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ABSTRACT  Using the Independent Reference assumption to model program behavior, the performance of
different buffer organizations (Fully Associative, Direct Mapping, Set Associative, and Sector) are analyzed: (1)
The expressions for thesr fault rate are derived To show more explicitly the dependence of the fault rate on the
factors that affect 1t, distribution-free upper bounds on fault rates are computed for the Direct Mapping, Set
Associative, and Sector buffers The use of such bounds 1s illustrated 1n the case of the Direct Mapping buffer
(2) The performance of the buffers for FIFO and Random Replacement are shown to be identical (3) It 1s
possible to restructure programs to take advantage of the basic orgamzation of the buffers The effect of such
restructuring 1s quantified for the Direct Mapping buffer It 1s shown that the performance of the Direct Mapping
buffer under near-optimal restructuring 1s comparable to the performance of the Fully Associative buffer
Further, the effect of this restructuring 1s shown to be potenually stronger than that of buffer replacement
algorithms
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1. Introduction

In this paper we analyze the performance of various buffer (cache) organizations in a two-
level demand paged memory system. These organizations are shown in Figures 1-4 and
described more fully in [9]. Even though the analysis is 1n the context of two-level memory
hierarchies with buffers, the analysis is applicable to any two-level memory systems with
the mapping constraints described here. Since the previous work in the analysis of two-
level paged memories 1s used to analyze memory systems with buffers in this paper, the
same terminology 1s retained here [17, 12, 2]. For uniformaty of reference, we assume that
both the pnimary (buffer) level and the secondary (backing store) level are divided into
equal sized units called pages 1n the backing store and page frames 1n the buffer. Associated
with each page frame is a map that carries the 1dentity of the page in that page frame.
These buffers can be classified according to their mapping constraint.

In the Fully Associative buffer, any page in the backing store can be in any page frame.
When a request for a page 1s presented to the buffer, all the map entries are compared in
parallel (associatively) with the request to determine if the request is present 1n the buffer.
If not, it 1s termed a page fault and the requested information is brought from the next
level. In the Direct Mapping buffer, page 1 can be only in page frame (i mod m) if we have
m page frames mn the buffer (Figure 2). This buffer has the advantage of a trivial
replacement rule. Of all the pages that map onto a page frame only one can actually be 1n

General permussion to make fair use in teaching or research of all or part of this matenal is granted to individual
readers and to nonprofit hbranes acung for them provided that ACM’s copynght notice 1s given and that
reference 1s made to the publication, to its date of 1ssue, and to the fact that reprinting privileges were granted by
permussion of the Association for Computing Machinery. To otherwise repnnt a figure, table, other substantial
excerpt, or the enure work requires specific permussion as does republication, or systematic or multiple
reproduction

Ths research was supported by a fellowship from the Ministry of Education, Government of India, and by the
Joint Service Electronics Project Contract N00014-75-C-0601 Computer time was provided by the Energy
Research and Development Admunistration under Contract E(043)515

Author’s present address IBM T J Watson Research Center, P.O Box 218, Yorktown Heights, NY 10598

© 1978 ACM 0004-5411/78/0700-0378 $00 75

Journal of the A for Comp Machinery, Vol 25, No 3, July 1978, pp 378-395

B




Performance Analysis of Cache Memories 379

A
7
// 4
i
rd e
///7// ST A
e/ <\ 7 //
4 //// /Q\ P -
Vi <\ P
% / P
s, < <L
4 >3 ~~
/ SRS ™~
/ \\ \\
\\ \\
\\\ ~
\\\
BUFFER BACKING STORE BUFFER BACKING STORE
Fic 1 Fully Associative buffer Fic 2 Direct Mappmg buffer
////
// -
’// //’ ,1’{ ——————
- - - P s
______ . }:’—’—--—7"“" g
V\\\\/’ 4 S— o S
/>’,\ :—"':’-—‘ }/ //
B SN I R e
\\\\ ﬁ‘ss_ ------
o o
-~ ~
\\\ ——————
~
BUFFER BACKING STORE BUFFER BACKING STORE
FiG 3 Set Associative buffer FiG 4 Sector buffer

the buffer at a time and hence if a page caused a fault, we would simply determine the
page frame this page maps onto and replace the page in that page frame. This avoids the
overhead of record keeping associated with a replacement rule In the Set Associative
buffer, the buffer is divided into L sets with s = m/L page frames/set. A page { in the
backing store can be in any page frame belonging to the set (1 mod L) (Figure 3). The cost
of the associative search in a Fully Associative buffer depends on the number of entries to
be simultaneously searched. The Set Associative buffer tries to cut this cost down and yet
provide a performance close to that of the Fully Associative buffer. In the Sector buffer,
the secondary store is divided into a number of sectors each composed of a number of
blocks. The requests are for blocks and if a request 1s made for a block not in the buffer
(ie on a fault), the sector to which this block belongs is brought into the buffer with the
following constraints: A sector from backing store can be in any sector n the buffer, but
the mapping of blocks 1n a sector is congruent. Also only the block that caused the fault
1s brought into the buffer, and the remaining blocks of this sector are marked invalid. This
buffer tries to reduce the cost of the map. We now need only one map for each sector in
the buffer with a bit (validity bit) for each block of a sector in the buffer.

Examples of computer systems using the buffers descnibed above include the IBM
System/360 Model 85, which has a Sector buffer organization, and the IBM System/370
Models 158 and 168, which use a Set Associative mapping with s = 2 and 4, respectively
{20] The instruction buffer in the IBM System/370 model 158 uses Direct Mapping,.

The performance of these buffers depends on (1) the orgamzation of the buffer, (ii) the
replacement rule used, and (in) program behavior The purpose of this study is to
analytically understand the interaction among these factors.

PERFORMANCE AND PROGRAM BEHAVIOR. From the point of view of the memory
system, the number of faults caused in the buffer is to be minimized and hence we will use
the limiting page fault rate (the ratio of the number of faults and the number of requests)
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as our performance indicator. Using this indicator 1t is possible to estimate the delay seen
by the processor because of the requested information not being available in the buffer
[23]. An example of such an estimate, given a,, the access time of level i, and the fault rate
fisa(l = f) + af.

If the pages in the backing store are denoted by Xi, Xz, ... , 'X,, then the string of
references ri, ra, ... , 1, Where r, is the page referenced at time ¢, completely characterizes
the behavior of the program. Since such a characterization is analytically intractable, we
need a model of program behavior. Several such models are discussed in the literature {7,
3, 22]. For the following reasons the Independent Reference Model (IRM) 1s used here:

(i) It 1s analytically tractable.
(i1) It gives a good indication of relative performances.
(ui) It predicts page fault rates reasonably well.

A recent study [3] has shown how the parameters of the IRM can be calculated to provide
sigmficant predictive power.

The following 1s a brief explanation of how this can be done. To distinguish this model
from the conventional IRM, the new model is called the 4-IRM. Modeling a system S
(in this case the page reference string) can be viewed as obtaining a set of measurements
on the system from which the parameters M of the model are computed, so that certain
properties P of the system are captured in the model. If the analysis of the model yields
properties Q (different from P) of the system that are close to the actual (observed)
properties of the system, the model has predictive power. The property P captured in the
Ao-IRM model is the requirement of good models that the fault rates of the model and the
actual programs being modeled under optimal page replacement algonithms be very close
to each other. This, coupled with property (i) above, builds enough structure into the
model for successful mimicry of the system.

It 1s known that 4, and MIN are the optimal page replacement procedures for the IRM
and for actual programs [7], respectively. It is also possible to express the fault rate of 4o
n terms of the parameters of the IRM, the page reference probabilities [7]. The procedure
then to capture the above-mentioned property in the model 1s to “invert” the expression
for the fault rate of A, so that the parameters of the IRM are expressed as a function of 4o
fault rates for a number of different memory sizes, and to use in these expressions MIN
fault rates measured on actual programs being modeled instead of A, fault rates. For more
details reference should be made to the paper by Baskett and Rafii [3]. The paper describes
the empirncal validation of the model by predicting other properties of page reference
strings (LRU (Least Recently Used) and FIFO (First-In-First-Out) fault rates, working set
sizes, etc.) and verifying these predictions. It also shows that this model adequately captures
program referencing characteristics at cache levels. When the parameters are calculated in
this fashion the IRM 1s said to have an “empirical” distribution.

Since we have chosen the page fault rate as our performance criterion, we can ignore
factors that do not influence it. Thus it 1s not necessary to distinguish between the read and
write natures of references. Any store policy not affecting page fault rate may be assumed.

In the rest of this paper we deal with three phases of the analysis of these buffers. Section
2 shows how to determine performance as a function of the buffer orgamzation, the
replacement rule, and the program behavior. Section 3 shows that the performance of all
the buffers under FIFO and RR (Random Replacement) is identical. It also shows that
the Direct Mapping buffer can be as capable as the Fully Assoctative LRU buffer Section
4 shows how distribution-free results can be found for the buffers and illustrates their use
1n the case of the Direct Mapping buffer. It also shows that the effect of buffer replacement
algorithms on performance is secondary compared to the effect of restructuring based on
buffer organization.

2. Calculation of the Fault Rates for the Buffers

BACKGROUND AND NOTATION. Assume that there are m page frames in the cache
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and that the backing store has n (logical) pages. (The notation is slightly different for the
Sector buffer and will be presented separately.) Denote the fault rate for a buffer with
organization o, using replacement rule f by Fi(0). The names Direct Mapping, Set
Associative, Fully Associative, and Sector will be shortened to DM, SA, FA, and S,
respectively.

Let the pages in the backing store be Xj, ..., X.. Let the reference string be denoted by
ri, o I oo Let [py, .., pn] be the distribution of the page reference probabilities, i.e.

Pifrr=X]=p, l<si=n, forall:>0.

The formal representation of replacement rules is covered in the literature (for example,
[17]) and is not of much use here. Informally, any replacement algorithm f has to keep the
contents of the buffer ordered in an *“‘ordered list,” which characterizes the state of the
buffer at any time.

Let S; = (51, 8o, ..., S») denote this state at any time ¢, the indices referring to the position
in the ordered hst. Specification of the next state S, for all possible s, and r,, the page
referenced at time ¢, completely characterizes the replacement rule £ For example, for
FIFO the ordered list is a queue with the head at s; and the tail at s, so that the page that
has been in the cache longest 1s 5s,. Hence, if there 1s a page fault on a reference to r, the
new buffer state is Sre1 = (82, 53, . . , S, #t).

Under the Independent Reference assumption, it has been shown [17, 7] that for the
Fully Associative buffer, for the replacement rules considered here (LRU, FIFO, Random,
Ao), the state sequence {s:} 15 a homogeneous Markov chain and that for 2 < m < n, there
exists a unique, equilibrium distribution for these states.

Let Q be the state space of this Markov chain, § a state belonging to Q, P/(S) the
steady state probability of finding the chain 1n state S, and p(S) the probability of a page
fault 1n state S for replacement rule f.

Since Py(S) is the relative frequency of occurrence of state S in equiibrium, the page
fault contribution by state S in steady state is p(S)*P/(.S) and the miting page fault rate
for a given replacement algorithm f1s given by

FAFA) = 5 PUS) p(S). 2.1)

King [17] has shown how to compute P/(S) for any state in the state space Q, for LRU,
FIFO, and 4,. We will make use of this later.

But the method detailed above for computing the fault rate is not suitable for use n
computing the fault rates of the other types of buffers. Fer this purpose, we will use the
following method.

Franaszek and Wagner [12] have shown that, when {s} is irreducible and aperiodic, the
limiting fault rate can be written as

Fr=3 p(1 = p() (22)

where p.(f) = lim... Pr[ X, € S], 1 =< 1= n, 15 a function only of the replacement rule f and
[p1, ... . pn] and is not dependent on the initial state So.
Equation (2.2) can be written as

Fr= ;} P:qs (23)

where ¢, 1s the probability of not finding the page X, in the cache in equilibrium.

This condition 1s satisfied for the algorithms considered here for the Fully Associative
buffer when the number of pages with nonzero probability of reference 1s not less than 2m
[].

It 1s not difficult to show [21] that, when the distnibution has nonzero probabulities, {s;}
is irreducible and aperiodic. Hence eq. (2 3) holds for all these buffers. In the remainder
of this section we show how the fault rates for the other buffers can be computed using
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King’s results where appropriate. The technique used 1s to group the pages in the backing
store 1nto disjoint subsets according to the mapping constraint and then use eq. (2.3).

DIRECT MAPPING BUFFER. Let G, denote the set (group) of pages in the backing store
that can be in page frame 1 of the buffer. Let X = n/m be the cardinality of each of these
sets. Refer to the pages 1 G, by Xi(i), Xo(i), ... , Xix(i) with probabilities of reference
pi(1), ..., pu(i), respectively Without loss of generality we can assume pi(i) = po(1) =
=pui), i=1,2,..,m

Let D, = ¥ p,(1), i = 1,2, ..., m. Consider the two-state Markov chain with the state
S(1) being the state with page X,{(7) in the buffer, while S(0) is the state with page X, (7)
missing from the buffer (Figure 5). When 1n state S(1), a reference to any other page in G,
produces a fault causing removal of X;(z). Thus the transition probabihity from S(1) to
S(0) is D, — p,(i). Simularly, the transition probability from state S{0) to S{1) is p,(2).

Solution of this chain yields the equilibrium probability of state S(0) (which is the
probability that page X, (i) is absent from the buffer in steady state) to be

9,(1) = (1 = p,(1)/ Dy). (2.4)

Since the Direct Mapping buffer does not have a replacement rule, we can write eq.
(2.3) as

F(DM) = Y paq.,
=1
which can be rewritten as

m k
F(DM) = 21 1p,(z)q,(i), (2.5)
=] g

where ¢,(/) = Pr[X;(?) is not in the buffer in equilibrium].
Substituting for ¢,(?) from eq. (2.4) in eq. (2.5), we finally obtain

m k
F(DM) =Y (D? -3 pf(:)) / D, (2.6)
=1 J=1

as the expression for the ltmuting page fault rate of the Direct Mapping buffer.

SET ASSOCIATIVE BUFFER. Let the buffer have s page frames in each set and L =
m/s sets. Let G, again denote the group of pages in the backing store that can be in set i.
Let k be the cardinality of G,. The page frames in set / and the pages in G, form a Fully
Associative cache-backing store combination C,, the C, being independent of each other
This observation 1s central to the analysis of the Set Associative buffer.

Refer to the pages in G, by Xi(1), Xx(i), .., Xu(i) with probabilities of reference pi(i),
pa(1), ..., p(1), respectively. Again without loss of generality, we can assume that pi(7) =
pA)y= -~ z=p1), i=12,.. L

Let D, = 3} p,(1), 1 =1, 2, ..., L. If we normalize pi(z), pa(z), ... , pi(1) by D, to get
pi@, pr(), ..., pX(i), then we can use King’s formula to compute the fault rate for the

0;-Pi(i)

PG)

FiG 5 Markov chain for the Direct Mapping buffer
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combination C, for replacement rule f and distribution [p¥ (), p5(2), ... , p¥ (). Denote this
fault rate by Fy(i).
Now we can rewrite eq. (2.3) as follows:

L k
F(SA) = X ¥ p(1)g,(2), (2.7)
=] j=1
where ¢,(2) is the probability that page X;() is missing from the cache in equilibrium. The
probability ¢,(i) is also the probability that page X,(1) is not in S/(1) as ¢ tends to infinity.
Equation (2.7) can now be written as

L

k
Fi(8A) = 2 T Dop/ (g, (2.8)

=1 y=1

k
Since Y p,*(z)q,(t) is, from eq. (2.3), the fault rate F;(i) of C,, we can write eq. (2.8) as
J=1

L
Jr(8A) = Z] D, Fi(1). (2.9)

Thus to compute the fault rate for the Set Associative buffer, we would compute Fy(1),
the fault rate contribution by combination C,, using King’s results, weight it by D,, and
sum the product over all the combinations C,. This result also shows that the Set Associative
buffer is composed of Fully Associative buffers.

It 1s casy to verify that eq (2.9) reduces to the corresponding eq. (2.3) for the Fully
Associative buffer when we let s = m.

SEcTOR BUFFER. If we 1gnore the structure of sectors and treat them as units of
transfer of information between the buffer and the backing store, there would be no
difference between a Fully Associative buffer and a Sector buffer. The resulting organi-
zation is called the Equivalent Fully Associative buffer of the Sector buffer.

Suppose we have N blocks in the backing store organized nto n sectors X;, Xz, ..., X,,
with b blocks/sector, b = N/n. Denote the blocks in sector X, by Y1(i), Ya(i), .., Ys(1). We
assume that the reference sequence 1, ..., ri, ... consists of references to blocks and that
Pr{r. = Y.(j)] = p*(j). Let the buffer have m sectors with b blocks 1n each sector.

n b
F(S) = 2] ZI g (), (2.10)
=1 j=

where ¢,(1) 15 the probability of X,(1) being absent from the buffer in equihbrium.
The probability of reference to a sector X, is given by

b
p= g} JNO) (2.11)

The event “block X;(i) 1s not in the buffer” can be seen to be the union of two disjoint
events: (1) “The sector X; is not 1n the buffer,” and (1i) “the sector X; 1s in the buffer and
block X,(1) is not in the buffer.” Denote the probabilities of these events by ¢, and ¢;'(1),
respectively. So

g(1) = q. + ;' (i). (2.12)
Substituting eq. (2.12) in eq. (2.10) and using eq. (2.11), we obtain

n n b
F(S) = ;1 pg + gl ;} 27O @ (213)

We can compute the Prfthe sector X, is in the buffer and block X;(1) 1s not), re. ¢;(2),
as follows:

¢, () = Pr[sector X, in buffer] Pr X,(i) not 1n buffer|X, in buffer], (2.14)
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Pr[X; in buffer] = 1 — ¢., Pr[X,(i) not in buffer|X, in buffer] = 1 — pf()/p..
Using these in eq. (2.14), we obtain

¢ (i) = (1 = g )1 = p/())/p.). (2.15)
Equations (2.15) and (2.13) yield the fault rate for the Sector buffer as

n n b
F(S)= Y pg.+ X T p/ ()1 — g1 — p'®/py). (2.16)
=1 =1 =1

By recognizing the first term as the fault rate of the Equivalent Fully Associative buffer
(EFA) under replacement rule £, we can write eq. (2 16) as

n b
Fi(S) = F(EFA) + 21 Zl PO = g)(1 = plB)/p). (217)

=1 y=
Equation (2.16) relates the fault rate of the Sector buffer and the fault rate of the
Equivalent Fully Associative buffer. We already know how to compute F;(EFA) using
King’s results. To compute ¢, for all the sectors, we resort to King’s formulas for the
equilibrium distribution for the states of the Equivalent Fully Associative buffer. By

summing up the probabilities for the states not containing X,, we obtain g¢..

3. A Few General Comparisons

We make two types of general compansons here: (i) the behavior of two replacement
algorithms across the whole range of the buffers, and (ii) the behavior of two specific types
of buffers.

(i) The first general comparison concerns the behavior of the buffers under FIFO and
RR: It 15 possible to show that for the IRM, the Fully Associative buffer has identical
performances (in steady state) for these two rules {13]. Next we show that this result holds
for all the other types of buffers. A brief intuitive explanation of this result for the Fully
Associative buffer follows.

To show that this result holds for the Set Associative buffer, we make use of the result
established earlier showing that 1t consists of independent Fully Associative buffers and
backing store combinations C,. In eq. (2.9) D,, the sum of the reference probabilities for
pages mapping on to set ¢, 15 independent of the replacement rule, while Gelenbe’s result
shows that the combination C, has the same fault rate for RR and FIFO, i.e Frgr(i) =
Fpmo(i). Thus Fp[po(SA) = FRR(SA).

To show that the result can be extended to the Sector buffer, we first note that 1t 1s
possible to show that [13] Priro(S) = Prr(S) From Gelenbe’s proof for the Fully
Associative buffer, the Equivalent Fully Associative buffer has the same performance
under RR and FIFO, 1.e. Friro(EFA) = Frr(EFA) 1n eq. (2.17).

The probability of not finding sector X, in the equilibrium state of the Equivalent Fully
Associative buffer ¢, is obtained by adding the equilibrium probabilities of all the states
(of the Equivalent Fully Associative buffer) not containing X,. Since each of these states
has the same equilibnum probability under RR and FIFO, ¢, is the same for RR and
FIFO for a given sector X,. Thus Friro(S) = Frr(S).

Thus result holds for the Direct Mapping buffer also because 1ts fault rate 1s insensitive
to the two algorithms. Thus all the buffers have the same fault rate for FIFO and RR.

Every time a replacement rule 1s used to replace a page, 1t is implicitly trying to assess
the future demands of the program. Such an assessment 15 possible because programs
exhibit a behavior called “locality” [7, 22, 8, 25, 19]. Intuitively we would expect a
replacement rule that makes use of the knowledge of program behavior to choose a page
for replacement, to be superior to one that does not. The only information about the
locality of a program present in the IRM is in the distribution of page reference
probabilities. So we would expect that a good replacement rule would appropriately treat
a program’s pages nonuniformly depending on their reference probabilities. LRU is an
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example of such a replacement rule. For the Fully Associative buffer, it keeps the state
information in a stack, with the top of the stack contamning the most recently used page
and the bottom containing the least recently referenced page When a page is referenced,
1t is brought to the top of the stack and therefore gets a “new lease on 1ts life in the buffer.”
For the Independent Reference model, a good algornthm 1s one that tries to keep the most
frequently used pages as long as possible in the buffer because that would tend to minimize
the total number of faults. This 1s done by LRU because a page with a high probability of
reference tends to be referenced more often when in the buffer and gets pulled to the top
of the stack, thereby prolonging its stay in the buffer.

On the other hand, FIFO does not use any tnformation about the page when making a
decision to replace the page: FIFO uses a queue to maintain the state of the buffer with the
page at the head of the queue to be replaced on a fault, while the page brought 1n on a
fault 1s put in the tail position. At the end of m page faults (m is the size of the buffer), the
page 1n the tail position would be at the head of the queue and would be replaced at the
next fault irrespective of how often the page was referenced during the stay in the buffer.

This leads us to expect that FIFO performs as well as RR, because not using any
information about the pages in the buffer for the selection of a page for replacement 1s
equivalent to replacing a page at random. This equality 1n turn leads us to suspect that the
changes in performance brought about by buffer replacement algorithms are small. Later
it will be shown that this is indeed so

(i) Capabilities of the Direct Mapping buffer. The Direct Mapping buffer is a simple
and inexpensively organized buffer, and it does not have the overhead of the record
keeping associated with a replacement rule. A previous stmulation study [5] has shown
that simple organizations using Direct Mapping buffers can be cost effective on minicom-
puters. The results dertved here lend analytical support to that viewpont.

Let G, = (Xi(i), Xo{1), ... , Xi(1)) be the set of pages that can be in page frame i Since
a reference to any page n G, currently not in the buffer causes a fault, 1t is not difficult to
see that the relative magnitudes of the probabilities of reference to these pages is important
m determimng the fault rate Thus we can see that the performance 1s dependent on the
arrangement (mapping) of pages in the backing store. A way to quantify this arrangement
1s considered in Section 4 Here we are interested in showing that the Direct Mapping
buffer, by taking advantage of this sensitivity, can perform as well as the Fully Associative
LRU buffer. This 1s significant because the Fully Associative buffer is considered to have
a good performance while the Direct Mapping buffer has no cost for page replacement.

First we prove the following

THEOREM 3.1 For any distribution [p,, p2. .., pnl, there exist arrangements of pages in
the backing store of a Direct Mapping buffer, for which F(DM) < 2B, where py = p, =
Zp.and B= Tlunp,

ProoF. Let G, = (Xi(i), Xo(i), .., Xu(i)), 1= 1,2, .., m, be the set of pages which can
be 1n page frame 1. Let page X,(1) have probability of reference p,(1) fory= 1,2, .. , k, and
i=1,2, .., m Without loss of generality, we can assume that

pltyzpley= z=pul1), 1=1,2,..,m

Consider an incompletely specified arrangement for which pi(i) = p, fori=1,2, ..., m,
1.€. a mapping which maps the m most probable pages onto different page frames.
Let E, = Yk,p,(5) fori = 1,2, ..., m. Then n the notation of Section 2,

D, =p. +E, (3.1)

and from eq. (2.6), we have

ADM) = 3 2+ BV = pit)

=t Pl(l) + El

(3.2)
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P p(i)E. + B

- tgl Pl(') + El ’ (33)
so that
— 5 < o —Pl(i)E'
F(DM) lgl El - 21?1(1) + Ez
<Y E. (3.4)

=1

Since Y.<) E, = B, we get the desired result. Q.E.D.
We will call the arrangements referred to above “near-optimal” arrangements.
Theorem 3.1 can be used in two ways to argue for the capabilities of the near-optimal
Direct Mapping buffer:
(a) For the Fully Associative LRU cache, 1t can be shown that [12]

m(1 — B) ]

1+ (m—1)B (3:3)

FLnu(FA) =B ':l +
with B as defined before.

There exist distributions (for example, p1 = p» = = p, and B small) for which the
above LRU bound 1s very close to the actual LRU fault rate. That 1s, there exist
distributions for which the LRU fault rate 1s very close to B(1 + m). Comparing this with
the upper bound on the fault rate for the near-optimal Direct Mapping buffer of 2B (which
holds for any distribution), we can conclude that there are distributions and buffer sizes
for which the Direct Mapping buffer will perform better than the Fully Associative LRU
cache.

(b) The second argument concerns the “effectiveness” of an organization and its
replacement rule. If the probabilities [ p1, pe, . ., p»] are known 1n advance (again assuming
that the pages are ranked in the decreasing order of theur probabilities of reference), then
the theoretically optimal procedure is to place the m most probable pages in the buffer
always and service references to pages not in the buffer directly from the backing store
(Since in practice all the requests are to be serviced from the cache, this is only a theoretical
procedure.) This has a imiting fault rate of Fy = B.

The worst performance of an organization relative to this optimal procedure is an
mndication of the “effectiveness” of the orgamization. From Theorem 3.1 and the inequality
in (3.5), we see that the worst behavior of the near-optimal Direct Mapping buffer relative
to the optimal procedure 1s bound by a constant (for any distribution and cache size),
while for the Fully Associative LRU cache it is dependent on the size of the buffer.

From these two arguments, we can conclude the following:

There are distributions for which the performance of the near-optimal Direct Mapping
buffer is comparable to that of the Fully Associative LRU cache.

Figures 6 and 7 show the performances of these two organizations for two distributions
of the page reference probabilities. The mapping used for the Direct Mapping buffer 1s
(for Figure 6) as follows:

1 2 3 m
m+ 1 m+2 m+3 2m
2m+ 1 2m+ 2 2m+3 3m

The numbers in column / indicate the indices of the pages which map onto page frame .
For Figure 7 1t is

[} 2 3 . m
2m 2m ~ | 2m —2 m+ 1
2m + | 2m+ 2 2m+3 3m
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4. Distribution-Free Bounds on Fault Rate and Thewr Use

IDEA OF A DISTRIBUTION-FREE RESULT. As indicated before, the purpose of an
analysis such as this is to understand the interaction between the performance of a buffer
and the factors which affect 1t. These parameters are: the size of the buffer, the type of
mapping, the program behavior (i.e. the distribution of the page reference probabilities),
and the replacement rule. The results 1n Section 2 showed how the limiting fault rate can
be computed for a given type of mapping, buffer size, and probability distribution. But the
dependence of the performance on a given parameter 1s not explcit enough. For example,
the effect of changing the size of the buffer, while keeping the other parameters fixed,
cannot be assessed immediately without computing the fault rates for both the sizes.



388 GURURAJ § RAO

In addition to knowing the fault rates for the given parameters, ofien we would like to
know the size of the buffer needed to satisfy a given performance level for a “given
program behavior.” Again the expressions for the fault rates do not permut us to compute
this convemently because of the implicit nature of the way the effect of these parameters
1s reflected in those expressions.

To explicitly see the effect of these parameters, a distribution-free result replaces the
individual behavior of infrequently referenced pages by their collective behavior. Since the
contribution of these pages to the fault rate is not significant, the resulting loss in accuracy
is shght. The quantity B defined n Section 3 is an example of a characterization of such
collective behavior. Given such collective behavior, we obtain upper bounds on the fault
rate that are distnbution-free 1n the other pages. Inequality (3.5) is an example of such a
bound.

Later in this section we present two examples that illustrate how we can exploit the
explicit interaction among the parameters. Besides this use, distribution-free upper bounds
provide the following uses:

1. They give an 1dea of the worst performance of the combination of the orgamization
and the replacement rule.

2. They are very easily computed. For the Fully Associative LRU buffer with » pages
in the backing store and m page frames in the cache, the complexity of the expression for
the fault rate 1s of the order of (;;)m! (this is the size of the state space). It is possible to
reduce this complexity somewhat [6, 18], but still even for fairly small values of m and n,
this computation is very expensive, while the distribution-free results can be computed on
a hand calculator

DisTRIBUTION-FREE BOUNDS FOR THE BUFFERS. First we find the distribution-free
upper bound for the Set Associative buffer and then derive the bound for the Direct
Mapping buffer from that.

The characterization B of the collective behavior of the “ta1l” pages mentioned above 1s
not suitable for the Set Associative buffer because it does not reflect the arrangement of
pages 1n the backing store, while the fault rate depends on it (B is useful in representing
the behavior of the tail pages of the Fully Associative buffer because the precise mapping
of the pages onto page frames does not affect the latter’s performance.) So we need a way
of quantifying the effect of arranging pages 1n the backing store of the Set Associative
buffer. To do this we proceed as follows.

Let Xi(7), X2(i), .. , Xi(1) be the pages mn G, (the group of pages which can be in the ith
set in the buffer). Again, without loss of generality, we can assume that the pages in G, are
numbered in decreasing order of themr probability of reference so that p((i) = po(1) = ..
=puli), i=1,2, .., L. Now define the “tail” probability E, of G; as

k
E= 3 p), 1=12.,L (4.1)
J=s+1
and the tail probability ¢ of the distribution as
L

t=3% E. (4.2)
=1
Then Theorem 4.1 gives the distribution-free upper bound on the fault rate for the Set
Associative buffer using LRU.
THEOREM 4.1. Frru(SA) < st(1 — t)/(1 + (s — 1)t) + ¢ for any distribution of page
reference probabulities and any arrangement of pages in the backing store.
PROOF. As shown in Section 2, we can write the expression for the fault rate as
L

k
FiLru(SA) = 1 le/(i)q/(i), (4.3)

=1 y=

where ¢,(7) is the probability of not finding X, () in the buffer in the steady state. Next we
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describe how to compute an upper bound on ¢,(:) and then show how the resulting
expression can be maximized.

The method used 1n computing an upper bound on ¢,(1) is similar to the one used by
Franaszek and Wagner [12] in arriving at the distribution-free upper bound on the fault
rate of the Fully Associative LRU cache (inequality 3.5) The necessary condition for X;(1)
to be absent from the buffer is that s distinct page references have occurred in C, since the
last reference to X;(i). Since set 1 has s pages including X,(7) this means that a page
X,(i), where r > s, has been referenced since the last reference to page X, (i). This in turn
means that in the steady state LRU stack for C; a page X, (i), r > s, is above X;(i).

The probability of this event can be found as follows [24]:

b(r, i) = Prlpage X.(i) 1s ahead of page X;(:) in stack {]
= (p-(i)/ D)/ (p-(1)/ D + p,(1)/ D)
= pr(1)/(pr(i) + p(i)). (4.4)
From this we get

Pr[a page X,(i), r > s, 1s ahead of X,(1) in the LRU stack for combination C,]

= E/(p,(1) + E.). (4.5)
Thus
g(1) = E/(p(1) + E.). (4.6)
From (4.3) and (4.6), we can write
L s
Firo(SA) < ¥ [; PWE/p) + E) + E] (47)
L s
= ;1 ;1 BQE/(pi) + E) + ¢ (4.8)

Now we maximize the right-hand side of (4.8) by writing:

L s
Maximize F(p:(1), ..., ps(1), ..., pi(L), ..., p(L)) = gl ; pDE/(p @)+ E) (4.9)

such that p,(i})>0, j=1,2,...,sandi= 1,2, ..., L, and

s

L
gl Tp(=1—1 (4.10)

=1

We can write this as a nonlinear optimization problem.

L s
Maximize F(pi(1), ..., ps(1), ... , pi(L), ... , ps(L)) = ¥ 21 p(DE/(p, () + E)
=] y=
such that p,)(i) >0, j=1,2,..,sandi= 1,2, .., L, and
L L s
g1=2121p,(i)_<.l——t=b1, g=—Y Y pliyst—1=b,
=1 y= =1 =1
It 1s easy to show that [21] the objective function in (4.9) is concave and the constraint
functions (which (4.10) gives rise to) are convex, being linear functions. Thus, Kuhn-
Tucker conditions [15] are necessary and sufficient conditions for optimality and they state
that

(pr(1), .. ,p1), ..., pr(L), ..., p(L)) maximizes F

if and only if we can find numbers u, and u. such that
(1) if p*(y) > 0, then
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2
3F/dp j) — 121 w(agr/opj)) =0

atp(j)=pr(j)fori=12,..,5 j=1L2,. L
(2) if p¥(j) = 0, then

2
aF/apAj) — 12:'1 w(8gr/IpJ)) = 0

atp(y) =pX(j)fori=1,2, .,55=12,..,L;
(3) if u, > O then

g(pi(t), .., p1), .., p(L), ..,p(L))— b, =0
atpy=pr(y), k=12, ..,5 j=1,2,..,L, 1= 1,2
(4) fu, = 0, then
&@(1), ..., ps(1), .., p(L), ..., ps(L)) = 6, <0

atpe())=pr(y), k=1,2,..,s5 j=12,..,L i=12,

G prN=0,1=12,...,5j=12,..,L,

©® w=0i=12

These conditions are satisfied by choosing #; = u” and u; = 0. Condition (1) requires u
to satisfy

E/(pG)+ E)=u for j=1,2,..,5 andany! 411)
This requires
pili) = poi) = - =pli)y=p(1) (say), i=12, .., L. (4.12)
Thus
E/pliy+ E)=u for 1=1,2,.., L. (4.13)
From (4 13), we obtain
L L L L
u= Y E, (2p(1)+ZE,)=t/(Zp(i)+t) (4.14)
=1 =1 =] =1
But from (4.12) and (4.10),
L
Sspliy=1—1¢ (4 15)
=]
so that
L
Y p()y=(1—-1)/s. (4 16)
=1
Thus from (4.16) and (4.14),
u=st/[1+(s— 1)]. 4.17)
Finally, we substitute egs. (4.11), (4.17), and (4.12) 1n eq. (4.8) to obtain
L s
Fuiru(SA) = 3 Y sip()/[1 + (s — 1)} + ¢ (4.18)
=1 y=1
L
= 3 Spp@/[l +(s— D+ ¢ (4.19)
=1

Using eq. (4.15) in eq. (4.19), we obtain
Fru(SA)=s{(1 —0)/[1 +(s— 1){] +1¢, (4.20)



Performance Analysis of Cache Memories 391

which completes the proof. QE D.

We have already seen that the Set Associative buffer 1s a general organization and that
by setting the size of a set to one page frame, we get the Direct Mapping buffer, and setting
s = m yields the Fully Associative buffer. This 1s reflected in the above analysis. Setting
s = m m eq. (4.20) yields the distribution-free bound m (3.5) for the Fully Associative
LRU cache, because when s = m, we have t = B.

By setting s = 1 1n eq. (4.20), we obtain

THEOREM 4.2.  For the Direct Mapping buffer, F(DM) < 2t — * for any distribution of
the page reference probability distribution and any arrangement of pages in the backing store

For a near-optimal arrangement, pi(i) = p, for 1 = 1, 2, .., m, and hence the tad
probability

So, for a near-optimal arrangement, Theorem 4.1 yields
F(DM) =<2B - B’ (4.21)

This is a closer upper bound on F(DM) than the one given by Theorem 3.1.

Figures 8 and 9 illustrate the closeness of these upper bounds to the fault rates given by
the expression in Section 2. These figures also show the sizable effect the arrangement can
have on the fault rate. In both, the increase in performance gamed by increasing the buffer
size from 2 to 3 is more than offset by the drop in performance due to a change from a
near-optimal arrangement to a nonoptimal arrangement

DisTRIBUTION-FREE RESULTS FOR THE SECTOR BUFFER. Next we obtain an upper
bound on the difference between the performances of the Sector buffer and its Equivalent
Fully Associative buffer

From eq. (2.17), we have

n b
FAS) = Fi(EFA) + % (1= ) 3 p/ (1)1 = p (i)/p.).

By calculating the second derivative of p; (i1 — p; (i)/p.) with respect to p; (i), we can
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show that it 1s a concave function, so we maximize the right-hand side of the above
equation by letting pf (1) =  =pi (1) = p./b, 1= 1,2, .., n. This yields

Fi(S) = Fy(EFA) + T (1 = q)pi(1 = 1/b).

This equation can be written as
Fi(8) = 1~ (1/b)[1 — F{EFA)],

which can be used to obtain distribution-free upper bounds for the Sector buffer.

USE OF THESE BOUNDS FOR THE DIRECT MAPPING BUFFER. We have seen that the
distnbution-free upper bounds for the Direct Mapping buffer are very close to the actual
fault rates for “practical” types of distributions (1.e geometric and empirncal). Further,
these bounds (which we can look upon here as approximations to actual fault rates) reflect
the effect of the size of the buffer more explicitly than the expression for the actual fault
rate. This property can be used to solve the “inverse” problem of computing the size of the
buffer to achieve a given hit ratio (1 — fault rate) H for a given distribution.

From Theorem 4.2, we have F(DM) =< 2t — £. This can be written as H = 1 — F(DM)
=2f-2+1=(0~1’sothat/H=1—tor

t=1—+/H. (4.22)

Thus inequality can be interpreted as follows. With reference to Figure 10, if the tal
probabulity for a given mapping and reference probability distribution is ¢ then the hit rate
for the corresponding parameters exceeds H. Alternatively, for the hit ratio to exceed H,
the tail probability need not be smaller than ¢ 1e. to guarantee a hit ratio H, the tail
probability need never be smaller than 1 — «/H.

For a near-optimal arrangement, it is very easy to obtam a close upper bound on the
size of the cache memory required to obtain a hit ratio H, using this argument. For a near-
optimal arrangement, 7 = B, as described in Section 3. So, all we need to do is to arrange
the pages in decreasing order according to their probability of reference and starting at the
tail end, accumulate the probabilities until the sum exceeds 1 — /H. The number of pages
mo, whose probabilities are not included in the sum, 1s the upper bound on the size of the
buffer required. For any other specified arrangement, we can obtain the memory size
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5 ; .

Fic 10 Ilustration of t = | —/H

required m, by first getting mo and then using this as the starting point of an iterative
scheme which checks, for successively higher sizes of the buffer, whether the value of ¢
exceeds | — «/H, for the specified arrangement.

RELATIVE EFFECTS OF RESTRUCTURING AND BUFFER REPLACEMENT ON PERFOR-
MANCE. Next we wish to show that the effect of buffer replacement algorithms on
performance is secondary when compared (o the effect of the mapping on performance.
We show this by comparing the maximum obtainable difference in performance between
LRU—one of the best realizable algorithms—and RR—one of the worst realizable
algorithms—with the maximum obtamnable difference in performance for the best and
worst mappings. Among the Fully Associative, Set Associative, and Direct Mapping
buffers, the Fully Associative buffer is the most sensitive to the replacement algorithm
(and the least sensitive to mapping) while the Direct Mapping buffer 1s the most sensitive
to mapping (and the least sensitive to replacement algorithm). Thus we compare the
difference in performance between LRU and RR on the Fully Associative buffer with that
for the best and worst mapping on the Direct Mapping buffer.

Since the exact mappings for the Direct Mapping buffer that produce the lowest and
highest fault rates are not known, we prove our point by using the distribution-free upper
bound (which we again consider as an approximation to the fauit rate) derived in Theorem
4.2 as follows The mapping that produces the smallest value for ¢ 1s the near-optimal
mapping as defined earlier. Correspondingly, we call the mapping that produces the
hnghest value for ¢ near-“worst.” If the reference probabilities p,, ps, ..., p» are in decreasing
order of magnitude, 1t 1s not difficult to see that the following mapping produces the largest
value for t. Map k = n/m pages starting at page X, where j = (i — 1)k + 1 onto page-frame
L

Table I compares the difference in calculated, exact performance between LRU and RR
for the Fully Associative buffer with that for near-optimal and near-worst mappings for
the Direct Mapping buffer, for an empirical distribution It clearly shows that the potential
of the mapping to cause a large change 1n performance 1s much greater than that due to
buffer replacement. Table I also shows that the same conclusion would have been reached
if we had considered the approximation to fault rate of the Direct Mapping buffer instead
of the actual fault rate.

5. Conclusions

We have assumed a reasonable, tractable model of program behavior and tried to
understand the relation between the factors affecting the performance of different buffer
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TABLE 1
(a) Calculated exact performance for the Fully Associauve buffer for empirical distribution’
m= 2 3 4 5 6
() RR 02808 0 1866 01315 00953 0045
(u) LRU 02408 0 1416 0.0931 0.0645 0025
(b) Calculated exact performance for the Direct Mapping buffer for empirical distribution
m= 2 3 4 6
(1) Near-optimal 02348 0 1416 00941 00437
(1) Near-worst 0.4558 04293 03962 03211
(¢) The ratios of the change produced n (b) to the change produced n (a)
m= 2 3 4 6
Ratio [(b-n) — (b-1)}/{(a-1) — (a-n)] 44 58 74 531
(d) Calculated upper bound on performance for the Direct Mapping buffer for empinical distribution
m= 2 3 4 6
(1) Near-optimal 02621 01661 01120 005566
(i1) Near-worst 04933 04734 04459 03743

organizations. Toward this end we first showed how the fault rates for these buffers can be
calculated and then showed how these expressions can be simplified in detail without
losing much accuracy to obtain distnbution-free upper bounds on their performance. We
denived such bounds for the Direct Mapping buffer and the Set Associative LRU buffer.
For the Sector buffer this bound was dertved in terms of the upper bound on its Equivalent
Fully Associative buffer’s performance. We showed how these bounds for the Direct
Mapping buffer can be used to compute a close upper bound on the amount of buffer
memory needed to guarantee a given level of performance.

Further, we showed that buffer replacement has a secondary effect on performance
compared to restructuring by first showing that FIFO and RR yield identical performances
for all the buffers and then showng that the variation i performance between the near-
best and near-worst mappings on the Direct Mapping buffer was much greater than that
between the “worst” realizable and “best” realizable algorithms for the Fully Associative
buffer.

These results are only as valid as the model is in capturing the programs’ behavior. A
feature of the Independent Reference model is that 1t predicts relative performance
accurately [3}. The equivalence of the fault rates of the buffers for FIFO and RR, proved
here, has been observed [4]. The result that predicts the near-optimal Direct Mapping
buffer to be as capable as the Fully Associative LRU buffer shows that 1t is possible to
restructure programs to take advantage of the hardware organization of the system. This
is an extension of the notion introduced by Ferrari [11] to tailor restructuring algorithms
to suit the memory management policy. This 15 1n contrast to the method of restructuring
to mmprove the locality of the program [16, 14, 10]. A few prelimmnary attempts to
restructure programs to suit the hardware orgamization are reported in [21].
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