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Outline of the presentation

e Maximum Likelihood Estimation for Parameter Estimation - PART A

e Parzen Windows - PART B

e K-Nearest Neighbors (KNN) Classification - PART C



Maximum Likelihood Estimation for Parameter Estimation - PART A

...it’s the equation for the
normal distribution, or normal
curve.
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Maximum Likelihood Estimation for Parameter Estimation - PART A

...to find the optimal values for uy (the
mean) and o (the standard deviation)
given some data, x
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Maximum Likelihood Estimation for Parameter Estimation - PART A

Lu=28,0=2|x=32) = ;e—(x—y)z/za2 - l o—(32-28)/2x22

262 \/ 2722

= 0.03

Thus, the y-axis
value here is 0.08.
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Maximum Likelihood Estimation for Parameter Estimation - PART A

1 2 2 1
Lu=30,6=2|x=32)=—— W20 = ___
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2 2
e—(32—30) /2%2

= 0.12

143,'&19 y-axis

value here is 0.12.

24 grams 32 grams 40 grams



Maximum Likelihood Estimation for Parameter Estimation - PART A

L(ﬂ Xi= 32, G = 2) — ;e—(32—y)2/2x22

V2122
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...then we can plug in a
whole bunch of values for
M and see which one
gives the maximum
likelihood.
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Maximum Likelihood Estimation for Parameter Estimation - PART A

...each time we change pu,

Likelihood we calculate the likelihood
| and plot it...
Values for p
~ l —(39— ).’/wxw“
Lig=40|% =32, 6 =12)= o~ (32—1)"12x2
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Maximum Likelihood Estimation for Parameter Estimation - PART A

\ We can identify the peak

in the likelihood graph by
determining where the
slope of the curve = 0.

Likelihood

Values for u

e

24 grams 32 grams 40 grams



Maximum Likelihood Estimation for Parameter Estimation - PART A

1 2 2
L(a'x =382, p=32) = ——— PN
2r0?

...and we can plug in different
values for o to find the one that
gives the maximum likelihood.

. S——
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Maximum Likelihood Estimation for Parameter Estimation - PART A

Likelihood

...and the maximum likelihood
estimate for o would be at the
peak, where the slope of the

Values for o

24 grams 32 grams 40 grams



Maximum Likelihood Estimation for Parameter Estimation - PART A

Ly, o|xy, x5, ..., x,) = L(, 6|x;) X ... X L(u, o|x,)

- 1 e—(x,—;l)2/20'2 % % I e—(x,,—/,t)2/20'2

\/ 2762 h \/ 27062
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...then multiply together all n individual
likelihood functions.
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Maximum Likelihood Estimation for Parameter Estimation - PART A

L(u, o|x;, x5, ..., X,,)

n

e—()«‘,—;4)2/2cr2 X .. X —e—(x”—/z)z/hr2

One derivative will be with
respect gy, when we treat o
like it’s a constant...

Likelihood

Potential values for py



Maximum Likelihood Estimation for Parameter Estimation - PART A

Ly, o|x;, x5, ..., X))

n

1 e—(}t'l—,u)2/2c72 % % e—(x,,—y)z/Zcr2

\ 270? \/ 2ro?

The other derivative will be
with respect o, when we treat

u like it’s a constant... \

Likelihood

Potential values for o



Maximum Likelihood Estimation for Parameter Estimation - PART A

In [L(,u, Olds s x,,)]

= In ;e—(x,—u)zﬂoz % % _e—(x,,—u)z/Za2

\/ 2no? h \/ 276>

We do this because it makes
taking the derivative way, way
easier...




Maximum Likelihood Estimation for Parameter Estimation - PART A

_.ln[L('u, o'|x], i 5k Xn)]

Thus, this is the derivative of
the log-likelihood function
with respect to .
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Maximum Likelihood Estimation for Parameter Estimation - PART A

0 and add u
0 p the
Fm In [L(,u, ] e — xn)] remaining terms.

(xl - M)z n n (xn - ”)2
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Maximum Likelihood Estimation for Parameter Estimation - PART A

0 1
Eln[L(y, o|x, ...,x,,)] =§[(xl+...+xn)—ny]
%]H[L(ﬂ,o"x], cooy .xn)] —_;+gl(x]_ﬂ) +°'°+('xn_”)]

At long last, here are the two derivatives!!!



Maximum Likelihood Estimation for Parameter Estimation - PART A

(X — W)+ ...+ (x, — p)?

n

...and the standard deviation
of the data is the maximum
likelihood estimate of how
wide the normal curve should
be.

(X + oo + X))

— L Lo -
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Maximum Likelihood Estimation for Parameter Estimation - PART A

1. Implement a function which takes as input an array of samples and returns the mean and the covariance

matrix of those samples.

2. Print the mean and the covariance matrix for each one of the 3 classes, using the function from Question 1.

Example dataset

Class distribution:

895
896
897
898
899

300
300
300

: count, dtype:

0
27.278783 15

24.925347 44.
18.644508 36.

21.423855 32
23.027816 35

int64
1

.355619
23.143792 17.
31.864072 20.
19.004317 9.
3%.772169" 23.

149073
208174
469187
146049

077281
820229

.800666
.255990
16.939316 29.

929237

[900 rows x 3 columns]

Eor each class

* When x is a 2D vector
* Mean: u (vector 2x1)

e Covariance: X (matrix 2x2)



Maximum Likelihood Estimation for Parameter Estimation - PART A

3. Considering the function of Question 1, plot each class distribution in one single 3D plot.

where
1 1 . & k=2
) = x g~ 2 (-7 - inv(2) - (x—p)) _
(D Ty el fieid

k = dim, x = input vector, g = dist. means, Z = covariance matrix Z=[ [ , ][ , ] ] > 2xX2



Parzen Windows - PART B

Dataset in two dimensions, 2 classes, 2 testing points (yellow).

Looking for a region of radius R and using a region with fixed radius
for all the testing instances.

Parzen
The right testing point gets a lot more training examples window
to base its decision. A
A
A
-



Parzen Windows - PART B

1. Implement the window function ¢(u), when window is a hypercube.

1 \uj\sl J=ileo
p(u)= 2
0 otherwise

2. Implement the window function ¢(u), when window is a Gaussian kernel.

1 -u

(p(u) ———e

V2

Used to determine the weight given to each sample point in the density estimation process. It is a function that assigns
higher weights to points closer to the estimation point and lower weights to points farther away.



Parzen Windows - PART B

3. Implement a function which takes as input a single point x;, the center of the window as a single point c,
the width h of the window and the kernel type ('hypercube’ or 'Gaussian’) of the window. The function
calls one of the above implemented functions (hypercube window or Gaussian window), with the appropriate

input, and returns the result.

Parzen Windows: Example in 1D

181 [x-x

P=n 2 )| u
= Suppose we have 7 sam D-{2,3,4,8,10,11,12}

1‘[%(){)

21 © X

- — = :>xintheexample
represents cin

question 3.

estimate density at x=

55

2172 F1>1/2

= | et window width
1271 (B-x,
P¢(1)=7z§¢( 3 ]=

i=1

i=7

1-Xx; 1 1
—L |=—|1+0+4+0+...40|=—
¢{ 3 ) 21[ ] 21

N[ =
W=

P, (1)=

i=1



Parzen Windows - PART B

4. In this question, you are asked to develop the Density Function of Parzen Window. Implement a function
which takes as input an array of 1-d points data, a single point x which represents the center, the width h
of the window and the kernel type of the window. The function should return the likelihood of the center x,

given the other inputs.

Parzen Windows: Example in 1D
181 (x-x;
P¢(X)=;ZF¢( h J

i=1

= Suppose we have 7 samples D={2,3,4,8,10,11,12}

P,(X)
21| © X
L 11 ¢ 1434
1

T A A o)

‘ 1|,1 n o o 1|\1/9 | 11
3| LA — ‘——’>1/4

1E71 {(1-X%, 1
1)=2) .~ =—[1+0+0+..+0]=—
P,(1) 7,.=,3¢( 3 ) 21[ ] 21



Parzen Windows - PART B

5. What's the best value for the width of the window h? To find this, assume that the dataset you have comes
from the normal distribution N(1, 1) (this is a univariate normal distribution). Find the most suitable value
for h based on that knowledge.

(a) Create a histogram of the data to convince yourselves that they come from the aforementioned distri-
bution.

(b) For every h in the range [0.05, 5] with step = 0.1 calculate 1) the predicted likelihood for every point
in the data, 2) their true likelihood (you can use the function norm.pdf(data, loc=1, scale=1)), and 3)
the Mean Square Error of the two likelihoods (predicted and true). Repeat this process for both kernels
(hypercube and Gaussian). What's the most suitable value for h for each kernel? Print your answer and
create a plot which shows the values of h on the x-axis and their MSE on the y-axis (for both kernels).

Parzen Windows: Example in 1D

_1i:"l X—Xl
p¢(X)—niZ=1:h.,¢[ = )

= Suppose we have 7 samples D={2,3,4,8,10,11,12}

P
[ x

1

= Let window width h=3, estimate density at x=1 |:> — :
Pw(’)=%g%¢(1'3x")=%H"%}¢["T3)+v{¥)+---+¢(¥ﬂ Not only for x = 1, but for all the data points.

1 2
—7‘51/2 ‘__>1/2 |—1\>1/2 ‘ 1‘)1/2

1
3

i=7 Yy
! ¢(1 x‘):%[1+0+0+...+0]=L

1)==3—
P.(1) <3 " 3 21

\\I]H



K-Nearest Neighbors (KNN) Classification - PART C

O

Dataset in two dimensions, 2 classes, 2 testing points (yellow). 3-NN ®

s * e
Suppose a 3 nearest neighbors algorithm - it will base the prediction A

on the region R which has exactly 3 training examples. A T A 23:
“R L Se
Note the difference in the regions for the 2 testing points - always A &; ° ®
looks for a fixed number of closest neighbors. Q@ o

A . K O

yEHl o o .:



K-Nearest Neighbors (KNN) Classification - PART C

1. Implement a function which has as input a 2D point x and a NumPy array train_data of 2D points, and it

computes the Euclidean distances of that point x to all points in the given array. The function should return
that NumPy array of the Euclidean distances.

d=V[(x-x1)?+ (ys - y1)°]

X:[I]_>(21)
train_data=[[,],[,].[,1.[,1.[,1.[,1,..[, ] ]->(N,2)

resulted distances -> (N,)



K-Nearest Neighbors (KNN) Classification - PART C

2. Implement a function which has as input a 2D point x, a NumPy array train_data of 2D points and a number

k. The function returns the k closer neighbors of x. As neighbors, we call all the points in train_data. Hint:
Use the function from Question 1.

distances = [3, 1, 2]
indices = np.argsort(distances)

array([1, 2, 0])
In the assignment

np.argsort(distances)[:k]




K-Nearest Neighbors (KNN) Classification - PART C

3. In this step, you are asked to develop the k-NN algorithm. Implement a function which has as input the train
data, the test data and a number k of neighbors that will be considered during k-NN. The function should
return two probabilities for each sample x; of the test data, the probability of x; sample belong to class 0 and
the probability of x; sample belong to class 1, respectively. These probabilities should add to 1.

Y Axis :

Y Axis Y Axis "
o o ()
2 O Target Point Q O 2 o
o o 0 & i Q .+
O 0 /o oo OOr.o 00 00:‘0 00
o © o © o ©
C o 2.8 O o
XA:xis X/ixis Xlixis
O Class 1 O Class 1 O Class 1
O Class 2 O Class 2 O Class 2

Purple point -> test point we want to classify

For each test point, we find the nearest neighbors from the training samples!
Find their labels!
Two probabilities for each test point -> slide 24, non parametric techniques



K-Nearest Neighbors (KNN) Classification - PART C

4. In this question, you are asked to search for the best k number, meaning to select a number k that maximizes
the accuracy of the k-NN classifier. Compute the accuracy of the classifier from question 3, for each k in
the set of {1, 2, 3, 4, 5,6, 7,8, 9,10, 11,12, 13,14, 15} (e.g. acc = ? when k = 3, ..., acc = ? when k =
11, ...). Plot with point markers the above results, print and explain which k you would choose.

Find the probabilities for each test sample!
What is the prediction of a test sample?

Do we have the true labels of the test samples?
Compute accuracy for each k!

Which k gives the best accuracy?



Thank you!



