
Performance Analysis of Cache Memories

G U R U R A J S. RAO

Stanford University, Stanford, Cahforma

ABSTRACT Using the Independent Reference assumption to model program behavior, the performance of
different buffer organizations (Fully Associative, Direct Mapping, Set Associative. and Sector) are analyzed' (1)
The expressions for their fault rate are derived To show more explicitly the dependence of the fault rate on the
factors that affect it, distribution-free upper bounds on fault rates are computed for the Direct Mapping, Set
Associative, and Sector buffers The use of such bounds is illustrated in the case of the Direct Mapping buffer
(2) The performance of the buffers for FIFO and Random Replacement are shown to be identical (3) It is
possible to restructure programs to take advantage of the basic organization of the buffers The effect of such
restructuring is quantified for the Direct Mapping buffer It is shown that the performance of the Direct Mapping
buffer under near-optimal restructuring is comparable to the performance of the Fully Associative buffer
Further, the effect of this restructuring is shown to be potentially stronger than that of buffer replacement
algorithms

KEY WORDS AND PHRASES buffer, cache, statistical analysis, performance analysis, program behavior models,
paging, page replacement algorithms, program restructuring, fault rate, distribution-free bounds

CR CATEGORIES 4 35, 5 42, 6 34, 8 3

1. Introduction
In this p a p e r we ana lyze the p e r f o r m a n c e o f var ious buffer (cache) o rgan iza t ions in a two-
level d e m a n d paged m e m o r y system. These o rgan iza t ions are s h o w n in F igures 1-4 a n d
desc r ibed more fully in [9]. Even t h o u g h the analys is is in the contex t o f two-level m e m o r y
h ie ra rch ies wi th buffers, the analysis is app l icab le to any two-level m e m o r y systems wi th
the m a p p i n g cons t r amts descr ibed here. Since the p rev ious work m the analys is o f two-
level paged memor i e s is used to ana lyze m e m o r y systems wi th buffers in this paper , the
s ame t e rmino logy is re ta ined here [17, 12, 2]. F o r un i fo rmi ty o f reference, we assume tha t
b o t h the p r ima ry (buffer) level a n d the secondary (back ing store) level are d iv ided in to
equa l sized uni t s cal led pages in the back ing store and page f r ames in the buffer . Assoc ia ted
wi th each page f r ame is a m a p tha t carr ies the iden t i ty o f the page in tha t page f rame.
These buffers can be classified accord ing to the i r m a p p i n g const ra in t .

In the Fu l ly Associa t ive buffer , a n y page in the back ing s tore can be in a n y page f rame.
W h e n a reques t for a page is p resen ted to the buffer , all the m a p ent r ies are c o m p a r e d in
para l le l (associat ively) wi th the reques t to d e t e r m i n e i f the reques t is p resent in the buffer .
I f not , it is t e rmed a page faul t a n d the reques ted i n f o r m a t i o n is b r o u g h t f rom the next
level. In the Direc t M a p p i n g buffer , page l c an be on ly in page f r ame (i m o d m) i f we h a v e
m page f rames in the buf fe r (F tgure 2). Th i s buf fe r has the a d v a n t a g e o f a t r ivial
r e p l a c e m e n t rule. O f all the pages tha t m a p on to a page f r ame on ly one can ac tua l ly be in

General permission to make fair use in teaching or research of all or part of this material is granted to individual
readers and to nonprofit libraries acting for them provided that ACM's copyright notice is given and that
reference is made to the publication, to its date of issue, and to the fact that repnntmg privileges were granted by
permission of the AssoclaUon for Computmg Machinery. To otherwise repnnt a figure, table, other substantial
excerpt, or the entire work requires specific permission as does republication, or systematic or multiple
reproduction
This research was supported by a f¢llowsMp from the Ministry of Education, Government of India, and by the
Joint Service Electronics Project Contract N00014-75-C-0601 Computer tune was provided by the Energy
Research and Development Administration under Contract E(043)515
Author's present address IBM T J Watson Research Center, P.O Box 218, Yorktown Heights, NY 10598
© 1978 ACM 0004-5411/78/0700-0378 $00 75

Journal of the Association for Computing Maclunery. Vol 25, No 3, July 1978, pp 378-395

Performance .4 nalysis of Cache Memories

BUFFER BACKING STORE
FIG 1 Fully Associatwe buffer

j f , a

j J ~ t f

" s f / j I * [SSSS] - ..--
• / ~ i S ~

BUFFER BACKING STORE
FIG 2 Direct Mapping buffer

379

1 ~ s

~ ~ ~ - l ~ - ~

BUFFER BACKING STORE
FIG 3 Set Associative buffer

r /

BUFFER BACKING STORE
FK; 4 Sector buffer

the buffer at a time and hence if a page caused a fault, we would simply determine the
page frame this page maps onto and replace the page in that page frame. This avoids the
overhead of record keeping associated with a replacement rule In the Set Associative
buffer, the buffer is divided into L sets with s = m/L page frames/set. A page i in the
backing store can be in any page frame belonging to the set (t mod L) (Figure 3). The cost
of the assoclatwe search in a Fully Associative buffer depends on the number of entries to
be simultaneously searched. The Set Associative buffer tries to cut this cost down and yet
provide a performance close to that of the Fully Associative buffer. In the Sector buffer,
the secondary store is divided into a number of sectors each composed of a number of
blocks. The requests are for blocks and if a request Is made for a block not in the buffer
(i e on a fault), the sector to which this block belongs is brought into the buffer with the
following constraints: A sector from backing store can be in any sector m the buffer, but
the mapping of blocks m a sector is congruent. Also only the block that caused the fault
is brought into the buffer, and the remaining blocks of this sector are marked invalid. This
buffer tries to reduce the cost of the map. We now need only one map for each sector in
the buffer with a bit (vahdity bit) for each block of a sector m the buffer.

Examples of computer systems using the buffers described above include the IBM
System/360 Model 85, which has a Sector buffer organization, and the IBM System/370
Models 158 and 168, which use a Set AssoclaUve mapping with s = 2 and 4, respectively
[20] The instruction buffer in the IBM System/370 model 158 uses Direct Mapping.

The performance of these buffers depends on (0 the orgamzaUon of the buffer, (ii) the
replacement rule used, and (ill) program behavior The purpose of this study is to
analytically understand the interaction among these factors.

PERFORMANCE AND PROGRAM BEHAVIOR. From the point of view of the memory
system, the number of faults caused in the buffer is to be mimm]zed and hence we will use
the l immng page fault rate (the ratio of the number of faults and the number of requests)

3 8 0 GURURAJ S RAO

as our performance indicator. Using this indicator it is possible to estimate the delay seen
by the processor because of the requested information not being available in the buffer
[23]. An example of such an estimate, gwen a , the access time of level i, and the fault rate

f , is a~(1 - f) + a,f.
If the pages in the backing store are denoted by X~, X2 "Xn, then the string of

references rl, r2 rt, where rt is the page referenced at time t, completely characterizes
the behavior of the program. Since such a characterization is analytically retractable, we
need a model of program behavior. Several such models are discussed in the literature [7,
3, 22]. For the following reasons the Independent Reference Model (IRM) is used here:

(i) It Is analytically tractable.
(i0 It gwes a good indication of relative performances.

(hi) It predicts page fault rates reasonably well.

A recent study [3] has shown how the parameters of the IRM can be calculated to provide
sigmficant predictive power.

The following is a brief explanation of how this can be done. To distinguish this model
from the conventional IRM, the new model is called the A0-IRM. Modehng a system S
(in this case the page reference string) can be viewed as obtaining a set of measurements
on the system from which the parameters M of the model are computed, so that certain
properties P of the system are captured in the model. I f the analysis of the model yields
properties Q (different from P) of the system that are close to the actual (observed)
properties of the system, the model has predictive power. The property P captured in the
A0-IRM model is the requirement of good models that the fault rates of the model and the
actual programs being modeled under optimal page replacement algorithms be very close
to each other. This, coupled with property 0i) above, builds enough structure into the
model for successful mimicry of the system.

It is known that A0 and MIN are the opUmal page replacement procedures for the IRM
and for actual programs [7], respectively. It is also possible to express the fault rate of Ao
m terms of the parameters of the IRM, the page reference probabilities [7]. The procedure
then to capture the above-mentioned property in the model is to "invert" the expression
for the fault rate of A0 so that the parameters of the IRM are expressed as a function of A0
fault rates for a number of different memory sizes, and to use m these expressions MIN
fault rates measured on actual programs being modeled instead of A0 fault rates. For more
details reference should be made to the paper by Baskett and Rafii [3]. The paper describes
the empirical validation of the model by predicting other properties of page reference
strings (LRU (Least Recently Used) and FIFO (First-In-First-Out) fault rates, working set
sizes, etc.) and verifying these predictions. It also shows that this model adequately captures
program referencing characteristics at cache levels. When the parameters are calculated in
this fashion the IRM is said to have an "empirical" &stribution.

Since we have chosen the page fault rate as our performance criterion, we can ignore
factors that do not influence it. Thus it is not necessary to distinguish between the read and
write natures of references. Any store policy not affecting page fault rate may be assumed.

In the rest of this paper we deal with three phases of the analysis of these buffers. Section
2 shows how to determine performance as a function of the buffer orgamzation, the
replacement rule, and the program behavior. Section 3 shows that the performance of all
the buffers under FIFO and RR (Random Replacement) is identical. It also shows that
the Direct Mapping buffer can be as capable as the Fully Associatwe LRU buffer Section
4 shows how distribution-free results can be found for the buffers and illustrates their use
m the case of the Direct Mapping buffer. It also shows that the effect of buffer replacement
algorithms on performance is secondary compared to the effect of restructuring based on
buffer organization.

2. Calculation o f the Fault Rates f o r the Buffers

BACKGROUND AND NOTATION. Assume that there are rn page frames in the cache

Performance Analysts o f Cache Memortes 3 81

and that the backing store has n (logical) pages. (The notation is slightly different for the
Sector buffer and will be presented separately.) Denote the fault rate for a buffer with
organization o, using replacement rule f by Fr(o). The names Direct Mapping, Set
Associative, Ful ly Associative, and Sector will be shortened to DM, SA, FA, and S,
respectively.

Let the pages m the backing store be X1 Xn. Let the reference string be denoted by
r~ rt, Let [p~, . . , pn] be the distribution of the page reference probabilities, i.e.

Pr[rt = X,] = p,, l _< i _< n, f o r a l l t > 0 .

The formal representation of replacement rules is covered in the literature (for example,
[17]) and is not of much use here. Informally, any replacement a l g o n t h m f h a s to keep the
contents of the buffer ordered m an "ordered list," which characterizes the state of the
buffer at any time.

Let St = (sl, s2 Sin) denote this state at any time t, the radices referring to the position
in the ordered hst. Specification of the next state St+~ for all posstble st and rt, the page
referenced at time t, completely characterizes the replacement rule f For example, for
F I F O the ordered list is a queue with the head at Sl and the tail at sin, so that the page that
has been in the cache longest is s~. Hence, if there is a page fault on a reference to rt, the
new buffer state is St+~ = (s2, s3, . . , Sm, rt).

Under the Independent Reference assumption, it has been shown [17, 7] that for the
Fully Associative buffer, for the replacement rules considered here (LRU, FIFO, Random,
A0), the state sequence {st} is a homogeneous Markov chain and that for 2 _< m _< n, there
exists a unique, eqmhbrium distribution for these states.

Let Q be the state space of this Markov chain, S a state belonging to Q, Pr (S) the
steady state probabili ty of finding the chain m state S, and p (S) the probabil i ty of a page
fault m state S for replacement r u l e r

Since Pt (S) is the relative frequency of occurrence of state S m eqmhbrium, the page
fault contribution by state S in steady state is p (S) * P r (S) and the hmmng page fault rate
for a given replacement a lgo r i t hmf l s gwen by

F / (F A) = Y, e t (s) p (S) . (2.1)
s c Q

King [17] has shown how to compute P t (S) for any state m the state space Q, for LRU,
FIFO, and A0. We will make use of this later.

But the method detailed above for computing the fault rate is not suitable for use m
computing the fault rates of the other types of buffers. Fe r this purpose, we wdl use the
following method.

Franaszek and Wagner [12] have shown that, when {st} is irreducible and aperiodic, the
limiting fault rate can be written as

n

F t = y~ p , (l - p , (f)) , (22)
t m l

wherep,(f) = limt~= Pr[X, E St], 1 _< t _< n, is a function only of the replacement r u l e f a n d
[p~ p ,] and is not dependent on the initial state So.

Equation (2.2) can be written as
n

Ft = Y, p,q,, (2.3)

where q, is the probabdlty of not finding the page X, in the cache m equilibrium.
This condition Is satisfied for the algorithms considered here for the Ful ly Assocmtive

buffer when the number of pages w~th nonzero probabdlty of reference Is not less than 2m
Ill .

It Is not difficult to show [21] that, when the distribution has nonzero probabditles, {st}
is irreducible and aperiodic. Hence eq. (2 3) holds for all these buffers. In the remainder
of this section we show how the fault rates for the other buffers can be computed using

3 8 2 G U R U R A J S RAO

King's results where appropriate. The technique used is to group the pages in the backing
store into disjoint subsets according to the mapping constraint and then use eq. (2.3).

DIRECT MAPPING BUFFER. Let G, denote the set (group) of pages in the backing store
that can be in page frame t of the buffer. Let k = n / m be the cardinality of each of these
sets. Refer to the pages m G, by Xl(i) , X2(i) Xh(i) with probabilities of reference
pl(l) pk(i) , respectively Without loss of generahty we can assume pl(l) >_ p2(l) _>
_>pk(i), i = 1, 2 m.

Let D, = ~j~-i pj(t), i = 1, 2 m. Consider the two-state Markov chain with the state
S (l) being the state with page Xj(i) in the buffer, while S(0) is the state with page Xj(i)
missing from the buffer (Figure 5). When In state S(1), a reference to any other page m G,
produces a fault causing removal of Xj(t). Thus the transmon probability from S(1) to
S(0) is D, - p j (i) . Similarly, the transition probability from state S(0) to S(1) ispj(t).

Solution of this chain yields the equihbnum probability of state S(0) (which is the
probability that page Xj(i) is absent from the buffer in steady state) to be

qs(t) = (1 - p j (O / D ,) . (2.4)

Since the Direct Mapping buffer does not have a replacement rule, we can write eq.
(2.3) as

F (DM) = ~ p,q,,

which can be rewritten as

m k

F(DM) = ~ ~ pj(t)q~(i) , (2.5) tzl j--]
where qj(/) = Pr[Xj(0 is not in the buffer m equilibrium].

SubsUtuting for q~(/) from eq. (2.4) in eq. (2.5), we finally obtain
m (~) /

F(DM) = ~ D ~ - pj2(0 D, (2.6)
t=l Jffil

as the expression for the hmmng page fault rate of the Direct Mapping buffer.
SET ASSOCIATIVE BUFFER. Let the buffer have s page frames in each set and L =

m / s sets. Let G, again denote the group of pages in the backing store that can be in set i.
Let k be the cardinahty of G,. The page frames in set i and the pages m G, form a Fully
Associative cache-backing store combmaUon C , the C, being independent of each other
This observaUon is central to the analysis of the Set Associative buffer.

Refer to the pages in G, by X10), X2(i) Xk(i) with probabllmes of reference pl(i),
p2(1) pk(t) , respectively. Again without loss of generahty, we can assume that pl(i) .~.
p2(/)>- "'-->pk(t), i = 1,2 L.

Let D, = ~ j~ pj(t), t = 1, 2 L. If we n o r m a h z e p J t) , p 2 (t) phil) by D, to get
P[(O,P~(O p~(i), then we can use King's formula to compute the fault rate for the

oj-Pl(j)

@
F,G 5 Markov chain for the Direct Mapping buffer

Performance Analysis of Cache Memories 3 8 3

combination C, for replacement r u l e f a n d distribution [p~(/), P~(0 p~ (/)]. Denote this
fault rate by Ft(i).

Now we can rewrite eq. (2.3) as follows:

L k

F/(SA) = Y, Y, p~(t)qj(,), (2.7)
lffil j=l

where qj (l) is the probabili ty that page Xj(i) is missing from the cache in equihbrmm. The
probabili ty qj(i) is also the probabili ty that page Xj (t) is not in St(t) as t tends to infinity.
Equation (2.7) can now be written as

L k

Ft(SA) = E E D,pT(OqfiO. (2.8)
t--1 j - - I

k

Since ~ pj (0q/(0 IS, from eq. (2.3), the fault rate Fr(0 of G , we can write eq. (2.8) as
J--1

L

J~(SA) = Y. D, Fr(,). (2.9)

Thus to compute the fault rate for the Set Associative buffer, we would compute Fl(t),
the fault rate contribution by combination C,, using King's results, weight it by D,, and
sum the product over all the combinations C,. This result also shows that the Set Associative
buffer is composed of Fully Associative buffers.

It is easy to verify that eq (2.9) reduces to the corresponding eq. (2.3) for the Fully
Associative buffer when we let s = m.

SECTOR BUFFER. If we ignore the structure of sectors and treat them as units of
transfer of information between the buffer and the backing store, there would be no
difference between a Fully Associative buffer and a Sector buffer. The resulting organi-
zation is called the Equivalent Fully Associative buffer of the Sector buffer.

Suppose we have N blocks in the backing store organized into n sectors Xi, X2 Xn,
with b blocks/sector, b = N/n. Denote the blocks in sector X, by Yl(i), Yz(i) Yb(t). We
assume that the reference sequence rl r, consists of references to blocks and that
Pr[rt = Y,(j')] = pit(j). Let the buffer have m sectors with b blocks In each sector.

f t (S) = Y. pf(i)q~(t), (2.10)
t = l J = l

where q~(l) is the probabmhty of Xj(z) being absent from the buffer m eqmhbrmm.
The probabili ty of reference to a sector X, is given by

b

P, = E PT(0 (2.11)
3~1

The event "block Xj(i) is not in the buffer" can be seen to be the union of two disjoint
events: 0) "The sector X, is not in the buffer," and (fi) "the sector X, is in the buffer and
block X~(i) is not in the buffer." Denote the probabilities of these events by q, and q+(t),
respectively. So

qj(t) = q, + qf(i). (2.12)

Substituting eq. (2.12) in eq. (2.10) and using eq. (2.11), we obtain

Ft(S) = Y. p,q, + p;(i)q~'(t) (2 13)
t ~ l t = l J = l

We can compute the Pr[the sector X, is in the buffer and block Xj(t) IS not], I.e. qj+(l),
as follows:

qJ+(0 = Pr[sector X, in buffer] Pr[X~(0 not m bufferlX, m buffer], (2.14)

384

Pr[X, in buffer] = 1 - q ,

G U R U R A J S R A O

Pr[X~(0 not in bufferlX, in buffer] = 1 -p~(i) /p , .

Using these in eq. (2.14), we obtain

qf(i) = (1 - e,)(l -p f (i) /p ,) . (2.15)

Equations (2.15) and (2.13) yield the fault rate for the Sector buffer as

Ff(S) = ~ p,q, + ~ pf(/)(l - q,)(l -Pf(O/P,). (2.16)
t=l ~=1 J~ l

By recognizing the first term as the fault rate of the Equivalent Fully Associative buffer
(EFA) under replacement rule f , we can write eq. (2 16) as

Ft(S) = Fi(EFA) + ~ p~(i)(l - q,)(l -p~(i)/p,). (2 17)
t= l J= l

Equation (2.16) relates the fault rate of the Sector buffer and the fault rate of the
Equivalent Fully Associative buffer. We already know how to compute Fr(EFA) using
King's results. To compute q, for all the sectors, we resort to King's formulas for the
equilibrium distribution for the states of the Equivalent Fully Associative buffer. By
summing up the probabilities for the states not containing X,, we obtain q,.

3. A Few General Comparisons

We make two types of general comparisons here: (i) the behavior of two replacement
algorithms across the whole range of the buffers, and (ii) the behavior of two specific types
of buffers.

(i) The first general comparison concerns the behavior of the buffers under FIFO and
RR: It is possible to show that for the IRM, the Fully Associative buffer has identical
performances (in steady state) for these two rules [13]. Next we show that this result holds
for all the other types of buffers. A brief intuitive explanation of this result for the Fully
Associative buffer follows.

To show that this result holds for the Set Associative buffer, we make use of the result
established earlier showing that it consists of independent Fully Associative buffers and
backing store combinations C,. In eq. (2.9) D,, the sum of the reference probabilities for
pages mapping on to set t, is independent of the replacement rule, while Gelenbe's result
shows that the combination C, has the same fault rate for RR and FIFO, i.e FRR(i) =
F~lro(i). Thus Fvwo(SA) -- Fm~(SA).

To show that the result can be extended to the Sector buffer, we first note that it is
possible to show that [13] Pvwo(S) = PmffS) From Gelenbe's proof for the Fully
Associative buffer, the Equivalent Fully Associative buffer has the same performance
under RR and FIFO, 1.e. Felro(EFA) = FR~(EFA) in eq. (2.17).

The probability of not finding sector X, in the equilibrium state of the Equivalent Fully
Associative buffer q, is obtained by adding the equilibrium probabilities of all the states
(of the Eqmvalent Fully Associative buffer) not containing X,. Since each of these states
has the same equilibrium probability under RR and FIFO, q, is the same for RR and
FIFO for a given sector X,. Thus F~i~o(S) = FmffS).

This result holds for the Direct Mapping buffer also because its fault rate is insensitive
to the two algorithms. Thus all the buffers have the same fault rate for FIFO and RR.

Every time a replacement rule is used to replace a page, it is implicitly trying to assess
the future demands of the program. Such an assessment is possible because programs
exhibit a behavior called "locality" [7, 22, 8, 25, 19]. Intuitively we would expect a
replacement rule that makes use of the knowledge of program behavior to choose a page
for replacement, to be superior to one that does not. The only information about the
locality of a program present in the IRM is in the distribution of page reference
probabihtles. So we would expect that a good replacement rule would appropriately treat
a program's pages nonuniformly depending on their reference probabilities. LRU is an

Performance Analysts o f Cache Memories 3 8 5

example of such a replacement rule. For the Fully Assoclatwe buffer, it keeps the state
reformation in a stack, with the top of the stack containing the most recently used page
and the bottom containing the least recently referenced page When a page is referenced,
it is brought to the top of the stack and therefore gets a "new lease on Its life in the buffer."
For the Independent Reference model, a good algortthm ts one that trtes to keep the most
frequently used pages as long as possible in the buffer because that would tend to mimmize
the total number of faults. This is done by LRU because a page with a high probabdlty of
reference tends to be referenced more often when in the buffer and gets pulled to the top
of the stack, thereby prolonging its stay in the buffer.

On the other hand, F I F O does not use any reformation about the page when making a
decision to replace the page: F IFO uses a queue to maintain the state of the buffer with the
page at the head of the queue to be replaced on a fault, whale the page brought m on a
fault xs put in the tall position. At the end o f m page faults (m is the size of the buffer), the
page m the tail position would be at the head of the queue and would be replaced at the
next fault lrrespectwe of how often the page was referenced during the stay in the buffer.

This leads us to expect that F I F O performs as well as RR, because not using any
information about the pages m the buffer for the selection of a page for replacement is
equivalent to replacing a page at random. This equality m turn leads us to suspect that the
changes m performance brought about by buffer replacement algorithms are small. Later
it wall be shown that this is indeed so

(ii) Capabilities of the Direct Mapping buffer. The Direct Mapping buffer is a simple
and inexpensively organized buffer, and it does not have the overhead of the record
keeping associated with a replacement rule. A previous simulation study [5] has shown
that simple orgamzations using Direct Mapping buffers can be cost effective on minicom-
puters. The results derived here lend analyucal support to that viewpoint.

Let G, = (X,(i), X2(0 Xh(0) be the set of pages that can be m page frame i Since
a reference to any page m G, currently not in the buffer causes a fault, tt is not difficult to
see that the relatwe magmtudes of the probabihtles of reference to these pages is important
m determining the fault rate Thus we can see that the performance is dependent on the
arrangement (mapping) of pages m the backing store. A way to quantify this arrangement
ts constdered in Sectton 4 Here we are interested m showing that the Direct Mapping
buffer, by taking advantage of this sensitivity, can perform as well as the Ful ly Associative
LRU buffer. This is sigmficant because the Fully Associative buffer is considered to have
a good performance whde the Direct Mapping buffer has no cost for page replacement.

First we prove the following
THEOREM 3.1 For any dtstrlbutlon [p,, p2 p,,], there exist arrangements o f pages m

the backing store o f a Direct Mapping buffer, for which F(DM) _< 2B, where pl --> pz -->
>--pn and B = ~=m+,p,

PROOF. Let G, = (Xl(i), X2(i) X,(i)), l = !, 2 m, be the set of pages which can
be m page frame t. Let page Xj(t) have probabdlty of referencepj(t) f o r j = l, 2 k, and
i = 1, 2 m. Without loss of generahty, we can assume that

pj(t) ~.p2(t)_> _>pk(t), t = 1, 2 m

Consider an incompletely specified arrangement for which p,(i) = p~ for t = 1, 2 m,
Le. a mapping which maps the m most probable pages onto different page frames.

Let E, = ~k.2pl(i) for i = 1, 2 m. Then m the notation of Section 2,

D, = p, + El,

and from eq. (2.6), we have

r n

F (D M) < ~ (P,(O + E,) 2 - p 2 (0
,=l p , (l) + E,

(3.1)

(3.2)

386 G U R U R A J S R A O

2p~(i)E, + E~ z
= ~ ' , (3 . 3)

,-1 p l (i) + El

SO that

m
F (D M) - ~ E, _< ~ P1(i)EL

,-1 ,~1 p~O + E,
m

_< ~ E,., (3.4)

m E Since ~,=1 , = B, we get the desired result. Q.E.D.
We will call the arrangements referred to above "near-optimal" arrangements.
Theorem 3.1 can be used m two ways to argue for the capabilities of the near-opumal

Direct Mapping buffer:
(a) For the Ful ly Associative LRU cache, a can be shown that [12]

[m (l - B)] (3.5)
FLRu(FA)--<B l + l + (m - l)B '

with B as defined before.
There exist distributions (for example, pl = p2 = = pm and B small) for which the

above LRU bound is very close to the actual LRU fault rate. That Is, there exist
distributions for which the LRU fault rate is very close to B(l + m). Comparing this with
the upper bound on the fault rate for the near-optimal Direct Mapping buffer of 2B (which
holds for any distribution), we can conclude that there are distributions and buffer sizes
for which the Direct Mapping buffer will perform better than the Fully Associative LRU
cache.

(b) The second argument concerns the "effectweness" of an orgamzatlon and its
replacement rule. I f the probabilities [p~,p2 pn] are known in advance (again assuming
that the pages are ranked in the decreasing order of theu probabilities of reference), then
the theoretically optimal procedure is to place the m most probable pages m the buffer
always and service references to pages not in the buffer directly from the backing store
(Since in practice all the requests are to be serviced from the cache, this is only a theoretical
procedure.) This has a hmamg fault rate of Fo = B.

The worst performance of an organization relative to this optimal procedure is an
indication of the "effectiveness" of the orgamzatmn. From Theorem 3. l and the inequality
in (3.5), we see that the worst behavior of the near-optimal Direct Mapping buffer relatwe
to the optimal procedure is bound by a constant (for any distribution and cache size),
while for the Ful ly Associative LRU cache it is dependent on the size of the buffer.

F rom these two arguments, we can conclude the following:
There are distributmns for which the performance of the near-optimal Direct Mapping

buffer is comparable to that of the Fully Associative LRU cache.
Figures 6 and 7 show the performances of these two organizations for two distributions

of the page reference probabilities. The mapping used for the Direct Mapping buffer is
(for Figure 6) as follows:

1 2 3 m

m + l m+2 m+3 2m
2m+ ! 2m+2 2m+3 3m

The numbers in column i indicate the indices of the pages which map onto page frame t.
For Figure 7 it is

! 2 3 m
2m 2m- 1 2 m - 2 m+ I

2m+ l 2m+2 2m+3 3m

Performance Analysis o f Cache Memories

0 . 2 5

0.20

I -
< 0 . 1 5
(Z:

I -
.J

< 0.10

- ' I I I ' " I

"¶ F U L L Y A S S O C I A T I V E LRU '¢
"- N E A R O P T I M A L D M -

~q

|

e e e o

Flo 6

3 8 7

i . _

~ . .
0 . 0 5 "" -

,] , , . , I I . , , , I , , I .
2 3, 4 5 6

M E M O R Y S I Z E

Near optimal Direct Mapping buffer versus Fully Assocmtwe buffer (empirical distribution)

W
I-

I -
-1

tl.

F I G 7

0 . 4

0.3 ,

0 . 2

0.1

I I ' ' I I

F U L L Y A S S O C I A T I V E L R U . o o o *

'~ N E A R O P T I M A L D M ,?

R
R

R

"o

0 . 0 I , I
2 3

"o

-o.

, , , I , , , I I
4 5 6

M E M O R Y S I Z E
Near optimal Direct Mapping buffer versus Fully Assooat~ve buffer (geometric d,stnbutlon)

4. Distribution-Free Bounds on Fault Rate and Their Use

IDEA OF A DISTRIBUTION-FREE RESULT. AS indicated before, the purpose of an
analysis such as this is to understand the interaction between the performance of a buffer
and the factors which affect it. These parameters are: the size of the buffer, the type of
mapping, the program behavior (i.e. the distribution of the page reference probabilities),
and the replacement rule. The results m Section 2 showed how the limiting fault rate can
be computed for a given type of mapping, buffer size, and probability distribution. But the
dependence of the performance on a given parameter Is not exphcit enough. For example,
the effect of changing the size of the buffer, while keeping the other parameters fixed,
cannot be assessed immediately without computing the fault rates for both the sizes.

388 G U R U R A J S R A O

In addition to knowing the fault rates for the given parameters, often we would hke to
know the size of the buffer needed to satisfy a given performance level for a "given
program behavior." Again the expressions for the fault rates do not permit us to compute
this conveniently because of the implicit nature of the way the effect of these parameters
ts reflected in those expressions.

To explicitly see the effect of these parameters, a distribution-free result replaces the
individual behavior of infrequently referenced pages by their collective behavior. Since the
contribution of these pages to the fault rate is not significant, the resulting loss m accuracy
is shght. The quantity B defined m Section 3 is an example of a characterization of such
collective behavior. Given such collective behavior, we obtain upper bounds on the fault
rate that are distribution-free m the other pages. Inequality (3.5) is an example of such a
bound.

Later in this section we present two examples that illustrate how we can exploit the
exphot interaction among the parameters. Besides this use, distribuUon-free upper bounds
provide the following uses:

I. They give an idea of the worst performance of the combination of the orgamzatlon
and the replacement rule.

2. They are very easdy computed. For the Fully Associative LRU buffer with n pages
in the backing store and m page frames in the cache, the complexity of the expression for
the fault rate is of the order of (,~)m! (this is the size of the state space). It is possible to
reduce this complexity somewhat [6, 18], but still even for fairly small values of m and n,
this computation ts very expensive, while the &stnbutlon-free results can be computed on
a hand calculator

D I S T R I B U T I O N - F R E E B O U N D S F O R T H E B U F F E R S . First we find the distribution-free
upper bound for the Set Associative buffer and then derive the bound for the Direct
Mapping buffer from that.

The characterization B of the collective behavior of the "tall" pages mentioned above is
not suitable for the Set Associative buffer because it does not reflect the arrangement of
pages m the backing store, while the fault rate depends on it (B is useful m representing
the behavior of the tail pages of the Ful ly Associative buffer because the precise mapping
of the pages onto page frames does not affect the latter's performance.) So we need a way
of quantifying the effect of arranging pages m the backing store of the Set Associative
buffer. To do this we proceed as follows.

Let Xi(t), X2(i) Xk(0 be the pages m G, (the group of pages which can be in the ith
set in the buffer). Again, without loss of generality, we can assume that the pages in G~ are
numbered in decreasing order of their p robabday of reference so that p l (i) _ > / ~ 2 (/) ~ . .

_> pk(i), i = 1, 2 L. Now define the " tad" probabili ty E, of G, as

k

E l = ~ p:(t), t = 1,2 L, (4.1)
J ~ + l

and the tail probabil i ty t of the d~stnbution as

L

t = Z E,. (4.2)
t z l

Then Theorem 4.1 gives the &stnbution-free upper bound on the fault rate for the Set
Assoctative buffer using LRU.

THEOREM 4.1. FZRU(SA) _~ st(l - t) / (l + (s - l) t) + t for any dtstributton of page
reference probabthties and any arrangement o f pages m the backmg store.

PROOF. As shown m Section 2, we can write the expression for the fault rate as

L k

FLRu(SA) = ~ ~ p~(i)qj(i), (4.3)
t~l J~ l

where qj(i) is the probabdlty of not finding X~(t) in the buffer in the steady state. Next we

Performance Analysis of Cache Memories 3 8 9

describe how to compute an upper bound on q:(t) and then show how the resulting
expression can be maximized.

The method used m computing an upper bound on q:(t) is similar to the one used by
Franaszek and Wagner [12] in arriving at the distribution-free upper bound on the fault
rate of the Fully Associanve LRU cache (inequality 3.5) The necessary condition for Xj(l)
to be absent from the buffer is that s dtstinct page references have occurred in C, since the
last reference to Xj(/). Since set t has s pages including Xj(/) this means that a page
X~(/), where r > s, has been referenced since the last reference to page Xj(/). This in turn
means that in the steady state LRU stack for C~ a page X~(i), r > s, is above Xj(/).

The probabil i ty of this event can be found as follows [24]:

b(r, i) = Pr[page X~(i) is ahead of page Xj(t) in s tack/]

= (p~(i) /O,)/(p~(t) /O, + p:(t)/O~)

= p~(t)/(p~(i) + p:(i)). (4.4)

From this we get

Pr[a page Xr(i), r > S, Is ahead of Xj(l) in the LRU stack for combination C,]

= E,/(p:(t) + E,). (4.5)

Thus

q:(t) <_ E,/(p:(t) + E,). (4.6)

From (4.3) and (4.6), we can write

FLRu(SA) _< p:(OE,/(p:(i) + E,) + E~ (4.7)
I = l J =

= 2 p:(z)E,/(p:(i) + E,) + t. (4.8)
I ~ l J = l

Now we maximize the right-hand side of (4.8) by writing:

Maximize F(p l (l) p~(l) pl(L) p~(L)) = ~ ~ p:(i)E,/(p:(i) + E,) (4.9)

I

such tha tp : (i) > O, j = 1, 2 s and i = 1, 2 L, and

pat) = I - t (4.10)
~ 1 J = l

We can write this as a nonlinear optimization problem.

Maximize F(p~(l) ps (l) p~(L) ps(L)) = ~ ~ p~(OE,/(pj(i) + E,)

I

tR1 jE1

such that p:(i) > O, j = 1, 2 s and i = 1, 2 L, and

g~= Y,p:(i)<_ l - t = b ~ , g ~ = - ~ p : (t) < _ t - 1 =bz.
t=l J=l t = l J=l

It is easy to show that [21] the objective function in (4.9) is concave and the constraint
functions (which (4.10) gives rise to) are convex, being linear functions. Thus, Kuhn-
Tucker conditions [15] are necessary and sufficient conditions for opUmahty and they state
that

(pl(1) p~(1) p l (L) p , (L)) maximizes F

if and only if we can find numbers u~ and ue such that
(1) iff i*(j) > 0, then

390

2

OF/Op,(j) - ~ uk(Ogk/Op,(j)) = 0
k - - 1

a t p , (j) = p~*(j), for i -- 1, 2 s, j = 1, 2 L;
(2) if#,*(j) = O, then

2

OF/Op,(j) -- ~ Uk(Ogk/Op,(J)) --< 0
k=l

a t p , (j) - p , (j) , f o r i = 1,2, . , s , j = 1,2 L;
(3) i f u, > 0 then

G U R U R A J S R A O

This reqmres

Thus

p l (i) = p 2 (i) = . = p ~ (i) = p (t) (say), i = 1, 2 L. (4.12)

E , / (p (i) + E,) = u for t = 1, 2 L. (4.13)

But from (4.12) and (4.10),

so that

Thus from (4.16) and (4.14),

F r o m (4 13), we obta in

u = E, p (t) + E, = t p (i) + t

L

Y. sp(i) = 1 - t (4 15)
zzl

L

p (t) = (1 - t) / s . (4 16)

u = s t / [l + (s - l)t]. (4.17)

Final ly, we subsmute eqs. (4.11), (4.17), and (4.12) m eq. (4.8) to ob ta in

FLrtu(SA) - 2 s t p (t) / [l + (s - l) t] + t (4.18)
t~l y=l

L

= Y, s2tp(0/[l + (s - t)tl + t. (4.19)
t z l

Using eq. (4.15) in eq. (4.19), we obta in

FLRu(SA) --< st(1 -- t) / [l + (s -- l) t] + t, (4.20)

E , / (p A O + E ,) = u for j = l , 2 s a n d a n y l (411)

(4.14)

g,(pl(1) p~(1) e l (L) p ~ (L)) - b, = 0

- * . . . a t p k (j) = p k (j) , k = 1,2 s , j = 1,2, ,L , t = 1,2;
(4) tf u, = 0, then

g , O g a (l) p s (l) e l (L) p , (L)) - b, _< 0

a tph(j) --/~k=* ~J' "), k = 1, 2, , s, j = 1, 2, , L, i = 1, 2,
(5) p * (j) _> O, t = 1, 2 s, j = 1, 2 L ,

(6) u,_>0, i = 1,2.
These condit ions are satisfied by choosing ul = u 2 and u2 = 0. Condi t ion (1) reqmres u

to satisfy

Performance Analysts of Cache Memories 3 91

which completes the proof. Q E D.
We have already seen that the Set Associative buffer IS a general organization and that

by setting the size of a set to one page frame, we get the Direct Mapping buffer, and setting
s = m yields the Fully Assoclatwe buffer. This is reflected in the above analysis. Setting
s = m m eq. (4.20) yields the distribuhon-free bound m (3.5) for the Fully Associative
LRU cache, because when s = m, we have t = B.

By setting s = 1 m eq. (4.20), we obtain
THEOREM 4.2. For the Direct Mapping buffer, F(DM) _< 2t - t2 for any distrlbutwn of

the page reference probabgity distribution and any arrangement of pages in the backing store
For a near-optimal arrangement, p~(i) = p, for l = 1, 2, .. , m, and hence the tad

probability

t= E,= ~ p , = B .
/ = l t = m + l

So, for a near-optimal arrangement, Theorem 4.1 yields

F(DM) _< 2B - B 2 (4.21)

This is a closer upper bound on F(DM) than the one given by Theorem 3.1.
Figures 8 and 9 illustrate the closeness of these upper bounds to the fault rates given by

the expression in Section 2. These figures also show the sizable effect the arrangement can
have on the fault rate. In both, the increase in performance gained by increasing the buffer
size from 2 to 3 is more than offset by the drop in performance due to a change from a
near-optimal arrangement to a nonopt~mal arrangement

DISTRIBUTION-FREE RESULTS FOR THE SECTOR BUFFER. N e x t w e obtain an upper
bound on the difference between the performances of the Sector buffer and its Equivalent
Fully Associative buffer

From eq. (2.17), we have

n b

Fi(S) = F/(EFA) + E (1 - q,) E pJ-(,)(l -p~-(i)/p,).
z=l J=l

By calculating the second derivative of p~(i)(l -p~(i) /p ,) with respect to p~(i), we can

FIG 8

' ' l I I I I I ' ' .
0 . 4

A UPPER BOUND ON FAULT RATE
/ ~ ~ EXACT FAULT RATE

0.5
i.iJ

I - ~: 0"2~
_1

a. 0 . I

0 . 0 -
, I , , , . I I I I I .

2 4 6 8 I0 12
MEMORY SIZE

Upper bound on fault rate and actual fault rate for the Direct Mapping buffer (empmcal distnbuuon)

3 9 2 GURURAJ S RAO

0 . 6 ' ' I I I I f " ' ' ' I ' _ '

A " U P P E R B O U N D O N F A U L T R A T E

- - - , / , " ~ \ E X A C T F A U L T R A T E

~ 0 . 2
IlL

0 . 0 - -
, I , , , , 1 o , , , I I I 1 .

2 4 6 8 I 0 12
M E M O R Y S I Z E

FIG 9 Upper bound on fault rate and actual fault rate for the Direct Mapping buffer (geometric dlstnbutlon)

show that it is a concave function, so we maximize the right-hand side of the above
equation by lettingp~-(t) = = p ~ (t) = p , / b , t = 1, 2 n. Thzs yields

Ft(S) --< Ft(EFA) + ~ (1 - q,)p,(l - 1 / b) .
tml

This equation can be written as

Ft(S) _< 1 - (l / b) [l - Fr(EFA)],

which can be used to obtain distribution-free upper bounds for the Sector buffer.
USE OF THESE BOUNDS FOR THE DIRECT MAPPING BUFFER. We have seen that the

dlstnbutzon-free upper bounds for the Direct Mapping buffer are very close to the actual
fault rates for "practical" types of distributions (Le geometric and empirical). Further,
these bounds (which we can look upon here as approximations to actual fault rates) reflect
the effect of the size of the buffer more explicitly than the expression for the actual fault
rate. This property can be used to solve the "inverse" problem of computing the size of the
buffer to achieve a given hit ratio (l - fault rate) H for a given distribution.

From Theorem 4.2, we have F(DM) _< 2t - t 2. This can be written as H = l - F(DM)
> _ f l - 2 t + 1 = (1 - 0 2 , so tha t~ /H~_ l - t o T

t _> 1 - x/H. (4.22)

This inequality can be interpreted as follows. With reference to Figure 10, if the tall
probablhty for a gwen mapping and reference probability distribution is t then the hit rate
for the corresponding parameters exceeds H. Alternatively, for the hit ratio to exceed H,
the tail probability need not be smaller than t, Le. to guarantee a hit ratio H, the tail
probability need never be smaller than 1 - x/H.

For a near-optimal arrangement, it is very easy to obtain a close upper bound on the
size of the cache memory required to obtain a hit ratio H, using this argument. For a near-
optimal arrangement, t = B, as described in Section 3. So, all we need to do is to arrange
the pages in decreasing order according to their probability of reference and starting at the
tail end, accumulate the probabilities until the sum exceeds I - x/H. The number of pages
m0, whose probabilities are not included in the sum, is the upper bound on the size of the
buffer required. For any other specified arrangement, we can obtain the memory size

Performance A nalysis o f Cache Memories 393

t
I

I
0 H I

FIG 10 Illustration oft_> I - x / H

required ma by first getting m0 and then using this as the starting point of an iteratwe
scheme which checks, for successively higher sizes of the buffer, whether the value of t
exceeds 1 - x /H, for the specified arrangement.

RELATIVE EFFECTS OF RESTRUCTURING AND BUFFER REPLACEMENT ON PERFOR-

MANCE. Next we wish to show that the effect of buffer replacement algorithms on
performance is secondary when compared to the effect of the mapping on performance.
We show this by comparing the maximum obtainable difference m performance between
L R U - - o n e of the best reahzable a lgor i thms--and R R - - o n e of the worst realizable
algori thms--with the maximum obtainable difference in performance for the best and
worst mappings. Among the Fully Associative, Set Associative, and Direct Mapping
buffers, the Ful ly Associative buffer is the most sensmve to the replacement algorithm
(and the least sensitive to mapping) whde the Direct Mapping buffer is the most sensitive
to mapping (and the least sensitwe to replacement algorithm). Thus we compare the
difference in performance between LRU and RR on the Fully Associative buffer with that
for the best and worst mapping on the Direct Mapping buffer.

Since the exact mappings for the Direct Mapping buffer that produce the lowest and
highest fault rates are not known, we prove our point by using the distribution-free upper
bound (which we again consider as an approximation to the fault rate) derived m Theorem
4.2 as follows The mapping that produces the smallest value for t is the near-optimal
mapping as defined earlier. Correspondingly, we call the mapping that produces the
highest value for t near-"worst." If the reference probablhtles pl, p2 p,, are m decreasing
order of magmtude, st Is not difficult to see that the following mapping produces the largest
value for t. Map k = n/m pages starting at page) 6 where j = (i - 1)k + 1 onto page-frame
1.

Table I compares the difference in calculated, exact performance between LRU and RR
for the Fully Assoclatwe buffer with that for near-optimal and near-worst mappings for
the D~rect Mapping buffer, for an empirical distribuuon It clearly shows that the potential
of the mapping to cause a large change in performance Is much greater than that due to
buffer replacement. Table I also shows that the same conclusion would have been reached
ff we had considered the approximation to fault rate of the Direct Mapping buffer instead
of the actual fault rate.

5. Conclustons

We have assumed a reasonable, tractable model of program behavior and tried to
understand the relaUon between the factors affecting the performance of different buffer

394 GURURAJ S RAO

TABLE 1

(a) Calculated exact performance for the Fully Associative buffer for empirical distribution"
m = 2 3 4 5 6

0) RR 0 2808 0 1866 0 1315 0 0953 0 045
(u) LRU 0 2408 0 1416 0.0931 0.0645 0 025

(b) Calculated exact performance for the Direct Mapping buffer for empirical dlstnbuuon
m ~ 2 3 4 6

(0 Near-optimal 0 2348 0 1416 0 0941 0 0437
(n) Near-worst 0,4558 0 4293 0 3962 0 321 I

(c) The ratios of the change produced m (b) to the change produced m (a)
m= 2 3 4 6

RaUo [(b-n) - (b-0]/l(a-0 - (a-n)] 4 4 5 8 7 4 53 !
(d) Calculated upper bound on performance for the Direct Mapping buffer for empirical distribution

m= 2 3 4 6

0) Near-optimal 0 2621 0 1661 0 1120 0 05566
(i0 Near-worst 0 4933 0 4734 0 4459 0 3743

organizations. Toward this end we first showed how the fault rates for these buffers can be
calculated and then showed how these expressions can be simplified in detai l wi thout
losing much accuracy to obtain distr ibution-free upper bounds on their performance. We
der ived such bounds for the Direct Mapping buffer and the Set Associative L R U buffer,
Fo r the Sector buffer this bound was der ived in terms o f the upper bound on its Equiva len t
Ful ly Associative buffer 's performance. We showed how these bounds for the Direct
Mapping buffer can be used to compute a close upper bound on the amoun t o f buffer
m e m o r y needed to guarantee a given level o f performance.

Further , we showed that buffer replacement has a secondary effect on per formance
compared to res t ructunng by first showing that F I F O and R R yield identical performances
for all the buffers and then showing that the variat ion m per formance between the near-
best and near-worst mappings on the Direct Mapping buffer was much greater than that
between the "wors t" realizable and "best" real izable algori thms for the Ful ly Associat ive
buffer.

These results are only as valid as the mode l is in captur ing the programs ' behavior. A
feature o f the Independen t Reference model is that it predicts relat ive per formance
accurately [3]. The eqmvalence o f the fault rates o f the buffers for F I F O and RR, proved
here, has been observed [4]. The result that predicts the near -opt imal Direct Mapping
buffer to be as capable as the Ful ly Associative L R U buffer shows that it is possible to
restructure programs to take advantage o f the hardware organizat ion o f the system. This
is an extension o f the not ion introduced by Ferrar i [11] to tailor restructuring algori thms
to suit the m e m o r y management policy. This IS in contrast to the me thod o f restructuring
to improve the locali ty o f the program [16, 14, 10]. A few pre l iminary at tempts to
restructure programs to suit the hardware organizat ion are reported in [2 l].

REFERENCES

i ACEVEDO, M F A probabdlstic study of two-level storage hierarchies M S Th, U of Texas, Austin, Tex,
Dec 1972.

2 AVEN, O I, ET AL Some results on distribution-free analysis of pagmg algorithms IEEE Trans Comptrs
C-25, 7 (July 1976), 737-745

3 BASKETT, F, AND RAFll, A The A0 reversion model of program pagmg behavior Tech Rep #STAN-CS-
76-579, Dept Comptr Sci, Stanford U, Stanford, Cahf. Oct 1976

4 BELADY, L A A study of replacement algorithms for virtual storage computers IBM Syst J..5. 2 (1960),
78-101

5 BELL, J , CASASENT, D, AND BELL, C G An mvestlgaUon of alternative cache organizations 1EEE Tram
Comptrs. C-23, 4 (April 1974), 346-35 !

6 BURVILLE, P J, AND KINGMAN, J F C On a model for storage and search J Appl Probablhty 10 (1973l,
697-70 !

7 COFFMAN, E G, AND DENNING, P J Operating System Theory Prentice-Hall, Englewood Chffs, N J, 1973

Performance Analysis o f Cache Memor ie s 3 9 5

8 COFFMAN. E G , AND RVAN, T A A study of storage partitioning using a mathematical model of locahty
Comm ACM 15, 3 (March 1972), 185-190

9 CONTI, C J Concepts for buffer storage Comptr Group News 2, 8 (March 1969), 9-13
10 FERRARt, D Improving locality by critical working sets Comm A CM 17, 11 (Nov 1974), 614-620
11 FERRAgl, D Improving program locality by strategy-oriented restructuring Information Processing, North-

Holland Pub Co, Amsterdam, 1974, pp 266-270
12 FRANASZEK, P A, AND WAGNER, T J Some distribution-free aspects of paging algorithm performance. J

ACM21, 1 (Jan 1974), 31-39
13 GELENBE, E A unified approach to the evaluation of a class of replacement algorithms 1EEE Trans

Comptrs C-22, 6 (June 1973), 611-618
14 HATFmLD, D J , AND GERALD, J Program restructuring for virtual memory IBM Syst J 10, 3 (1971),

168-192
15 HILLtER, F S, aND LIEBERMAN, G J lntroductmn to Operations Research Holden-Day, San Francisco,

1972
16 JoHNson, J W Program restructurmg for virtual memory systems MAC TR-148. M 1 T , Cambridge, Mass,

March 1975
17 KIN¢,, W F Analysis of paging algorithms Proc IFIP Congress, L.lublanjana, Yugoslavia, Aug 1971,

485-490
18 LENFANT, J The delay network model of program behaviour In Computer Archuecture and Networks, E

Gelenbe and R Mahl, Eds, North-Holland Pub Co, Amsterdam, 1974, pp 299-329
19 MADNICK, S E Storage hierarchy systems MAC TR-107, M 1 T , Cambridge, Mass. 1972
20 MADNICK, S E, AND DONOVAN, J J Operating Systems McGraw-Hill, New York, 1974
21 RAO, G S Performance analysts of cache memories Tech Rep No 110, SEL 76-019, Digital Systems Lab,

Depts EE and Comptr Sct, Stanford U., Stanford, Cahf , 1975
22 RAU, B R The stack working set A characterlzaUon of spatial locality Tech Rep. No 95, Digital Systems

Lab, Stanford U , Stanford, Cahf , July 1975
23 RAU, B R, AND ROSSMANN, G E Cache based computer systems A tutorial Tech Rep, Palyn Assocs,

San Jose, Cahf, March 1974
24 RIVEST, R L On self-organizing sequential search heuristics Res Rep 61, IRIA Laborla, Le Chesnay,

France, March 1974
25 SHEMER, J E, AND SHIPPEY, G A StaUsUcal analysis of paged and segmented computer systems 1EEE

Trans Electron Comptrs EC-15, 6 (Dec 1966), 855-863

RECEIVED JULY 1976, REVISED SEPTEMBER 1977

Journal of the AssoclaUon for Computm 8 Machinery, Vol 25, No 3, July 1978

