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ABSTRACT Using the Independent Reference assumption to model program behavior, the performance of 
different buffer organizations (Fully Associative, Direct Mapping, Set Associative. and Sector) are analyzed' (1) 
The expressions for their fault rate are derived To show more explicitly the dependence of the fault rate on the 
factors that affect it, distribution-free upper bounds on fault rates are computed for the Direct Mapping, Set 
Associative, and Sector buffers The use of such bounds is illustrated in the case of the Direct Mapping buffer 
(2) The performance of the buffers for FIFO and Random Replacement are shown to be identical (3) It is 
possible to restructure programs to take advantage of the basic organization of the buffers The effect of such 
restructuring is quantified for the Direct Mapping buffer It is shown that the performance of the Direct Mapping 
buffer under near-optimal restructuring is comparable to the performance of the Fully Associative buffer 
Further, the effect of this restructuring is shown to be potentially stronger than that of buffer replacement 
algorithms 
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1. Introduction 
In  this  p a p e r  we ana lyze  the  p e r f o r m a n c e  o f  var ious  buffer  (cache)  o rgan iza t ions  in  a two- 
level d e m a n d  paged  m e m o r y  system. These  o rgan iza t ions  are  s h o w n  in F igures  1-4 a n d  
desc r ibed  more  fully in  [9]. Even  t h o u g h  the  analys is  is in the  contex t  o f  two-level  m e m o r y  
h ie ra rch ies  wi th  buffers,  the  analysis  is app l icab le  to any  two-level  m e m o r y  systems wi th  
the  m a p p i n g  cons t r amts  descr ibed  here.  Since the  p rev ious  work  m the  analys is  o f  two- 
level  paged  memor i e s  is used to ana lyze  m e m o r y  systems wi th  buffers  in this  paper ,  the  
s ame  t e rmino logy  is re ta ined  here  [17, 12, 2]. F o r  un i fo rmi ty  o f  reference,  we assume  tha t  
b o t h  the  p r ima ry  (buffer)  level a n d  the  secondary  (back ing  store) level  are d iv ided  in to  
equa l  sized uni t s  cal led pages  in  the  back ing  store and  page f r ames  in the  buffer .  Assoc ia ted  
wi th  each  page f r ame  is a m a p  tha t  carr ies  the  iden t i ty  o f  the  page  in tha t  page  f rame.  
These  buffers  can  be classified accord ing  to the i r  m a p p i n g  const ra in t .  

In  the  Fu l ly  Associa t ive  buffer ,  a n y  page  in the  back ing  s tore can  be  in a n y  page  f rame.  
W h e n  a reques t  for  a page  is p resen ted  to the  buffer ,  all  the  m a p  ent r ies  are c o m p a r e d  in 
para l le l  (associat ively)  wi th  the  reques t  to d e t e r m i n e  i f  the  reques t  is p resent  in  the  buffer .  
I f  not ,  it is t e rmed  a page  faul t  a n d  the  reques ted  i n f o r m a t i o n  is b r o u g h t  f rom the  next  
level. In  the  Direc t  M a p p i n g  buffer ,  page  l c an  be  on ly  in page f r ame  (i m o d  m) i f  we h a v e  
m page  f rames  in the  buf fe r  (F tgure  2). Th i s  buf fe r  has  the  a d v a n t a g e  o f  a t r ivial  
r e p l a c e m e n t  rule. O f  all the  pages  tha t  m a p  on to  a page f r ame  on ly  one  can  ac tua l ly  be  in 
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the buffer at a time and hence if a page caused a fault, we would simply determine the 
page frame this page maps onto and replace the page in that page frame. This avoids the 
overhead of record keeping associated with a replacement rule In the Set Associative 
buffer, the buffer is divided into L sets with s = m/L page frames/set. A page i in the 
backing store can be in any page frame belonging to the set (t mod L) (Figure 3). The cost 
of the assoclatwe search in a Fully Associative buffer depends on the number of entries to 
be simultaneously searched. The Set Associative buffer tries to cut this cost down and yet 
provide a performance close to that of the Fully Associative buffer. In the Sector buffer, 
the secondary store is divided into a number of sectors each composed of a number of 
blocks. The requests are for blocks and if a request Is made for a block not in the buffer 
(i e on a fault), the sector to which this block belongs is brought into the buffer with the 
following constraints: A sector from backing store can be in any sector m the buffer, but 
the mapping of blocks m a sector is congruent. Also only the block that caused the fault 
is brought into the buffer, and the remaining blocks of this sector are marked invalid. This 
buffer tries to reduce the cost of the map. We now need only one map for each sector in 
the buffer with a bit (vahdity bit) for each block of a sector m the buffer. 

Examples of computer systems using the buffers described above include the IBM 
System/360 Model 85, which has a Sector buffer organization, and the IBM System/370 
Models 158 and 168, which use a Set AssoclaUve mapping with s = 2 and 4, respectively 
[20] The instruction buffer in the IBM System/370 model 158 uses Direct Mapping. 

The performance of these buffers depends on (0 the orgamzaUon of the buffer, (ii) the 
replacement rule used, and (ill) program behavior The purpose of this study is to 
analytically understand the interaction among these factors. 

PERFORMANCE AND PROGRAM BEHAVIOR. From the point of view of the memory 
system, the number of faults caused in the buffer is to be mimm]zed and hence we will use 
the l immng page fault rate (the ratio of the number of faults and the number of requests) 
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as our performance indicator. Using this indicator it is possible to estimate the delay seen 
by the processor because of  the requested information not being available in the buffer 
[23]. An example of  such an estimate, gwen a ,  the access time of  level i, and the fault rate 

f ,  is a~(1 - f )  + a,f. 
If  the pages in the backing store are denoted by X~, X2 . . . . .  "Xn, then the string of  

references rl, r2 . . . . .  rt, where rt is the page referenced at time t, completely characterizes 
the behavior of  the program. Since such a characterization is analytically retractable, we 
need a model of  program behavior. Several such models are discussed in the literature [7, 
3, 22]. For the following reasons the Independent Reference Model (IRM) is used here: 

(i) It Is analytically tractable. 
(i0 It gwes a good indication of  relative performances. 

(hi) It predicts page fault rates reasonably well. 

A recent study [3] has shown how the parameters of  the IRM can be calculated to provide 
sigmficant predictive power. 

The following is a brief explanation of  how this can be done. To distinguish this model 
from the conventional IRM, the new model is called the A0-IRM. Modehng a system S 
(in this case the page reference string) can be viewed as obtaining a set of  measurements 
on the system from which the parameters M of  the model are computed, so that certain 
properties P of  the system are captured in the model. I f  the analysis of  the model yields 
properties Q (different from P) of  the system that are close to the actual (observed) 
properties of  the system, the model has predictive power. The property P captured in the 
A0-IRM model is the requirement of  good models that the fault rates of  the model and the 
actual programs being modeled under optimal page replacement algorithms be very close 
to each other. This, coupled with property 0i) above, builds enough structure into the 
model for successful mimicry of  the system. 

It is known that A0 and MIN are the opUmal page replacement procedures for the IRM 
and for actual programs [7], respectively. It is also possible to express the fault rate of  Ao 
m terms of  the parameters of  the IRM, the page reference probabilities [7]. The procedure 
then to capture the above-mentioned property in the model is to "invert" the expression 
for the fault rate of  A0 so that the parameters of  the IRM are expressed as a function of  A0 
fault rates for a number of  different memory sizes, and to use m these expressions MIN 
fault rates measured on actual programs being modeled instead of  A0 fault rates. For more 
details reference should be made to the paper by Baskett and Rafii [3]. The paper describes 
the empirical validation of  the model by predicting other properties of  page reference 
strings (LRU (Least Recently Used) and FIFO (First-In-First-Out) fault rates, working set 
sizes, etc.) and verifying these predictions. It also shows that this model adequately captures 
program referencing characteristics at cache levels. When the parameters are calculated in 
this fashion the IRM is said to have an "empirical" &stribution. 

Since we have chosen the page fault rate as our performance criterion, we can ignore 
factors that do not influence it. Thus it is not necessary to distinguish between the read and 
write natures of  references. Any store policy not affecting page fault rate may be assumed. 

In the rest of  this paper we deal with three phases of  the analysis of  these buffers. Section 
2 shows how to determine performance as a function of  the buffer orgamzation, the 
replacement rule, and the program behavior. Section 3 shows that the performance of  all 
the buffers under FIFO and RR (Random Replacement) is identical. It also shows that 
the Direct Mapping buffer can be as capable as the Fully Associatwe LRU buffer Section 
4 shows how distribution-free results can be found for the buffers and illustrates their use 
m the case of  the Direct Mapping buffer. It also shows that the effect of  buffer replacement 
algorithms on performance is secondary compared to the effect of  restructuring based on 
buffer organization. 

2. Calculation o f  the Fault Rates f o r  the Buffers 

BACKGROUND AND NOTATION. Assume that there are rn page frames in the cache 
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and that the backing store has n (logical) pages. (The notation is slightly different for the 
Sector buffer and will be presented separately.) Denote the fault rate for a buffer with 
organization o, using replacement rule f by Fr(o). The names Direct Mapping, Set 
Associative, Ful ly Associative, and Sector will be shortened to DM, SA, FA, and S, 
respectively. 

Let the pages m the backing store be X1 . . . . .  Xn. Let the reference string be denoted by 
r~ . . . . .  rt, . . . .  Let [p~, . . ,  pn] be the distribution of  the page reference probabilities, i.e. 

Pr[rt = X,] = p,, l _< i _< n, f o r a l l t > 0 .  

The formal representation of  replacement rules is covered in the literature (for example, 
[17]) and is not of  much use here. Informally, any replacement a l g o n t h m f h a s  to keep the 
contents of  the buffer ordered m an "ordered list," which characterizes the state of  the 
buffer at any time. 

Let St = (sl, s2 . . . . .  Sin) denote this state at any time t, the radices referring to the position 
in the ordered hst. Specification of  the next state St+~ for all posstble st and rt, the page 
referenced at time t, completely characterizes the replacement rule f For  example, for 
F I F O  the ordered list is a queue with the head at Sl and the tail at sin, so that the page that 
has been in the cache longest is s~. Hence, if there is a page fault on a reference to rt, the 
new buffer state is St+~ = (s2, s3, . .  , Sm, rt). 

Under  the Independent Reference assumption, it has been shown [17, 7] that for the 
Fully Associative buffer, for the replacement rules considered here (LRU, FIFO,  Random, 
A0), the state sequence {st} is a homogeneous Markov chain and that for 2 _< m _< n, there 
exists a unique, eqmhbrium distribution for these states. 

Let Q be the state space of  this Markov chain, S a state belonging to Q, Pr (S )  the 
steady state probabili ty of  finding the chain m state S, and p ( S )  the probabil i ty of  a page 
fault m state S for replacement r u l e r  

Since Pt (S )  is the relative frequency of  occurrence of  state S m eqmhbrium, the page 
fault contribution by state S in steady state is p ( S ) * P r ( S )  and the hmmng page fault rate 
for a given replacement a lgo r i t hmf l s  gwen by 

F / ( F A )  = Y, e t ( s ) p ( S ) .  (2.1) 
s c Q  

King [17] has shown how to compute P t ( S )  for any state m the state space Q, for LRU, 
FIFO,  and A0. We will make use of  this later. 

But the method detailed above for computing the fault rate is not suitable for use m 
computing the fault rates of  the other types of  buffers. Fe r  this purpose, we wdl use the 
following method. 

Franaszek and Wagner  [12] have shown that, when {st} is irreducible and aperiodic, the 
limiting fault rate can be written as 

n 

F t =  y~ p , ( l  - p , ( f ) ) ,  (22 )  
t m l  

wherep,(f)  = limt~= Pr[X, E St], 1 _< t _< n, is a function only of  the replacement r u l e f a n d  
[p~ . . . . .  p , ]  and is not dependent on the initial state So. 

Equation (2.2) can be written as 
n 

Ft = Y, p,q,, (2.3) 

where q, is the probabdlty of  not finding the page X, in the cache m equilibrium. 
This condition Is satisfied for the algorithms considered here for the Ful ly Assocmtive 

buffer when the number of  pages w~th nonzero probabdlty of  reference Is not less than 2m 
Ill .  

It Is not difficult to show [21] that, when the distribution has nonzero probabditles, {st} 
is irreducible and aperiodic. Hence eq. (2 3) holds for all these buffers. In the remainder 
of  this section we show how the fault rates for the other buffers can be computed using 
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King's results where appropriate. The technique used is to group the pages in the backing 
store into disjoint subsets according to the mapping constraint and then use eq. (2.3). 

DIRECT MAPPING BUFFER. Let G, denote the set (group) of  pages in the backing store 
that can be in page frame t of  the buffer. Let k = n / m  be the cardinality of  each of  these 
sets. Refer to the pages m G, by Xl( i ) ,  X2(i) . . . . .  Xh(i)  with probabilities of  reference 
pl(l) . . . . .  pk(i) ,  respectively Without loss of  generahty we can assume pl(l) >_ p2(l) _> 
_>pk(i), i = 1, 2 . . . . .  m. 

Let D, = ~j~-i pj(t), i = 1, 2 . . . . .  m. Consider the two-state Markov chain with the state 
S ( l )  being the state with page Xj(i) in the buffer, while S(0) is the state with page Xj(i) 
missing from the buffer (Figure 5). When In state S( 1 ), a reference to any other page m G, 
produces a fault causing removal of  Xj(t). Thus the transmon probability from S(1) to 
S(0) is D, - p j ( i ) .  Similarly, the transition probability from state S(0) to S( 1 ) ispj(t). 

Solution of  this chain yields the equihbnum probability of  state S(0) (which is the 
probability that page Xj(i) is absent from the buffer in steady state) to be 

qs(t) = ( 1 - p j ( O / D , ) .  (2.4) 

Since the Direct Mapping buffer does not have a replacement rule, we can write eq. 
(2.3) as 

F (DM)  = ~ p,q,,  

which can be rewritten as 

m k 

F(DM)  = ~ ~ pj(t)q~(i) ,  (2.5) tzl j--] 
where qj(/) = Pr[Xj(0 is not in the buffer m equilibrium]. 

SubsUtuting for q~(/) from eq. (2.4) in eq. (2.5), we finally obtain 
m ( ~ ) /  

F(DM) = ~ D ~ -  pj2(0 D, (2.6) 
t=l Jffil 

as the expression for the hmmng page fault rate of  the Direct Mapping buffer. 
SET ASSOCIATIVE BUFFER. Let the buffer have s page frames in each set and L = 

m / s  sets. Let G, again denote the group of  pages in the backing store that can be in set i. 
Let k be the cardinahty of  G,. The page frames in set i and the pages m G, form a Fully 
Associative cache-backing store combmaUon C ,  the C, being independent of  each other 
This observaUon is central to the analysis of  the Set Associative buffer. 

Refer to the pages in G, by X10), X2(i) . . . .  Xk( i )  with probabllmes of  reference pl(i), 
p2(1) . . . . .  pk( t ) ,  respectively. Again without loss of  generahty, we can assume that pl(i) .~. 
p2(/)>- "'-->pk(t), i =  1,2 . . . .  L. 

Let D, = ~ j~  pj(t), t = 1, 2 . . . . .  L. If  we n o r m a h z e p J t ) , p 2 ( t )  . . . . .  phil) by D, to get 
P[(O,P~(O . . . . .  p~(i), then we can use King's formula to compute the fault rate for the 

oj-Pl(j) 

@ 
F,G 5 Markov chain for the Direct Mapping buffer 
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combination C, for replacement r u l e f a n d  distribution [p~(/), P~(0 . . . . .  p~ (/)]. Denote this 
fault rate by Ft(i). 

Now we can rewrite eq. (2.3) as follows: 

L k 

F/(SA) = Y, Y, p~(t)qj(,), (2.7) 
lffil j=l 

where qj (l) is the probabili ty that page Xj(i) is missing from the cache in equihbrmm. The 
probabili ty qj(i) is also the probabili ty that page Xj (t) is not in St(t) as t tends to infinity. 
Equation (2.7) can now be written as 

L k 

Ft(SA) = E E D,pT(OqfiO. (2.8) 
t--1 j - - I  

k 

Since ~ pj (0q/(0 IS, from eq. (2.3), the fault rate Fr( 0 of  G ,  we can write eq. (2.8) as 
J--1 

L 

J~(SA) = Y. D, Fr(,). (2.9) 

Thus to compute the fault rate for the Set Associative buffer, we would compute Fl(t),  
the fault rate contribution by combination C,, using King's results, weight it by D,, and 
sum the product over all the combinations C,. This result also shows that the Set Associative 
buffer is composed of  Fully Associative buffers. 

It is easy to verify that eq (2.9) reduces to the corresponding eq. (2.3) for the Fully 
Associative buffer when we let s = m. 

SECTOR BUFFER. If  we ignore the structure of  sectors and treat them as units of  
transfer of  information between the buffer and the backing store, there would be no 
difference between a Fully Associative buffer and a Sector buffer. The resulting organi- 
zation is called the Equivalent Fully Associative buffer of  the Sector buffer. 

Suppose we have N blocks in the backing store organized into n sectors Xi, X2 . . . . .  Xn, 
with b blocks/sector, b = N/n. Denote the blocks in sector X, by Yl(i), Yz(i) . . . .  Yb(t). We 
assume that the reference sequence rl . . . . .  r, . . . .  consists of  references to blocks and that 
Pr[rt = Y,(j')] = pit(j). Let the buffer have m sectors with b blocks In each sector. 

f t (S)  = Y. pf(i)q~(t), (2.10) 
t = l  J = l  

where q~(l) is the probabmhty of  Xj(z) being absent from the buffer m eqmhbrmm. 
The probabili ty of  reference to a sector X, is given by 

b 

P, = E PT(0 (2.11) 
3~1 

The event "block Xj(i) is not in the buffer" can be seen to be the union of  two disjoint 
events: 0) "The sector X, is not in the buffer," and (fi) "the sector X, is in the buffer and 
block X~(i) is not in the buffer." Denote the probabilities of  these events by q, and q+(t), 
respectively. So 

qj(t) = q, + qf(i). (2.12) 

Substituting eq. (2.12) in eq. (2.10) and using eq. (2.11), we obtain 

Ft(S ) = Y. p,q, + p;(i)q~'(t) (2 13) 
t ~ l  t = l  J = l  

We can compute the Pr[the sector X, is in the buffer and block Xj(t) IS not], I.e. qj+(l), 
as follows: 

qJ+(0 = Pr[sector X, in buffer] Pr[X~( 0 not m bufferlX, m buffer], (2.14) 
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Pr[X~( 0 not in bufferlX, in buffer] = 1 -p~( i ) /p , .  

Using these in eq. (2.14), we obtain 

qf(i) = (1 - e,)( l  -p f ( i ) /p , ) .  (2.15) 

Equations (2.15) and (2.13) yield the fault rate for the Sector buffer as 

Ff(S) = ~ p,q, + ~ pf(/)(l - q,)(l -Pf(O/P,). (2.16) 
t=l  ~=1 J~ l  

By recognizing the first term as the fault rate of  the Equivalent Fully Associative buffer 
(EFA) under replacement rule f ,  we can write eq. (2 16) as 

Ft(S ) = Fi(EFA ) + ~ p~(i)(l - q,)(l -p~(i)/p,). (2 17) 
t= l  J= l  

Equation (2.16) relates the fault rate of  the Sector buffer and the fault rate of  the 
Equivalent Fully Associative buffer. We already know how to compute Fr(EFA) using 
King's results. To compute q, for all the sectors, we resort to King's formulas for the 
equilibrium distribution for the states of  the Equivalent Fully Associative buffer. By 
summing up the probabilities for the states not containing X,, we obtain q,. 

3. A Few General Comparisons 

We make two types of  general comparisons here: (i) the behavior of  two replacement 
algorithms across the whole range of  the buffers, and (ii) the behavior of  two specific types 
of  buffers. 

(i) The first general comparison concerns the behavior of  the buffers under FIFO and 
RR: It is possible to show that for the IRM, the Fully Associative buffer has identical 
performances (in steady state) for these two rules [13]. Next we show that this result holds 
for all the other types of  buffers. A brief intuitive explanation of  this result for the Fully 
Associative buffer follows. 

To show that this result holds for the Set Associative buffer, we make use of  the result 
established earlier showing that it consists of  independent Fully Associative buffers and 
backing store combinations C,. In eq. (2.9) D,, the sum of  the reference probabilities for 
pages mapping on to set t, is independent of  the replacement rule, while Gelenbe's result 
shows that the combination C, has the same fault rate for RR and FIFO, i.e FRR(i) = 
F~lro(i). Thus Fvwo(SA) -- Fm~(SA). 

To show that the result can be extended to the Sector buffer, we first note that it is 
possible to show that [13] Pvwo(S) = PmffS) From Gelenbe's proof for the Fully 
Associative buffer, the Equivalent Fully Associative buffer has the same performance 
under RR and FIFO, 1.e. Felro(EFA) = FR~(EFA) in eq. (2.17). 

The probability of  not finding sector X, in the equilibrium state of  the Equivalent Fully 
Associative buffer q, is obtained by adding the equilibrium probabilities of  all the states 
(of the Eqmvalent Fully Associative buffer) not containing X,. Since each of  these states 
has the same equilibrium probability under RR and FIFO, q, is the same for RR and 
FIFO for a given sector X,. Thus F~i~o(S) = FmffS). 

This result holds for the Direct Mapping buffer also because its fault rate is insensitive 
to the two algorithms. Thus all the buffers have the same fault rate for FIFO and RR. 

Every time a replacement rule is used to replace a page, it is implicitly trying to assess 
the future demands of  the program. Such an assessment is possible because programs 
exhibit a behavior called "locality" [7, 22, 8, 25, 19]. Intuitively we would expect a 
replacement rule that makes use of  the knowledge of  program behavior to choose a page 
for replacement, to be superior to one that does not. The only information about the 
locality of  a program present in the IRM is in the distribution of  page reference 
probabihtles. So we would expect that a good replacement rule would appropriately treat 
a program's pages nonuniformly depending on their reference probabilities. LRU is an 
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example of  such a replacement rule. For  the Fully Assoclatwe buffer, it keeps the state 
reformation in a stack, with the top of  the stack containing the most recently used page 
and the bottom containing the least recently referenced page When a page is referenced, 
it is brought to the top of  the stack and therefore gets a "new lease on Its life in the buffer." 
For  the Independent Reference model, a good algortthm ts one that trtes to keep the most 
frequently used pages as long as possible in the buffer because that would tend to mimmize 
the total number of  faults. This is done by LRU because a page with a high probabdlty of  
reference tends to be referenced more often when in the buffer and gets pulled to the top 
of  the stack, thereby prolonging its stay in the buffer. 

On the other hand, F I F O  does not use any reformation about the page when making a 
decision to replace the page: F IFO uses a queue to maintain the state of  the buffer with the 
page at the head of  the queue to be replaced on a fault, whale the page brought m on a 
fault xs put in the tall position. At the end o f m  page faults (m is the size of  the buffer), the 
page m the tail position would be at the head of  the queue and would be replaced at the 
next fault lrrespectwe of  how often the page was referenced during the stay in the buffer. 

This leads us to expect that F I F O  performs as well as RR, because not using any 
information about the pages m the buffer for the selection of  a page for replacement is 
equivalent to replacing a page at random. This equality m turn leads us to suspect that the 
changes m performance brought about by buffer replacement algorithms are small. Later 
it wall be shown that this is indeed so 

(ii) Capabilities of  the Direct Mapping buffer. The Direct Mapping buffer is a simple 
and inexpensively organized buffer, and it does not have the overhead of  the record 
keeping associated with a replacement rule. A previous simulation study [5] has shown 
that simple orgamzations using Direct Mapping buffers can be cost effective on minicom- 
puters. The results derived here lend analyucal support to that viewpoint. 

Let G, = (X,(i), X2(0 . . . . .  Xh(0) be the set of pages that can be m page frame i Since 
a reference to any page m G, currently not in the buffer causes a fault, tt is not difficult to 
see that the relatwe magmtudes of  the probabihtles of  reference to these pages is important 
m determining the fault rate Thus we can see that the performance is dependent on the 
arrangement (mapping) of  pages m the backing store. A way to quantify this arrangement 
ts constdered in Sectton 4 Here we are interested m showing that the Direct Mapping 
buffer, by taking advantage of  this sensitivity, can perform as well as the Ful ly Associative 
LRU buffer. This is sigmficant because the Fully Associative buffer is considered to have 
a good performance whde the Direct Mapping buffer has no cost for page replacement. 

First we prove the following 
THEOREM 3.1 For any dtstrlbutlon [p,, p2 . . . .  p,,], there exist arrangements o f  pages m 

the backing store o f  a Direct Mapping buffer, for  which F( DM) _< 2B, where pl --> pz --> 
>--pn and B = ~=m+,p, 

PROOF. Let G, = (Xl(i), X2(i) . . . .  X,(i) ), l = !, 2 . . . .  m, be the set of  pages which can 
be m page frame t. Let page Xj(t) have probabdlty of  referencepj(t)  f o r j  = l, 2 . . . .  k, and 
i = 1, 2 . . . . .  m. Without loss of  generahty, we can assume that 

pj( t )  ~.p2(t)_> _>pk(t), t = 1, 2 . . . . .  m 

Consider an incompletely specified arrangement for which p,(i) = p~ for t = 1, 2 . . . . .  m, 
Le. a mapping which maps the m most probable pages onto different page frames. 

Let E, = ~k.2pl(i ) for i = 1, 2 . . . . .  m. Then m the notation of  Section 2, 

D, = p, + El, 

and from eq. (2.6), we have 

r n  

F ( D M )  < ~ (P,(O + E,) 2 - p 2 ( 0  
,=l p , ( l )  + E, 

(3.1) 

(3.2) 
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2p~( i)E, + E~ z 
= ~ ' ,  ( 3 . 3 )  

,-1 p l ( i )  + El 

SO that 

m 
F ( D M ) -  ~ E, _< ~ P1(i)EL 

,-1 ,~1 p~O + E, 
m 

_< ~ E,., (3.4) 

m E Since ~,=1 , = B, we get the desired result. Q.E.D. 
We will call the arrangements referred to above "near-optimal" arrangements. 
Theorem 3.1 can be used m two ways to argue for the capabilities of  the near-opumal  

Direct Mapping buffer: 
(a) For  the Ful ly Associative LRU cache, a can be shown that [12] 

[ m ( l - B )  ] (3.5) 
FLRu(FA)--<B l +  l + ( m -  l )B ' 

with B as defined before. 
There exist distributions (for example, pl  = p2 = = pm and B small) for which the 

above LRU bound is very close to the actual LRU fault rate. That Is, there exist 
distributions for which the LRU fault rate is very close to B( l + m). Comparing this with 
the upper bound on the fault rate for the near-optimal Direct Mapping buffer of  2B (which 
holds for any distribution), we can conclude that there are distributions and buffer sizes 
for which the Direct Mapping buffer will perform better than the Fully Associative LRU 
cache. 

(b) The second argument concerns the "effectweness" of  an orgamzatlon and its 
replacement rule. I f  the probabilities [p~,p2 . . . .  pn] are known in advance (again assuming 
that the pages are ranked in the decreasing order of  theu probabilities of  reference), then 
the theoretically optimal procedure is to place the m most probable pages m the buffer 
always and service references to pages not in the buffer directly from the backing store 
(Since in practice all the requests are to be serviced from the cache, this is only a theoretical 
procedure.) This has a hmamg fault rate of  Fo = B. 

The worst performance of  an organization relative to this optimal procedure is an 
indication of  the "effectiveness" of  the orgamzatmn. From Theorem 3. l and the inequality 
in (3.5), we see that the worst behavior of  the near-optimal Direct Mapping buffer relatwe 
to the optimal procedure is bound by a constant (for any distribution and cache size), 
while for the Ful ly Associative LRU cache it is dependent on the size of  the buffer. 

F rom these two arguments, we can conclude the following: 
There are distributmns for which the performance of  the near-optimal Direct Mapping 

buffer is comparable to that of  the Fully Associative LRU cache. 
Figures 6 and 7 show the performances of  these two organizations for two distributions 

of  the page reference probabilities. The mapping used for the Direct Mapping buffer is 
(for Figure 6) as follows: 

1 2 3 m 

m + l  m+2  m+3 2m 
2m+ ! 2m+2 2m+3 3m 

The numbers in column i indicate the indices of  the pages which map onto page frame t. 
For  Figure 7 it is 

! 2 3 m 
2m 2m-  1 2 m - 2  m+ I 

2m+ l 2m+2 2m+3 3m 
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4. Distribution-Free Bounds on Fault Rate and Their Use 

IDEA OF A DISTRIBUTION-FREE RESULT. AS indicated before, the purpose of an 
analysis such as this is to understand the interaction between the performance of a buffer 
and the factors which affect it. These parameters are: the size of the buffer, the type of 
mapping, the program behavior (i.e. the distribution of the page reference probabilities), 
and the replacement rule. The results m Section 2 showed how the limiting fault rate can 
be computed for a given type of mapping, buffer size, and probability distribution. But the 
dependence of the performance on a given parameter Is not exphcit enough. For example, 
the effect of changing the size of the buffer, while keeping the other parameters fixed, 
cannot be assessed immediately without computing the fault rates for both the sizes. 
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In addition to knowing the fault rates for the given parameters, often we would hke to 
know the size of  the buffer needed to satisfy a given performance level for a "given 
program behavior." Again the expressions for the fault rates do not permit us to compute 
this conveniently because of  the implicit nature of  the way the effect of  these parameters 
ts reflected in those expressions. 

To explicitly see the effect of  these parameters, a distribution-free result replaces the 
individual behavior of  infrequently referenced pages by their collective behavior. Since the 
contribution of  these pages to the fault rate is not significant, the resulting loss m accuracy 
is shght. The quantity B defined m Section 3 is an example of  a characterization of  such 
collective behavior. Given such collective behavior, we obtain upper bounds on the fault 
rate that are distribution-free m the other pages. Inequality (3.5) is an example of  such a 
bound. 

Later in this section we present two examples that illustrate how we can exploit the 
exphot  interaction among the parameters. Besides this use, distribuUon-free upper bounds 
provide the following uses: 

I. They give an idea of  the worst performance of  the combination of  the orgamzatlon 
and the replacement rule. 

2. They are very easdy computed. For  the Fully Associative LRU buffer with n pages 
in the backing store and m page frames in the cache, the complexity of  the expression for 
the fault rate is of  the order of  (,~)m! (this is the size of  the state space). It is possible to 
reduce this complexity somewhat [6, 18], but still even for fairly small values of  m and n, 
this computation ts very expensive, while the &stnbutlon-free results can be computed on 
a hand calculator 

D I S T R I B U T I O N - F R E E  B O U N D S  F O R  T H E  B U F F E R S .  First we find the distribution-free 
upper bound for the Set Associative buffer and then derive the bound for the Direct 
Mapping buffer from that. 

The characterization B of  the collective behavior of  the "tall" pages mentioned above is 
not suitable for the Set Associative buffer because it does not reflect the arrangement of  
pages m the backing store, while the fault rate depends on it (B is useful m representing 
the behavior of  the tail pages of  the Ful ly Associative buffer because the precise mapping 
of  the pages onto page frames does not affect the latter's performance.) So we need a way 
of  quantifying the effect of  arranging pages m the backing store of  the Set Associative 
buffer. To do this we proceed as follows. 

Let Xi(t), X2(i) . . . .  Xk(0 be the pages m G, (the group of  pages which can be in the ith 
set in the buffer). Again, without loss of  generality, we can assume that the pages in G~ are 
numbered in decreasing order of  their p robabday  of  reference so that p l ( i )  _ > / ~ 2 ( / )  ~ . .  

_> pk(i), i = 1, 2 . . . .  L. Now define the " tad" probabili ty E, of  G, as 

k 

E l =  ~ p:(t),  t =  1,2 . . . .  L, (4.1) 
J ~ + l  

and the tail probabil i ty t of  the d~stnbution as 

L 

t =  Z E,. (4.2) 
t z l  

Then Theorem 4.1 gives the &stnbution-free upper bound on the fault rate for the Set 
Assoctative buffer using LRU. 

THEOREM 4.1. FZRU(SA) _~ st(l - t ) / ( l  + (s - l ) t )  + t for  any dtstributton of  page 
reference probabthties and any arrangement o f  pages m the backmg store. 

PROOF. As shown m Section 2, we can write the expression for the fault rate as 

L k 

FLRu(SA) = ~ ~ p~(i)qj(i), (4.3) 
t~l  J~ l  

where qj(i) is the probabdlty of  not finding X~(t) in the buffer in the steady state. Next we 
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describe how to compute an upper bound on q:(t) and then show how the resulting 
expression can be maximized. 

The method used m computing an upper bound on q:(t) is similar to the one used by 
Franaszek and Wagner  [12] in arriving at the distribution-free upper bound on the fault 
rate of  the Fully Associanve LRU cache (inequality 3.5) The necessary condition for Xj(l) 
to be absent from the buffer is that s dtstinct page references have occurred in C, since the 
last reference to Xj(/). Since set t has s pages including Xj(/) this means that a page 
X~(/), where r > s, has been referenced since the last reference to page Xj(/). This in turn 
means that in the steady state LRU stack for C~ a page X~(i), r > s, is above Xj(/). 

The probabil i ty of  this event can be found as follows [24]: 

b(r, i) = Pr[page X~(i) is ahead of  page Xj(t) in s tack/]  

= (p~( i ) /O,  )/(p~( t ) /O,  + p:( t)/O~ ) 

= p~(t)/(p~( i) + p:( i) ). (4.4) 

From this we get 

Pr[a page Xr(i), r > S, Is ahead of  Xj(l) in the LRU stack for combination C,] 

= E,/(p:( t)  + E,). (4.5) 

Thus 

q:(t) <_ E,/(p:(t) + E,). (4.6) 

From (4.3) and (4.6), we can write 

FLRu(SA) _< p:(OE,/(p:(i) + E,) + E~ (4.7) 
I = l  J =  

= 2 p:(z)E,/(p:(i) + E,) + t. (4.8) 
I ~ l  J = l  

Now we maximize the right-hand side of  (4.8) by writing: 

Maximize F(p l ( l )  . . . . .  p~(l) . . . . .  pl(L) . . . . .  p~(L)) = ~ ~ p:(i)E,/(p:(i) + E,) (4.9) 

I 

such tha tp : ( i )  > O, j = 1, 2 . . . . .  s and i = 1, 2 . . . . .  L, and 

pat )  = I - t (4.10) 
~ 1  J = l  

We can write this as a nonlinear optimization problem. 

Maximize F(p~(l) . . . . .  ps ( l )  . . . . .  p~(L) . . . . .  ps(L)) = ~ ~ p~(OE,/(pj(i) + E,) 

I 

tR1 jE1 

such that p:( i) > O, j = 1, 2 . . . .  s and i = 1, 2 . . . . .  L, and 

g~= Y,p:(i)<_ l - t = b ~ ,  g ~ = -  ~ p : ( t ) < _ t -  1 =bz.  
t=l J=l t = l  J=l 

It is easy to show that [21] the objective function in (4.9) is concave and the constraint 
functions (which (4.10) gives rise to) are convex, being linear functions. Thus, Kuhn-  
Tucker conditions [ 15] are necessary and sufficient conditions for opUmahty and they state 
that 

(pl( 1 ) . . . .  p~( 1 ) . . . . .  p l ( L )  . . . . .  p , (L)  ) maximizes F 

if and only if we can find numbers u~ and ue such that 
(1) iff i*(j)  > 0, then 
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2 

OF/Op,( j)  - ~ uk( Ogk/Op,(j) ) = 0 
k - - 1  

a t p , ( j )  = p~*(j), for i -- 1, 2 . . . . .  s, j = 1, 2 . . . . .  L; 
(2) if#,*(j)  = O, then 

2 

OF/Op,( j)  --  ~ Uk( Ogk/Op,(J) ) --< 0 
k=l  

a t p , ( j ) - p , ( j ) , f o r i =  1,2, . , s , j =  1,2 . . . . .  L; 
(3) i f  u, > 0 then 

G U R U R A J  S R A O  

This  reqmres 

Thus  

p l ( i )  = p 2 ( i )  = . = p ~ ( i )  = p ( t )  (say), i =  1, 2 . . . .  L. (4.12) 

E , / ( p ( i )  + E,)  = u for t = 1, 2 . . . . .  L. (4.13) 

But from (4.12) and  (4.10), 

so that 

Thus  from (4.16) and  (4.14), 

F r o m  (4 13), we obta in  

u =  E, p ( t )  + E, = t p ( i )  + t 

L 

Y. sp( i )  = 1 - t (4  15) 
zzl 

L 

p ( t )  = ( 1 - t ) / s .  (4  16) 

u = s t / [ l  + ( s -  l)t]. (4.17) 

Final ly,  we subsmute  eqs. (4.11), (4.17), and  (4.12) m eq. (4.8) to ob ta in  

FLrtu(SA) - 2 s t p ( t ) / [ l  + ( s -  l ) t ]  + t (4.18) 
t~l y=l  

L 

= Y, s2tp(0/[l + (s - t)tl + t. (4.19) 
t z l  

Using eq. (4.15) in eq. (4.19), we obta in  

FLRu(SA) --< st( 1 -- t ) / [ l  + (s -- l ) t ]  + t, (4.20) 

E , / ( p A O + E , ) = u  for j = l , 2  . . . . .  s a n d a n y l  ( 411 )  

(4.14) 

g,(pl( 1 ) . . . . .  p~( 1 ) . . . .  e l ( L )  . . . . .  p ~ ( L ) )  - b, = 0 

- *  . . .  a t p k ( j ) = p k ( j ) ,  k =  1,2 . . . . .  s , j =  1,2, ,L ,  t =  1,2; 
(4) tf u, = 0, then 

g , O g a ( l )  . . . . .  p s ( l )  . . . . .  e l ( L )  . . . . .  p , ( L ) )  - b, _< 0 

a tph( j )  --/~k=* ~J' "), k = 1, 2, . . . . .  , s, j = 1, 2, , L, i = 1, 2, 
(5) p * ( j )  _> O, t = 1, 2 . . . . .  s, j = 1, 2 . . . .  L ,  

(6) u,_>0, i =  1,2. 
These condit ions are satisfied by choosing ul = u 2 and  u2 = 0. Condi t ion  (1) reqmres u 

to satisfy 
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which completes the proof. Q E D. 
We have already seen that the Set Associative buffer IS a general organization and that 

by setting the size of a set to one page frame, we get the Direct Mapping buffer, and setting 
s = m yields the Fully Assoclatwe buffer. This is reflected in the above analysis. Setting 
s = m m eq. (4.20) yields the distribuhon-free bound m (3.5) for the Fully Associative 
LRU cache, because when s = m, we have t = B. 

By setting s = 1 m eq. (4.20), we obtain 
THEOREM 4.2. For the Direct Mapping buffer, F(DM) _< 2t - t2 for any distrlbutwn of 

the page reference probabgity distribution and any arrangement of pages in the backing store 
For a near-optimal arrangement, p~(i) = p, for l = 1, 2, .. , m, and hence the tad 

probability 

t=  E,= ~ p , = B .  
/ = l  t = m + l  

So, for a near-optimal arrangement, Theorem 4.1 yields 

F(DM) _< 2B - B 2 (4.21) 

This is a closer upper bound on F(DM) than the one given by Theorem 3.1. 
Figures 8 and 9 illustrate the closeness of these upper bounds to the fault rates given by 

the expression in Section 2. These figures also show the sizable effect the arrangement can 
have on the fault rate. In both, the increase in performance gained by increasing the buffer 
size from 2 to 3 is more than offset by the drop in performance due to a change from a 
near-optimal arrangement to a nonopt~mal arrangement 

DISTRIBUTION-FREE RESULTS FOR THE SECTOR BUFFER. N e x t  w e  obtain an upper 
bound on the difference between the performances of the Sector buffer and its Equivalent 
Fully Associative buffer 

From eq. (2.17), we have 

n b 

Fi(S) = F/(EFA) + E (1 - q,) E pJ-(,)( l  -p~-(i)/p,). 
z=l J=l 

By calculating the second derivative of p~(i)( l  -p~( i ) /p , )  with respect to p~(i), we can 

FIG 8 
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FIG 9 Upper bound on fault rate and actual fault rate for the Direct Mapping buffer (geometric dlstnbutlon) 

show that it is a concave function, so we maximize the right-hand side of the above 
equation by lettingp~-(t) = = p ~ ( t )  = p , / b ,  t = 1, 2 . . . .  n. Thzs yields 

Ft(S) --< Ft(EFA) + ~ (1 - q,)p,(l - 1 / b ) .  
tml  

This equation can be written as 

Ft(S ) _< 1 - ( l / b ) [ l  - Fr(EFA)], 

which can be used to obtain distribution-free upper bounds for the Sector buffer. 
USE OF THESE BOUNDS FOR THE DIRECT MAPPING BUFFER. We have seen that the 

dlstnbutzon-free upper bounds for the Direct Mapping buffer are very close to the actual 
fault rates for "practical" types of distributions (Le geometric and empirical). Further, 
these bounds (which we can look upon here as approximations to actual fault rates) reflect 
the effect of the size of the buffer more explicitly than the expression for the actual fault 
rate. This property can be used to solve the "inverse" problem of computing the size of the 
buffer to achieve a given hit ratio (l - fault rate) H for a given distribution. 

From Theorem 4.2, we have F(DM) _< 2t - t 2. This can be written as H = l - F(DM) 
> _ f l - 2 t +  1 = ( 1 - 0  2 , so tha t~ /H~_  l - t o T  

t _> 1 - x/H. (4.22) 

This inequality can be interpreted as follows. With reference to Figure 10, if the tall 
probablhty for a gwen mapping and reference probability distribution is t then the hit rate 
for the corresponding parameters exceeds H. Alternatively, for the hit ratio to exceed H, 
the tail probability need not be smaller than t, Le. to guarantee a hit ratio H, the tail 
probability need never be smaller than 1 - x/H. 

For a near-optimal arrangement, it is very easy to obtain a close upper bound on the 
size of the cache memory required to obtain a hit ratio H, using this argument. For a near- 
optimal arrangement, t = B, as described in Section 3. So, all we need to do is to arrange 
the pages in decreasing order according to their probability of reference and starting at the 
tail end, accumulate the probabilities until the sum exceeds I - x/H. The number of pages 
m0, whose probabilities are not included in the sum, is the upper bound on the size of the 
buffer required. For any other specified arrangement, we can obtain the memory size 



Performance A nalysis o f  Cache Memories 393 

t 
I 

I 
0 H I 

FIG 10 Illustration oft_> I - x / H  

required ma by first getting m0 and then using this as the starting point of  an iteratwe 
scheme which checks, for successively higher sizes of  the buffer, whether the value of  t 
exceeds 1 - x /H,  for the specified arrangement. 

RELATIVE EFFECTS OF RESTRUCTURING AND BUFFER REPLACEMENT ON PERFOR- 

MANCE. Next we wish to show that the effect of  buffer replacement algorithms on 
performance is secondary when compared to the effect of  the mapping on performance. 
We show this by comparing the maximum obtainable difference m performance between 
L R U - - o n e  of  the best reahzable a lgor i thms--and R R - - o n e  of  the worst realizable 
algori thms--with the maximum obtainable difference in performance for the best and 
worst mappings. Among the Fully Associative, Set Associative, and Direct Mapping 
buffers, the Ful ly Associative buffer is the most sensmve to the replacement algorithm 
(and the least sensitive to mapping) whde the Direct Mapping buffer is the most sensitive 
to mapping (and the least sensitwe to replacement algorithm). Thus we compare the 
difference in performance between LRU and RR on the Fully Associative buffer with that 
for the best and worst mapping on the Direct Mapping buffer. 

Since the exact mappings for the Direct Mapping buffer that produce the lowest and 
highest fault rates are not known, we prove our point by using the distribution-free upper 
bound (which we again consider as an approximation to the fault rate) derived m Theorem 
4.2 as follows The mapping that produces the smallest value for t is the near-optimal 
mapping as defined earlier. Correspondingly, we call the mapping that produces the 
highest value for t near-"worst." If  the reference probablhtles pl, p2 .. . . .  p,, are m decreasing 
order of  magmtude, st Is not difficult to see that the following mapping produces the largest 
value for t. Map k = n/m pages starting at page ) 6 where j  = (i - 1 )k + 1 onto page-frame 
1. 

Table I compares the difference in calculated, exact performance between LRU and RR 
for the Fully Assoclatwe buffer with that for near-optimal and near-worst mappings for 
the D~rect Mapping buffer, for an empirical distribuuon It clearly shows that the potential 
of  the mapping to cause a large change in performance Is much greater than that due to 
buffer replacement. Table I also shows that the same conclusion would have been reached 
ff we had considered the approximation to fault rate of  the Direct Mapping buffer instead 
of  the actual fault rate. 

5. Conclustons 

We have assumed a reasonable, tractable model of program behavior and tried to 
understand the relaUon between the factors affecting the performance of  different buffer 
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TABLE 1 

(a) Calculated exact performance for the Fully Associative buffer for empirical distribution" 
m =  2 3 4 5 6 

0) RR 0 2808 0 1866 0 1315 0 0953 0 045 
(u) LRU 0 2408 0 1416 0.0931 0.0645 0 025 

(b) Calculated exact performance for the Direct Mapping buffer for empirical dlstnbuuon 
m ~  2 3 4 6 

(0 Near-optimal 0 2348 0 1416 0 0941 0 0437 
(n) Near-worst 0,4558 0 4293 0 3962 0 321 I 

(c) The ratios of the change produced m (b) to the change produced m (a) 
m=  2 3 4 6 

RaUo [(b-n) - (b-0]/l(a-0 - (a-n)] 4 4 5 8 7 4 53 ! 
(d) Calculated upper bound on performance for the Direct Mapping buffer for empirical distribution 

m=  2 3 4 6 

0) Near-optimal 0 2621 0 1661 0 1120 0 05566 
(i0 Near-worst 0 4933 0 4734 0 4459 0 3743 

organizations.  Toward  this end we first showed how the fault  rates for these buffers can be 
calculated and then showed how these expressions can be simplified in detai l  wi thout  
losing much  accuracy to obtain  distr ibution-free upper  bounds on their  performance.  We 
der ived such bounds  for the Direct  Mapping  buffer  and the Set Associative L R U  buffer, 
Fo r  the Sector buffer  this bound  was der ived in terms o f  the upper  bound  on its Equiva len t  
Ful ly  Associative buffer 's  performance.  We  showed how these bounds  for the Direct  
Mapping  buffer can be used to compute  a close upper  bound on the amoun t  o f  buffer  
m e m o r y  needed to guarantee  a given level o f  performance.  

Further ,  we showed that buffer replacement  has a secondary effect on per formance  
compared  to res t ructunng by first showing that F I F O  and R R  yield identical  performances  
for  all the buffers and then  showing that the variat ion m per formance  between the near-  
best and near-worst  mappings  on the Direct  Mapping  buffer  was much  greater  than that 
between the "wors t"  realizable and "best"  real izable algori thms for the Ful ly  Associat ive 
buffer. 

These results are only as valid as the mode l  is in captur ing the programs '  behavior.  A 
feature o f  the Independen t  Reference  model  is that it predicts relat ive per formance  
accurately [3]. The  eqmvalence  o f  the fault rates o f  the buffers for F I F O  and RR,  proved 
here, has been observed [4]. The  result that predicts the near -opt imal  Direct  Mapping  
buffer  to be as capable  as the Ful ly  Associative L R U  buffer  shows that it is possible to 
restructure programs to take advantage  o f  the hardware  organizat ion o f  the system. This  
is an extension o f  the not ion introduced by Ferrar i  [11] to tailor restructuring algori thms 
to suit the m e m o r y  management  policy. This  IS in contrast  to the me thod  o f  restructuring 
to improve  the locali ty o f  the program [16, 14, 10]. A few pre l iminary  at tempts to 
restructure programs to suit the hardware  organizat ion are reported in [2 l]. 
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