
September 22, 1999 1

The value of
merge join and hash join
in Microsoft SQL Server
and relational query processing

Goetz Graefe
Microsoft SQL Server



September 22, 1999 2

Why this study?
• Blasgen & Eswaran – 20 years ago

Merge join & (index) nested loops cover all
cases pretty well

• DeWitt, Sacco, others – 10-15 years ago
Hash join is great for large unsorted inputs

• Analytical studies, simulation, experiments



September 22, 1999 3

Success without merge/hash join
• Sybase & Microsoft SQL Server

Until recently used only nested loops
Successful for over 10 years!
Even used in data warehousing!

• Focus on OLTP
Sybase invented stored procedures
Microsoft leads SMP TPC-C efficiency

• Focus on canned reports
Perfectly possible with tuned index sets



September 22, 1999 4

Are the prior studies wrong?
• Small evaluation sets

Few tables, few queries

• Insufficient credit to index tuning
Fixed set of indexes

• This study:
Still limited yet non-trivial queries & tables
Indexes tuned using a “tuning wizard” tool

• Large set of possible indexes, integrated with query optimizer

• Next study
Indexes tuned specifically for available algorithms



September 22, 1999 5

SQL Server 7.0 query processor
• Nested loops with stored or temporary indexes
• Merge join & hash join (incl. hash teams)
• Index intersection, union, difference, & join
• Star joins: star indexes, cross-product, & semi-

join reduction
• Constraints exploited for selectivity estimation &

cost calculation & query simplification
• Parallelism on SMPs
• Content queries (“contains”, “near”, “about”)
• Optimized update plans (indexes, constraints)
• Heterogeneous & distributed queries



September 22, 1999 6

Relevant SQL Server tools
• Graphical show plan
• Profiler

Captures workloads & events (e.g., deadlocks)
Filters on application, database, user, operation,

elapsed time, etc.

• Index tuning wizard
Optimizes a workload captured with the profiler
Reconsider all indexes – only add indexes
Increase / decrease database size
Uses query optimizer to assess choices



September 22, 1999 7

Experimental setup
• TPC-D database

scale factor = 1 (1 GB raw data)

• Old & new TPC queries
22 queries total

• Flags to disable
Index join, merge join, hash join, hash teams
Stream aggregation, hash aggregation

• Indexes in simple database design
Primary keys, foreign keys, dates



September 22, 1999 8

Simple indexes

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Queries & Algorithms

T
im

e 
[%

 o
f e

n
tir

e 
N

L
 r
u
n
]

NL

MJ

HJ

All

Performance with simple indexes



September 22, 1999 9

Performance with simple indexes
• NL=MJ >> HJ=All: #1, #15

Hashing improves performance
Aggregation, not join, make the difference
Early aggregation missing in sort code

• NL=MJ=HJ=All: #2, #13, #16, #17
No really meaningful difference
Indexes are sufficient to select & retrieve rows

• NL > MJ > HJ=All: #3, #5, #7, #8, #9, #11
• NL >> MJ=HJ=All: #4, #14, #19

Need some method for large unindexed inputs



September 22, 1999 10

Workload performance

Workload performance

0

10

20

30

40

50

60

70

80

90

100

Entire workload

T
im

e 
[%

 o
f N

L
 r
u
n
]

NL

MJ

HJ

All



September 22, 1999 11

Workload performance
• Only NLJ is not competitive

Due to simplistic index design

• Hash-based query processor performs best
• NLJ + MJ are very competitive

40% difference to full QP with hash join
That’s 9 month of hardware improvements

• Presuming 2x CPU speed in 18 months

Poor indexing strongly favors hash join
Blasgen & Eswaran were right all along …?



September 22, 1999 12

Tuned index set
Tuning wizard retains primary keys indexes
• 7 indexes on line item, up to 7 columns

Total 26 columns indexes

• 4 indexes on orders, lots of redundant keys
• 2 indexes on part supply



September 22, 1999 13

Performance with tuned indexes
Tuned indexes

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Queries & Algorithms

T
im

e 
[%

 o
f 
N

L
 r
u
n
 o

n
 s

im
p
le

 in
d
ex

es
]

NL
MJ

HJ
All



September 22, 1999 14

Performance with tuned indexes
• Overall performance improvements

Except queries 6, 12, 19
Tuning wizard minimizes workload time

• Not the time for each individual query

• More queries in these patterns
NL > MJ=HJ=All
NL=MJ=HJ=All



September 22, 1999 15

Workload performance
Entire workload, tuned indexes

0

5

10

15

20

25

30

35

40

45

50

T
im

e 
[%

 o
f N

L
 r
u
n
 o

n
 s

im
p
le

 in
d
ex

es
]

NL

MJ

HJ

All



September 22, 1999 16

Workload performance
• All algorithm combinations are fast

Maximal difference 45 vs. 20, or 21 months

• Either MJ or HJ serve well
Having both adds 20% performance – 5 months



September 22, 1999 17

Conclusions
• Either indexing or merge / hash join
• Are hash join & merge join just an excuse

for poor (non-automatic) indexes?
• Next steps

Tune & analyze for specific algorithms
Analyze bitmap operations & star joins
Look for orders of magnitude – multiple years

• Pre-computed query result – indexed views
• Fully automatic indexing & tuning
• Caching data & query results on desktops



September 22, 1999 18

More information
• www.microsoft.com/sql
• Msdn.microsoft.com
• Technet.microsoft.com
• Research.microsoft.com


