assignment 1

Tutorial 1 CS-473

P(B)

Prior

106.0

020

Probability one (alive or not) has bitcoins

in **2025**

P(B|Y=**2025**)

10

Posterior

P(A): Cloudy P(B): Raining

P(B|A): Raining given day is cloudy P(A|B): Cloudy given it is raining

В

Cakes

А

P(A|B)

A | B ? А∩В P(B)

В

Gaussian Naive Bayes is a machine learning classification technique based on a probablistic approach that assumes each class follows a normal distribution.

It assumes each parameter has an **independent** capacity of predicting the output variable.

- Continuous values associated with each feature are assumed to be distributed based on Gaussian distribution.
- Likelihood of the features is assumed to be Gaussian.

	Height	Weight	Foot size
Gender	(ft)	(lbs)	(inch)
Male	6	180	12
Male	5.92	190	11
Male	5.58	170	12
Male	5.92	165	10
Female	5	100	6
Female	5.5	150	8
Female	5.42	130	7
Female	5.75	150	9

- Continuous values associated with each feature are assumed to be distributed based on Gaussian distribution.
- Likelihood of the features is assumed to be Gaussian.

- Example:
- Classify whether a given person's datapoint is a male or a female.
- The features include height, weight, and foot size.

	Height	Weight	Foot size
Gender	(ft)	(lbs)	(inch)
Male	6	180	12
Male	5.92	190	11
Male	5.58	170	12
Male	5.92	165	10
Female	5	100	6
Female	5.5	150	8
Female	5.42	130	7
Female	5.75	150	9

- Continuous values associated with each feature are assumed to be distributed based on Gaussian distribution.
- Likelihood of the features is assumed to be Gaussian.

- Example:
- Classify whether a given person's datapoint is a male or a female.
- The features include height, weight, and foot size.
- P(Male) = 4/8 = 0.5; P(Female) = 4/8 = 0.5

	Height	Weight	Foot size
Gender	(ft)	(lbs)	(inch)
Male	6	180	12
Male	5.92	190	11
Male	5.58	170	12
Male	5.92	165	10
Female	5	100	6
Female	5.5	150	8
Female	5.42	130	7
Female	5.75	150	9

- Continuous values associated with each feature are assumed to be distributed based on Gaussian distribution.
- Likelihood of the features is assumed to be Gaussian.

	Height	Weight	Foot size
Gender	(ft)	(lbs)	(inch)
Male	6	180	12
Male	5.92	190	11
Male	5.58	170	12
Male	5.92	165	10
Female	5	100	6
Female	5.5	150	8
Female	5.42	130	7
Female	5.75	150	9

- Example:
- Classify whether a given person's datapoint is a male or a female.
- The features include height, weight, and foot size.
- P(Male) = 4/8 = 0.5; P(Female) = 4/8 = 0.5

Male:

- Mean(height) = 5.855
- Variance(Height) = $\frac{\sum (x_i \overline{x})^2}{n-1} = \frac{(6-5.855)^2 + (5.92 5.855)^2 + (5.58 5.855)^2 + (5.92 5.855)^2}{4-1} = 0.035055$
- Calculate for all features

Gender	Mean (height)	Variance (Height)	Mean (weight)	Variance (Weight)	Mean (Footsize)	Variance (Footsize)
Male	5.855	0.035	176.25	122.92	11.25	0.91667
Female	5.4175	0.097225	132.5	558.33	7.5	1.6667

- Continuous values associated with each feature are assumed to be distributed based on Gaussian distribution.
- Likelihood of the features is assumed to be Gaussian.

	Height	Weight	Foot size
Gender	(ft)	(lbs)	(inch)
Male	6	180	12
Male	5.92	190	11
Male	5.58	170	12
Male	5.92	165	10
Female	5	100	6
Female	5.5	150	8
Female	5.42	130	7
Female	5.75	150	9

- Example:
- Classify whether a given person's datapoint is a male or a female.
- The features include height, weight, and foot size.
- P(Male) = 4/8 = 0.5; P(Female) = 4/8 = 0.5

Male:

- Mean(height) = 5.855
- Variance(Height) = $\frac{\sum (x_i \overline{x})^2}{n-1} = \frac{(6-5.855)^2 + (5.92 5.855)^2 + (5.58 5.855)^2 + (5.92 5.855)^2}{4-1} = 0.035055$
- Calculate for all features

Gender	Mean (height)	Variance (Height)	Mean (weight)	Variance (Weight)	Mean (Footsize)	Variance (Footsize)
Male	5.855	0.035	176.25	122.92	11.25	0.91667
Female	5.4175	0.097225	132.5	558.33	7.5	1.6667

- Continuous values associated with each feature are assumed to be distributed based on Gaussian distribution.
- Likelihood of the features is assumed to be Gaussian.

• So, conditional probability is given by:
$$P(x_i|y) = \frac{1}{\sqrt{2\pi\sigma_y^2}}e^{-\frac{(x_i - \mu_y)^2}{2\sigma_y^2}}$$

Weight Height Foot size (ft)(lbs) (inch) Gender Male 6 180 12 Male 5.92 11 190 Male 5.58 170 12 Male 5.92 165 10 5 Female 100 6 5.5 8 Female 150 5.42 7 Female 130 5.75 9 Female 150

- Example:
- Classify whether a given person's datapoint is a male or a female.
- The features include height, weight, and foot size.
- P(Male) = 4/8 = 0.5; P(Female) = 4/8 = 0.5

Male:

- Mean(height) = 5.855
- Variance(Height) = $\frac{\sum (x_i \overline{x})^2}{n-1} = \frac{(6-5.855)^2 + (5.92 5.855)^2 + (5.58 5.855)^2 + (5.92 5.855)^2}{4-1} = 0.035055$
- Calculate for all features

Gender	Mean (height)	Variance (Height)	Mean (weight)	Variance (Weight)	Mean (Footsize)	Variance (Footsize)
Male	5.855	0.035	176.25	122.92	11.25	0.91667
Female	5.4175	0.097225	132.5	558.33	7.5	1.6667

• Classify the new datapoint

\nearrow	Gender	Height (ft)	Weight (lbs)	Foot size (inch)
	?	6	130	8

Gender	Mean (height)	Variance (Height)	Mean (weight)	Variance (Weight)	Mean (Footsize)	Variance (Footsize)
Male	5.855	0.035	176.25	122.92	11.25	0.91667
Female	5.4175	0.097225	132.5	558.33	7.5	1.6667

• Classify the new datapoint

~	Gender	Height (ft)	Weight (lbs)	Foot size (inch)
1	?	6	130	8

Gender	Mean (height)	Variance (Height)	Mean (weight)	Variance (Weight)	Mean (Footsize)	Variance (Footsize)
Male	5.855	0.035	176.25	122.92	11.25	0.91667
Female	5.4175	0.097225	132.5	558.33	7.5	1.6667

- $P(male) = \frac{P(male) * P(H|male) P(w|male) P(F|male)}{Marginal probability or Evidence}$
- $P(female) = \frac{P(female) * P(H|female) P(w|female) P(F|female)}{Marginal probability or Evidence}$

• Classify the new datapoint

\nearrow	Gender	Height (ft)	Weight (lbs)	Foot size (inch)
1	?	6	130	8

Gender	Mean (height)	Variance (Height)	Mean (weight)	Variance (Weight)	Mean (Footsize)	Variance (Footsize)
Male	5.855	0.035	176.25	122.92	11.25	0.91667
Female	5.4175	0.097225	132.5	558.33	7.5	1.6667

 $P(x_i|y) = \frac{1}{\sqrt{2\pi\sigma_y^2}} e^{-\frac{(x_i - \mu_y)}{2\sigma_y^2}}$

- $P(male) = \frac{P(male) * P(H|male) P(w|male) P(F|male)}{Marginal probability or Evidence}$
- $P(female) = \frac{P(female) * P(H|female) P(w|female) P(F|female)}{Marginal probability or Evidence}$
- The evidence (normalizing constant) is the sum of the posteriors equals one.
- evidence=P(male)*P(ht|male)*P(wt|male)*P(footsize|male)+P(female)*P(ht|female)*P(wt|female)*P(foot size|female)
- The evidence may be ignored since it is a positive constant. (Normal distributions are always positive)

• Classify the new datapoint

\nearrow	Gender	Height (ft)	Weight (lbs)	Foot size (inch)
1	?	6	130	8

Gender	Mean (height)	Variance (Height)	Mean (weight)	Variance (Weight)	Mean (Footsize)	Variance (Footsize)
Male	5.855	0.035	176.25	122.92	11.25	0.91667
Female	5.4175	0.097225	132.5	558.33	7.5	1.6667

- $P(male) = \frac{P(male) * P(H|male) P(w|male) P(F|male)}{Marginal probability or Evidence}$
- $P(\text{female}) = \frac{P(\text{female}) * P(H|\text{female}) P(W|\text{female}) P(F|\text{female})}{\text{Marginal probability or Evidence}}$

$$P(x_i|y) = \frac{1}{\sqrt{2\pi\sigma_y^2}} e^{-\frac{(x_i - \mu_y)^2}{2\sigma_y^2}}$$

- The evidence (normalizing constant) is the sum of the posteriors equals one.
- $\bullet evidence = P(male) * P(ht|male) * P(wt|male) * P(footsize|male) + P(female) * P(ht|female) * P(wt|female) * P(foot size|female) * P(foot size|female) * P(ht|female) * P(wt|female) * P(foot size|female) * P(ht|female) * P(wt|female) * P(ht|female) * P(ht|fem$
- The evidence may be ignored since it is a positive constant. (Normal distributions are always positive)

•
$$P(H|M) = \frac{1}{\sqrt{2*3.14*0.035033}} * e^{-\frac{(6-5.855)^2}{2*0.035033}} = 1.5789$$
 $P(H|F) = 2.2356e^{-1}$

- $P(W|M) = 5.9881e^{-6}$ $P(W|F)=1.6789e^{-2}$
- $P(Foot|M) = 1.3112e^{-3}$ $P(Foot|F) = 2.8669e^{-1}$
- $P(male) = \frac{P(male) * P(H|male) P(w|male) P(F|male)}{Marginal probability or Evidence} = 0.5*1.5789*5.9881e^{-6*1.3112e^{-3}} = 6.1984e^{-9}$
- $P(\text{female}) = \frac{P(\text{female}) * P(H|\text{female}) P(w|\text{female}) P(F|\text{female})}{\text{Marginal probability or Evidence}} = 0.5*2.2346e^{-1} \times 1.6789e^{-2} \times 2.8669e^{-1} = 5.377e^{-4}$
- **P(female**) > P(male)