
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 28, NO. 4, APRIL 2019 1705

Image Inpainting Using Nonlocal Texture
Matching and Nonlinear Filtering

Ding Ding , Sundaresh Ram , Member, IEEE, and Jeffrey J. Rodríguez , Senior Member, IEEE

Abstract— Nonlocal texture similarity and local intensity
smoothness are both essential for solving most image inpainting
problems. In this paper, we propose a novel image inpainting
algorithm that is capable of reproducing the underlying textural
details using a nonlocal texture measure and also smoothing pixel
intensity seamlessly in order to achieve natural-looking inpainted
images. For matching texture, we propose a Gaussian-weighted
nonlocal texture similarity measure to obtain multiple candidate
patches for each target patch. To compute the pixel intensity,
we apply the α-trimmed mean filter to the candidate patches to
inpaint the target patch pixel-by-pixel. The proposed algorithm is
compared with four current image inpainting algorithms under
different scenarios, including object removal, texture synthesis,
and error concealment. Experimental results show that the
proposed algorithm outperforms the existing algorithms when
inpainting large missing regions in images with texture and
geometric structures.

Index Terms— Exemplar-based image inpainting, nonlocal tex-
ture matching, texture synthesis, α-trimmed mean filter, object
removal.

I. INTRODUCTION

WHEN solving image inpainting problems, we often con-
sider two crucial factors in order to obtain good results:

consistency of intensity and consistency of texture. Consistent
intensity is needed when connecting lines or recovering edges
having similar intensity, whereas consistent texture is needed
when reconstructing large missing regions having texture
patterns. Many image inpainting algorithms can be classified
into two categories: diffusion-based inpainting and patch-
based inpainting. Diffusion-based inpainting performs well in
achieving consistent intensity, and patch-based inpainting is
effective in reconstructing textured regions. Some diffusion-
based inpainting methods [1]–[3] inpaint images by propa-
gating higher-order derivatives of local pixel intensity contin-
uously along the lines of equal intensity values (isophotes),
toward the interior of the missing region. Other diffusion-
based image inpainting methods [4]–[10] reconstruct images

Manuscript received August 17, 2017; revised February 7, 2018 and
October 24, 2018; accepted October 27, 2018. Date of publication
November 12, 2018; date of current version December 3, 2018. The
associate editor coordinating the review of this manuscript and approving
it for publication was Prof. Jean-Francois Aujol. (Corresponding author:
Sundaresh Ram.)

D. Ding and J. J. Rodríguez are with the Department of Electrical and
Computer Engineering, The University of Arizona, Tucson, AZ 85721 USA
(e-mail: dding@email.arizona.edu; jjrodrig@email.arizona.edu).

S. Ram is with the Department of Radiology, Center for Molecular Imaging,
and the Department of Biomedical Engineering, University of Michigan, Ann
Arbor, MI 48105 USA (e-mail: sundarer@umich.edu).

Digital Object Identifier 10.1109/TIP.2018.2880681

by minimizing a variational inpainting function governed by a
high-order partial differential equations (PDE) or systems of
PDEs. Such methods are referred to as total variational (TV)
inpainting. These methods ensure local intensity smoothness
and generally perform better than patch-based inpainting when
recovering geometric structures, but they can produce notice-
able blurring when inpainting a large missing region having
significant texture [11], [12].

Patch-based inpainting [13]–[32] is capable of recovering
large missing regions by searching the image source region
(the complement of the missing region within an image)
and copying a suitable texture into the missing region, patch
by patch. For example, Criminisi’s exemplar-based inpainting
method [13] first maximizes a priority function defined by the
direction of the isophote to find the next target patch to be
filled. Then, it selects the patch with the least mean-squared-
error (MSE) distance to the known pixels of the target patch,
and fills in the unknown pixels of the target patch with the
corresponding pixels from the selected patch. With the devel-
opment of image quality assessment indices, corresponding
inpainting methods have been developed, such as structural-
similarity image inpainting [33] and perceptually aware image
inpainting [34]. Patch-based inpainting methods can generate
disconnected lines or broken edges due to patch-wise copying.
Also, when the missing region is surrounded by complex
background (e.g., multiple textures meeting at the border of
the missing region), patch-based methods tend to generate
unsuitable textural patches [11], [12].

Recently, there have been efforts to combine diffusion-based
and patch-based inpainting methods [11], [12], [34], [35]. One
approach [11], [12], [35] first decomposes an image into two
images. One image captures the high frequency component of
the image, and the other captures the low-frequency compo-
nent of the image. Then the method inpaints the low-frequency
image with a diffusion-based method and the high-frequency
image with a patch-based method. After that, the inpainted
images are combined together to obtain the final inpainted
image. However, the performance improvement provided by
such methods is small compared to patch-based inpainting.
Moreover, the decomposition approach to inpainting is not
computationally efficient.

With the advent of the nonlocal means (NLM) filter,
it has been applied to image inpainting [36]–[38]. Wond and
Orchard [36] evaluate the MSE to choose multiple candidate
patches from the image source region and use a NLM filter
to aggregate all the candidate patches to fill the target patch.

1057-7149 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: George Tziritas. Downloaded on December 25,2020 at 20:31:18 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0859-8065
https://orcid.org/0000-0003-1828-9722
https://orcid.org/0000-0002-0590-7520
https://orcid.org/0000-0002-0590-7520

1706 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 28, NO. 4, APRIL 2019

Arias et al. [37] formulate image inpainting as an optimization
problem and minimize an energy function containing the
nonlocal mean of the similarity between patches from the
source region and the target patch. Buades et al. [38] proposed
a denoising algorithm that can also be applied to texture
reconstruction; the algorithm estimates each pixel’s value
using a NLM filter.

With recent advances in machine learning, convolutional
neural networks (CNN) have been explored to address the
image inpainting problem [32], [39]–[46]. Yang et al. [39]
propose a hybrid optimization approach, where they combine
a trained encoder-decoder structured CNN and a local neural
patch synthesizer learned from large scale datasets to inpaint
the missing regions within the input image. However, well
trained and generalized CNN models can still overfit when
presented with random images. Also, the inpainted results
are very sensitive to the choice of hyper-parameters of the
CNN [40]. In another approach, Ulyanov et al. [40] apply an
untrained deep CNN with random weight initialization and use
it to maximize the likelihood given an image to be inpainted.
Ulyanov et al. state that the specific structure of the untrained
deep CNN is more than enough to learn the image statistics
to help complete the missing regions accordingly.

Contributions

In this paper, we propose a new image inpainting algorithm
that uses a novel nonlocal texture similarity measure to select
several candidate patches for a given target patch, which are
then fused together using the α-trimmed mean filter to obtain
the inpainted results. The objective of the proposed algorithm
is to recover a large missing region surrounded by multiple
textural and structural regions. The proposed algorithm is
capable of reproducing the underlying textures and structures
of the large missing regions within an image simultaneously
and achieving natural-looking inpainted results. There are
several contributions of the proposed algorithm.

First, this work presents an exemplar-based inpainting
method using a new nonlocal texture similarity (NLTS) mea-
sure to match the target and candidate patches in the image
under the assumption that there are many local repetitive tex-
tures present within the image. Next, when choosing the next
target patch to be inpainted, the proposed algorithm selects
a patch centered on the contour surrounding the outer border
of the missing region, unlike other exemplar-based inpainting
algorithms. Also, the proposed algorithm chooses multiple
good candidate patches and combines them using the α-
trimmed mean filter to inpaint the target patch in comparison to
other exemplar-based inpainting algorithms which choose only
a single candidate patch. Furthermore, in our proposed iterative
framework, the information from the already inpainted patches
can be used towards inpainting other target patches as the
inpainted pixels are added to the source region, whereas other
inpainting algorithms use only the original pixel data.

The proposed algorithm is compared to several existing
image inpainting algorithms for different applications includ-
ing object removal, texture synthesis, and error concealment.
Both quantitative and qualitative results show that the proposed
method outperforms the other inpainting methods.

Fig. 1. Original image I with the missing region �, and the source region
�c. δ� ⊂ �c is the outer border of �. δ� is a single-pixel-wide contour
surrounding the outer border δ�. �p is a patch centered at the pixel p ∈ δ�,
and �q is a patch centered at pixel q such that �q ∩ � = ∅. −→n p is a unit

vector orthogonal to δ� at the center pixel p, and
−−→∇ Ip

⊥ is the isophote vector
at p (along the direction of equal intensity line that is the boundary between
the two gray regions, and orthogonal to the gradient vector).

II. METHOD

We propose an image inpainting algorithm that uses non-
local texture similarity matching and pixel-wise intensity
smoothing. The image inpainting problem involves an input
2D image,

I : D → R, D ⊂ Z
2

D = {(xk, yk) : k = 1, 2, · · · , |D|}
that has a missing region denoted as � ⊂ D. The image source
region, denoted as �c, is the complement of the missing region
as shown in Fig. 1. The outer border of the missing region �
is denoted as δ� ⊂ �c. We denote δ� as a single-pixel-wide
contour surrounding the outer border δ� in the source region.
The intensity of a pixel k within the image I is denoted as
I (xk, yk), where (xk, yk) are the pixel coordinates at pixel k.
We use M : D → R as a mask to indicate whether a pixel k
belongs to the source region or the missing region, given by

M(xk , yk) =
{

1, if k ∈ �c

0, if k ∈ �.
(1)

Assume the image I is made up of overlapped patches
of size m × m. A patch centered at pixel p is defined as
a vector using columnwise ordering, denoted as �p , whose
elements k are the ordered pair (xk, yk). The intensities of �p

are denoted as Ip = [
I
(
�p(l)

); l = {1, 2, · · · , m2}], where l
is the columnwise linear index location within the patch. The
target patch to be inpainted during each iteration is centered
on the single-pixel-wide contour of the outer border of the
missing region (see Fig. 1), and the candidate patch is selected
from the source region. We propose an iterative inpainting
method to inpaint the missing region, patch by patch. There
are three main steps of the algorithm, which are described in
detail in the next three subsections.

A. Choosing the Target Patch

The proposed inpainting algorithm is iterative, where, dur-
ing each iteration, we first apply a priority function to choose
the next target patch. The target patch has a known part from

Authorized licensed use limited to: George Tziritas. Downloaded on December 25,2020 at 20:31:18 UTC from IEEE Xplore. Restrictions apply.

DING et al.: IMAGE INPAINTING USING NONLOCAL TEXTURE MATCHING AND NONLINEAR FILTERING 1707

the source region and an unknown part from the missing
region. The center of the target patch lies on the contour
of the outer border (δ�) of the missing region (see also
Section IV-C). The priority function contains two terms, a con-
fidence term and a data term. The confidence term C(�p) is
the ratio of known pixels within the patch. The data term
D(�p) computes the dot product of the isophote vector

−−→∇ Ip
⊥

(along the direction of equal intensity lines as shown in Fig. 1)
and the normal vector −→n p at the center pixel p. The priority
function is defined as

P(�p) = C(�p)D(�p), p ∈ δ� (2)

where

C(�p) = |�p ∩ �c|
|�p| , D(�p) =

∣∣∣−−→∇ Ip
⊥ · −→n p

∣∣∣
Imax

(3)

where
−−→∇ Ip

⊥ is the isophote vector orthogonal to the gradient−−→∇ Ip (computed using the central difference operator) at center
pixel p, Imax is the maximum possible gray-level value, which
is 255 in our case, and −→n p is the unit vector orthogonal to the
outer border δ�. Here,

−−→∇ Ip
⊥ and −→n p are computed at center

pixel p as follows:

−−→∇ Ip
⊥ = 1

2Imax

{
[I (x p, yp − 1) − I (x p, yp + 1)] i

+[I (x p + 1, yp) − I (x p − 1, yp)] j
}

(4)

−→n p
0 = [M(x p + 1, yp) − M(x p − 1, yp)] i

+[M(x p, yp + 1) − M(x p, yp − 1)] j (5)

−→n p =
−→n p

0

‖−→n p
0‖ (6)

where i and j are the unit vectors in the x and y direction,
respectively, and −→n p = 0 when ‖−→n p

0‖ = 0. In each iteration,
we want to maximize the priority function to select the patch
� p̂ , having the highest priority value, to serve as the target
patch.

B. Nonlocal Texture Similarity Matching

After choosing the target patch, we use a new nonlocal
texture similarity (NLTS) measure for selecting the candidate
patches from the source region patches �q centered at pixel
q such that �q ∩ � = ∅. The proposed similarity measure
satisfies the following objectives. First, the measure is able
to compute the textural similarity between a chosen candidate
patch from the source region and the target patch. Second,
the measure is computed using weighted pixel values, where
the weights are given by a Gaussian kernel, whose center
is adaptively chosen for different target patches with varying
spatial distributions of known and unknown pixels. The NLTS
measure is given by

NLTS(I p̂, Iq) = exp

{
−‖(I p̂ − Iq)◦2 ◦ G p̂‖1

h2

}
(7)

where ◦2 is the element-wise power operator, ◦ is the element-
wise product operator, and h is a user-selected parameter [47].

Fig. 2. The flowchart of the process to find the center of the Gaussian
kernel for a target patch. The colored dots (black and gray) represent the
known pixels with different intensity values within the target patch, and the
white dots represent the unknown pixels within the target patch.

We choose a constant h = 34 empirically (the value of h
should be proportionately larger if the maximum gray level
is larger than 255). G p̂ = [

G
(
� p̂(l)

); l = {1, 2, · · · , m2}]
(columnwise vector) is the Gaussian kernel over the target
patch � p̂. The Gaussian kernel G is defined globally, and the
Gaussian weight at a pixel k is computed as

G(xk, yk) = exp

{
− (xk − xc)

2 + (yk − yc)
2

2σ 2

}
(8)

where (xc, yc) are the pixel coordinates of the center of
the Gaussian filter. Also, σ is the standard deviation of the
Gaussian kernel, and how to choose its value is discussed in
Section III-A.

The NLTS measure defined in (7) is a measure of the
intensity similarity between a patch from the source region
and the target patch; a larger value means a larger similarity
between the two patches. The Gaussian weight G(xk, yk) at
pixel k is related to its coordinate distance to the center of
the kernel (xc, yc), and the center adapts depending on the
distribution of the known and unknown pixels within the target
patch (See Fig. 2). We set the center of the Gaussian kernel
(xc, yc) as the midpoint of the geometric center (x1, y1) of the
known part and the geometric center (x0, y0) of the unknown
part of the target patch, calculated by

(xc, yc) =
(

x1 + x0

2
,

y1 + y0

2

)
(9)

where

(x1, y1) = 1

|� p̂ ∩ �c|
∑

k∈� p̂∩ �c

(xk, yk)

(x0, y0) = 1

|� p̂ ∩ �|
∑

k∈� p̂∩ �

(xk, yk)

where |� p̂ ∩ �c| is the number of known pixels, and |� p̂ ∩
�| is the number of unknown pixels. When calculating the

Authorized licensed use limited to: George Tziritas. Downloaded on December 25,2020 at 20:31:18 UTC from IEEE Xplore. Restrictions apply.

1708 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 28, NO. 4, APRIL 2019

Fig. 3. A set of patches consisting of λ candidate patches and the target
patch. For each missing pixel of the target patch (denoted by blue square),
we fill it by applying the α-trimmed mean filter to the sequence of pixels at
the same pixel location within the λ candidate patches.

coordinates of the centers, we round the value to the nearest
integer.

Using the NLTS measure defined in (7), we select the
λ best matched candidate patches with the λ highest NLTS
values from the image source region �c. In our experiments,
we choose λ = 5 candidate patches from the source region
for each target patch, as we found that this value mini-
mizes inpainting error. The value of λ is further discussed
in Section IV-E.

C. Inpainting Using the α-Trimmed Mean Filter

After choosing the candidate patches, we apply the
α-trimmed mean filter [48], [49] to the λ candidate patches
using the procedure described below (see Fig. 3). For each
missing pixel from the target patch at the index location l,
we group the corresponding pixels at the same index location
within the candidate patches into a set S = {

Iq̂i (l); i =
{1, 2, · · · , λ}}, and order the intensities in the set S in ascend-
ing order to obtain So = {

X j ; j = {1, 2, · · · , λ}}, satisfying

X1 ≤ X2 ≤ · · · ≤ Xλ. (10)

Then, we apply the α-trimmed mean filter to the set So to
obtain the intensity of that missing pixel, given by

I p̂(l) = meanα(So) = 1

λ − 2αλ

λ−αλ∑
j=αλ+1

X j (11)

For a given raio α, the α-trimmed mean of the λ elements
in So is obtained by ignoring the αλ smallest elements and
the αλ largest elements, and then computing the mean of the
remaining elements. In our experiment, we use α = 0.2.

The λ candidate patches are chosen based on the simi-
larity between the known part of the target patch and the
corresponding part of the candidate patches; thus, the other

Algorithm 1 Proposed Inpainting Algorithm

part of each candidate patch (corresponding to the unknown
portion of the target patch) could be very different from
that of other candidate patches. For this reason, we choose
the α-trimmed mean instead of a full sample mean or a
fully truncated mean (median). When computing the intensity
of a missing pixel using the corresponding pixels from the
candidate patches, the α-trimmed mean filter is less sensitive to
outliers (extremely large or small intensity values) than the full
sample mean. Also, the α-trimmed mean filter makes use of
more than one pixel, which provides a better estimate than the
fully truncated mean (discussed in Section IV-B). An outline
of the proposed algorithm is presented in Algorithm 1.

The proposed inpainting algorithm can be applied to inpaint
small or large missing regions in grayscale or color images.
When inpainting color images, the input image is defined
as I : D → R

3, and the isophote vector at each pixel is
computed as the average of the isophote vectors of the three
color channels [30] and is given by

−−→∇ Ip
⊥ = 1

3

∑
t∈{R,G,B}

−−−→∇ Ip,t
⊥

where t represents the red (R), green (G), or blue (B) channel,
and

−−−→∇ Ip,t
⊥ is the isophote vector at center pixel p in channel

t . The NLTS measure for inpainting color images is given by

NLTS(I p̂, Iq) = exp

⎧⎨
⎩−

∑
t∈{R,G,B}

‖(I p̂,t − Iq,t
)◦2 ◦ G p̂‖1

h2

⎫⎬
⎭
(12)

where I p̂,t and Iq,t are the intensity values of the patch �p

and �q , respectively, in channel t . When inpainting a missing
pixel at the index location l, we fill in each channel of the
missing pixel separately by computing the α-trimmed mean
of the set So,t = {

X j,t ; j = {1, 2, · · · , λ}}, which consists of
the intensities of the corresponding pixels within the candidate
patches, in channel t .

I p̂,t (l) = meanα(So,t) = 1

λ − 2αλ

λ−αλ∑
j=αλ+1

X j,t (13)

Authorized licensed use limited to: George Tziritas. Downloaded on December 25,2020 at 20:31:18 UTC from IEEE Xplore. Restrictions apply.

DING et al.: IMAGE INPAINTING USING NONLOCAL TEXTURE MATCHING AND NONLINEAR FILTERING 1709

III. EXPERIMENTS AND RESULTS

In this section we evaluate the proposed algorithm along
with current inpainting algorithms for three different image
inpainting applications: object removal, texture synthesis, and
error concealment. In the applications of object removal and
texture synthesis, the missing region to be inpainted may
have an irregular shape, while in the application of error
concealment, the missing region is usually a square or a
rectangular block.

We compare our proposed image inpainting algorithm with
some of the current image inpainting algorithms including
1) image recovery via hybrid sparse representations by Li [50],
2) adaptive algorithms for image restoration (AAIR) by
Wohlberg [51], 3) the annihilating filter-based low-rank Han-
kel matrix (ALOHA) approach proposed by Jin and Ye [52],
4) image completion using planar structure guidance by
Huang et al. [28], 5) exemplar-based image inpainting using
a modified priority definition by Deng et al. [30], and 6)
exemplar-based inpainting with new heuristics for better geo-
metric reconstructions by Buyssens et al. [53].

A. Parameter Setting

There are five variable parameters in the proposed algo-
rithm: the patch size m, the parameter h in the NLTS measure,
the number of candidate patches λ, the value of α in the
α-trimmed mean filter, and the standard deviation of the
Gaussian kernel σ . In all of our experiments, the values of
h, λ, and α are fixed. The patch size depends on the size of
the image texture pattern. A small patch size relative to the
size of the texture pattern may fail to reconstruct the texture
of the image. We use a patch size in the range of [3, 17] for
our proposed algorithm. The value of σ depends on the patch
size (σ ∝ m) and the busyness [54] of the image texture. If σ
is very small, the pixels on the edge of a patch would have
a Gaussian weight close to zero, so that when computing the
similarity between patches, a large patch size may act the same
as a smaller patch size. Moreover, when propagating a narrow
structure (e.g., a single straight line), the value of σ should
be smaller than that used for inpainting a textural image,
because pixels near the center of the Gaussian kernel, (xc, yc),
may be sufficient to match the structure. In our experiments,
we tried the value of σ in the range of [0.5, 4], and we
found that it gives good results in the range of [1.5, 2.5]. The
parameters used in all the algorithms compared in the paper
are shown in Table I. For Huang’s, and Buyssens’ method we
use the default parameter values as given in [28] and [53],
respectively.

B. Object Removal

In this section, we compare our algorithm with several
existing inpainting algorithms for the application of object
removal. The images used for testing all the algorithms are

1See also http://www.mathworks.com/matlabcentral/fileexchange/13619-
toolbox-non-local-means.

TABLE I

PARAMETERS USED IN EACH ALGORITHM

from the Berkeley segmentation dataset and the PASCAL
object recognition database.2

1) Qualitative Analysis: In Fig. 4, we show some inpainted
images from different inpainting algorithms for the application
of object removal. Fig. 4 row 1 shows the input images to each
algorithm where the object being removed is denoted by a
mask (green color). From Fig. 4 rows 2 and 3, we observe that
Li’s method and the AAIR method produce smooth inpainted
regions, and some texture information within the missing
region is lost. For example, the inpainted snow covered ground
region in Figs. 4(d,e) rows 2 and 3 is very smooth, and the
inpainted regions do not match the texture of the surrounding
region. The ALOHA algorithm has many dark patches within
the missing region that do not look visually plausible, as shown
in Figs. 4(c-f) row 4. We also observe that Huang’s method,
Deng’s method, and Buyssens’ method can produce some
unsuitable texture — for example, the unsuitable texture of
the wall in Fig. 4(c) rows 5-7 and the dark texture within the
snow on the ground in Fig. 4(d) rows 5-7. Not only is the
proposed algorithm able to recover the structure of the image
(the vertical edge of the wall in Fig. 4(b) row 8, and the door
in Fig. 4(c) row 8), but it also generates suitable texture for
the missing region (the grass area in Fig. 4(a) row 8, the wall
and snow ground in Fig. 4(d) row 8, the pavement in Fig. 4(e)
row 8, and the fence in Fig. 4(f) row 8).

2) Observer Studies: In most cases when removing an
object from the image, there is no prior information of the
true pixel values of the underlying scene within the region
of the object to be removed. In order to analyze the image
quality of the inpainted images from the compared algorithms,
we used human observer studies [55], [56]. First, we ran-
domly selected 40 test images from the Berkeley segmentation

2http://host.robots.ox.ac.uk/pascal/VOC/databases.html.
https://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/BSDS300/
html/dataset/images.html.

Authorized licensed use limited to: George Tziritas. Downloaded on December 25,2020 at 20:31:18 UTC from IEEE Xplore. Restrictions apply.

1710 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 28, NO. 4, APRIL 2019

Fig. 4. Comparison of object removal using different methods. Row 1: Input images containing a removed object denoted by a mask (green color). Inpainting
results — Row 2: Li’s Method, Row 3: AAIR Method, Row 4: ALOHA Method, Row 5: Huang’s method, Row 6: Deng’s Method, Row 7: Buyssens’ method,
and Row 8: Proposed Method. In each column, we state the percentage of missing pixels to be inpainted. (a) 3.90% missing. (b) 4.25% missing. (c) 14.47%
missing. (d) 8.02% missing. (e) 12.65% missing. (f) 3.22% missing.

dataset and the PASCAL object recognition dataset, and we
randomly removed one outstanding object (average number
of removed pixels: 4639, average percentage of removed

pixels to the image: 8.00%) from each test image. Second,
we inpainted all the 40 test images using the proposed algo-
rithm, Li’s algorithm, AAIR, ALOHA, Huang’s algorithm,

Authorized licensed use limited to: George Tziritas. Downloaded on December 25,2020 at 20:31:18 UTC from IEEE Xplore. Restrictions apply.

DING et al.: IMAGE INPAINTING USING NONLOCAL TEXTURE MATCHING AND NONLINEAR FILTERING 1711

TABLE II

MEAN SCORE OF 40 IMAGES FOR EACH ALGORITHM
FROM EACH EVALUATOR

Deng’s algorithm, and Buyssens’ algorithm. Third, we pre-
sented the seven inpainted results of each test image to twenty
human evaluators in a random order, without identifying the
algorithms, and asked them to score the seven inpainted results
between 1 and 7, with 1 being the best inpainted result and
7 being the worst inpainted result. When two or more inpainted
results are regarded as equally good or equally bad, those
inpainted results are given the same averaged score. The total
score of the seven inpainted results from an evaluator remains
the same as 28 (= 1 + 2 + 3 + 4 + 5 + 6 + 7), so that the test
images are equally weighted.

After the human evaluation, from each evaluator we
obtained 7×40 (number of compared algorithms × number of
test images) scores, then we averaged the group of 40 scores
corresponding to each algorithm, resulting in 7 mean scores.
Table II shows the mean scores of each algorithm from
each evaluator and the total mean score (μtotal) of each
compared algorithm and standard deviation (σtotal) of those
mean scores. In Table II, the proposed algorithm has the
lowest total mean score (μtotal) among those of Li’s algorithm,
the AAIR method, Huang’s method, the ALOHA method,
Deng’s method, and Buyssens’ method.

Further, in order to analyze if the mean scores of the
proposed algorithm are statistically significant different from
the mean scores of the other algorithms, we apply the Mann-
Whitney U test [57] to the mean scores in Table II for the
reason that the Mann-Whitney U test does not require the
assumption of a normal distribution. The Mann-Whitney U test
is a nonparametric test for testing the equality of medians in
two independent populations [57]. Before the Mann-Whitney
U test, we form seven samples of mean scores (size of 7×20,
columns in Table II) where each sample is corresponding to
one algorithm. We compute the Mann-Whitney U test between
the proposed algorithm and each of the other six algorithms.

TABLE III

THE MANN-WHITNEY U TEST BETWEEN THE PROPOSED
ALGORITHM AND DENG’S ALGORITHM

The null and alternate hypotheses of the Mann-Whitney U test
are described as follows:

H0 : The two populations of scores have equal median.

H1 : The two populations do not have equal median.

In Table III, we show the Mann-Whitney U test between the
proposed algorithm and Deng’s inpainting algorithm. We order
the mean scores of the proposed algorithm and Deng’s algo-
rithm from smallest to largest, and assign ranks from 1 to 40
(equal scores share the same averaged rank). R1 and R2 are
the sums of the ranks for Deng’s algorithm and the proposed
algorithm, respectively, in Table III. The Mann-Whitney U test
statistic is computed as

U = min(U1, U2) (14)

where

U1 = n1n2 + n1(n1 + 1)

2
− R1

U2 = n1n2 + n2(n2 + 1)

2
− R2

where n1 = n2 = 20 are the sample sizes. From (14),
we obtain a test statistic of U = 118 between the proposed
algorithm and Deng’s algorithm. The appropriate critical value
of the Mann-Whitney U test can be found from the Mann-
Whitney U test table, which is 127 based on both the sample
sizes (n1 = 20 and n2 = 20) and a two-sided level of
significance of α = 0.05. Since we have U = 118 < 127,
we reject the null hypothesis, thereby concluding that the
mean scores of the proposed algorithm and the mean scores
of Deng’s algorithm do not have the same median.

Similarly, we apply the Mann-Whitney U test between the
proposed algorithm and each of the other five algorithms, and

Authorized licensed use limited to: George Tziritas. Downloaded on December 25,2020 at 20:31:18 UTC from IEEE Xplore. Restrictions apply.

1712 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 28, NO. 4, APRIL 2019

Fig. 5. The histograms of the 40 inpainted images with respect to the
optimized inpainting patch-size in the range of [3, 17]. (a) The patch-size
histogram when using Deng’s method. (b) The patch-size histogram when
using the proposed algorithm.

TABLE IV

RUN TIME MEAN AND STANDARD DEVIATION
FOR 40 IMAGES (HH:MM:SS)

we find that all the test statistic values are zeros. Therefore,
we reject the null hypothesis because U = 0 < 127 for all five
Mann-Whitney U statistics, concluding that the mean scores
of the proposed algorithm and those of each of the other five
algorithms have different medians.

We analyzed the common parameter, patch size, of the
proposed algorithm and Deng’s algorithm. Fig. 5 shows a
histogram of the patch size for both algorithms when inpaint-
ing the 40 test images. From Fig. 5, we can observe that the
occurrence of the patch size for Deng’s algorithm distributes
broadly between 3 and 17, whereas the occurrence of the patch
size for the proposed algorithm distributes more narrowly.
Thus, the proposed algorithm is less sensitive to the patch
size than Deng’s algorithm.

We also computed the mean and standard deviation of
the run time of each algorithm in MATLAB for the 40 test
images (on an Intel i5-2400 3.10 GHz 8.00 GB RAM plat-
form). As shown in Table IV, the proposed algorithm has the
smallest mean and standard deviation of the run time among
all the algorithms.

We do not include the run time of Huang’s method and
Buyssens’ method in Table IV as the obtained source code of
their methods are not completely in MATLAB. The proposed
algorithm has a smaller run time than Li’s method, because
Li’s method is a deterministic annealing method, requiring
around 50 inner loops and multiple outer loops to obtain a
convergent result. Also, the proposed algorithm has a smaller
run time than the AAIR method, because the AAIR method
is based on a sparse decomposition model that is solved via
the iteratively reweighted least squares method [51], which
takes more time. The proposed algorithm has a smaller run
time than Deng’s method, because the optimal patch size of
Deng’s method is often smaller than the proposed algorithm,
which requires a longer time to fill-in the missing region.

TABLE V

IMAGE QUALITY ASSESSMENT OF INPAINTED IMAGES IN FIG. III-B.2

The ALOHA algorithm has the longest run time among all the
algorithms compared, as it involves solving the block Hankel
matrix, which is time-consuming.

C. Inpainting Textured Images

The proposed image inpainting algorithm is able to recon-
struct different types of texture due to the NLTS measure,
in contrast to other image inpainting methods. We com-
pared the proposed image inpainting algorithm with the six
image inpainting algorithms in Section III-B.1, as well as the
nonlocal-means algorithm by Buades [38], coded by Peyre1.
We tested all eight algorithms on the images (size of 128×128)
in Fig. 6 from the texture image database.3 Table I shows the
parameters used for each algorithm.

From Fig. 6, we observe that Li’s algorithm, the AAIR
method, and Buades’ method reconstruct some structure
of the missing region; however, the reconstructed texture
does not match the texture of the surrounding region
(see Figs. 6(b-d) rows 1-4). When the missing region becomes
large, the ALOHA method leaves the center part of the
missing region dark, as shown in Fig. 6(e) rows 1-4. Huang’s
method, Deng’s algorithm and Buyssens’ algorithm recon-
struct the texture and structure of the missing region; how-
ever, the inpainted region seems to have visual artifacts
(see Figs. 6(f-h) rows 1-4). The proposed algorithm has bet-
ter performance in inpainting both the texture and struc-
ture, resulting in natural-looking inpainted images, as shown
in Fig. 6(i) rows 1-4.

In order to analyze the image quality of the inpainted
images, we computed two image quality assessment indices:
peak signal-to-noise ratio (PSNR) in dB, and the structural
similarity metric (SSIM) [33], [58]. PSNR and SSIM are
calculated by referring to the original image without missing
regions. The quantitative results are shown in Table V with
the best values highlighted. From Table V, Li’s algorithm
has the highest average PSNR and SSIM values, and the
proposed algorithm has the second highest values. How-
ever, the inpainted images from the proposed algorithm look
visually better than the inpainted images from Li’s algo-
rithm. Table VI lists the mean and standard deviation of
the run time of each algorithm in MATLAB for Figs. 6(b-i)
(on an Intel i5-2400 3.10 GHz 8.00 GB RAM platform).

3The original images of Fig. 6(a) are from the MIT vision texture database
at http://vismod.media.mit.edu/vismod/imagery/VisionTexture/vistex.html.

Authorized licensed use limited to: George Tziritas. Downloaded on December 25,2020 at 20:31:18 UTC from IEEE Xplore. Restrictions apply.

DING et al.: IMAGE INPAINTING USING NONLOCAL TEXTURE MATCHING AND NONLINEAR FILTERING 1713

Fig. 6. Comparison of inpainting textured images using different inpainting methods. (a) Input images with a missing region to be restored (Mask).
(b) The inpainting results of Li’s Method. (c) AAIR Method. (d) Buades’ Method. (e) ALOHA Method. (f) Huang’s Method. (g) Deng’s Method.
(h) Buyssens’ Method. (i) Proposed Method.

Fig. 7. Comparison of error concealment using inpainting for the different methods. (a) Images obtained at the receiver end after being transmitted with
many 8 × 8 blocks missing. (b) The inpainting results of Li’s Method. (c) AAIR Method. (d) ALOHA Method. (e) Deng’s Method. (f) Buyssens’ Method.
(g) Proposed Method

Deng’s algorithm has the lowest mean run time, and the
proposed algorithm has the second lowest mean run time.

D. Error Concealment

In this section, we apply the proposed image inpainting
algorithm for the application of recovering missing data from

digital images after wireless transmission. If the transmitted
images are divided into blocks of size 8 × 8 when trans-
mitted (e.g., JPEG), the received images may lose an entire
block or consecutive blocks due to noise [59]. In Fig. 7,
two received images are shown in column 1. Columns 2 to
7 show the inpainted results of different inpainting algorithms.
In Figs. 7(b-d) we observe that Li’s algorithm, the AAIR

Authorized licensed use limited to: George Tziritas. Downloaded on December 25,2020 at 20:31:18 UTC from IEEE Xplore. Restrictions apply.

1714 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 28, NO. 4, APRIL 2019

TABLE VI

RUN TIME MEAN AND STANDARD DEVIATION
FOR FIG. III-B.2 (HH:MM:SS)

TABLE VII

RUN TIME FOR FIG. 8 (HH:MM:SS)

algorithm, and the ALOHA algorithm are able to recover the
straight-line structure (see row 1, edge of the book), but they
do not perform well in recovering curved structure (see rows
3 and 4). Deng’s algorithm and Buyssens’ method, on the other
hand, produce some artifacts when recovering structure details
as shown in Figs. 7(e-f) rows 3 and 4. In comparison, our
proposed algorithm is able to recover texture and geometric
structure within the missing blocks as shown in Fig. 7(g)
(rows 1-4).

E. Comparison With Deep Learning Methods

We also compared the proposed algorithm with two deep
learning inpainting methods—Multi-Scale Neural Patch Syn-
thesis (MS-NPS) by Yang et al. [39] and Deep Image Prior
(DIP) by Ulyanov et al. [40]—and tested the three algorithms
on the images in Fig. 8 for the application of object removal.
From Fig. 8, the inpainted regions from Yang’s method and
Ulyanov’s method are more smooth than the inpainted region
of the proposed algorithm; thus, some texture information
is lost (see Figs. 8(c-d) row 2). The inpainted regions from
Yang’s method and Ulyanov’s method can also have some
edge defects (see Figs. 8(c-d) row 3), whereas the inpainted
results of the proposed method look more natural and visually
plausible as shown in Fig. 8(e) rows 2 and 3.

Table VII lists the run time of each algorithm on an Intel
Core i7 PC (2.80 GHz 16 GB RAM) with an NVIDIA GPU
(GeForce GTX950M 8 GB RAM). For the MS-NPS method,
we trained the model on the ImageNet [60] database consisting
of 1 260 000 images, in the same manner as described in [39].
From Table VII, the proposed algorithm has the lowest run
time compared to the two deep learning inpainting methods
and does not require any external database for training.

IV. DISCUSSION

A. Nonlocal Texture Similarity Matching and the α-Trimmed
Mean Filter

In the proposed algorithm, we apply the NLTS measure
to select candidate patches and the α-trimmed mean filter to

Fig. 8. Comparison of object removal using two deep learning methods
and the proposed method. Row 1: Input images containing a removed object
denoted by (a) Mask 1 and (b) Mask 2 shown in green color. Inpainting results
— (c): MS-NPS, (d): DIP, and (e): Proposed Method.

fill each missing pixel using the chosen candidate patches.
The proposed algorithm outperforms other image inpaint-
ing algorithms when inpainting large missing regions having
both texture and geometric structure. How do the nonlocal
measure and the α-trimmed mean filter individually affect
the inpainting result? Are both components essential in the
proposed inpainting algorithm? In this section, we consider
two variants of our algorithm: Algorithm 2 with only the
NLST measure and Algorithm 3 with only the α-trimmed
mean filter. In Algorithm 2, we apply the NLTS measure to
select only one candidate patch from the source region. Then
we fill the unknown part of the target patch by copying the
corresponding part of the candidate patch. In Algorithm 3,
we use the MSE to select five best candidate patches from
the source region. Then, we fill the target patch pixel by
pixel by applying the α-trimmed mean filter as described in
Section II-C. In Fig. 9, we compare the proposed algorithm
with its two variants (Algorithm 2 and Algorithm 3).

In Fig. 9, we reconstruct the texture of the images from
Fig. 6. When using Algorithm 2, the inpainted region looks
more random and not consistent with the textural pattern of
the remaining image as shown in Fig. 9(b) rows 1-4. The
inpainted region using Algorithm 3 is overly smooth and
blurry, as shown in Fig. 9(c) rows 1-2 and 4, and generates
some artifacts as shown in Fig. 9(c) row 3. The proposed
algorithm has a better performance in inpainting the missing
region with a more plausible-looking result (see Fig. 9(a)
rows 1-4). The quality assessment values of the inpainted
images in Fig. 9 are listed in Table VIII with the best values
highlighted. In Table VIII, the inpainted images using the

Authorized licensed use limited to: George Tziritas. Downloaded on December 25,2020 at 20:31:18 UTC from IEEE Xplore. Restrictions apply.

DING et al.: IMAGE INPAINTING USING NONLOCAL TEXTURE MATCHING AND NONLINEAR FILTERING 1715

Algorithm 2 Using Only the NLTS Measure

Algorithm 3 Using Only the α-Trimmed Mean Filter

TABLE VIII

IMAGE QUALITY ASSESSMENT OF INPAINTED IMAGES IN FIG. 9

proposed algorithm have the highest average PSNR and SSIM
values for Fig. 9.

B. α-Trimmed Mean Filter vs. Other Order-Statistic Filters

In the proposed algorithm, when inpainting a missing pixel
within the target patch, we apply the α-trimmed mean filter
to the pixels within the λ candidate patches at the index
location corresponding to that of the missing pixel to obtain
the intensity value of that missing pixel. The α-trimmed mean
filter is less sensitive to outliers (extremely large or small
values) than a full sample mean filter as it discards the lowest
and highest αλ values and computes the mean based on the
remaining values. Also, the α-trimmed mean filter uses more

Fig. 9. Example comparing Algorithms 1-3. (a) Proposed. (b) Algorithm 2.
(c) Algorithm 3.

information than a fully truncated mean (median filter) because
it uses more than one pixel’s intensity value to compute
the intensity of the missing pixel. In Fig. 10, we compare
the inpainted results using different order-statistic filters [48],
the full sample mean filter, the median filter, and the α-
trimmed mean filter.4 From Fig. 10, the inpainted images using
the mean filter and the median filter have some artifacts as
shown in Figs. 10(c) and (d), respectively, whereas the artifacts
do not appear in the inpainted images using the α-trimmed
mean filter (see Fig. 10(e)).

C. Location of the Center Pixel p of the Target Patch

Many exemplar-based inpainting methods choose the loca-
tion of the center pixel p on the outer border of the missing
region, i.e. p ∈ δ�. This leads to using the pixels from the
missing region � (either under the assumption that they have
zero pixel intensities or using the pixel intensities from the
original image [13], [30]) for the computation of the isophote
vector

−−→∇ Ip
⊥ in (4), thereby resulting in a different inpainting

order, causing unsatisfactory inpainting results5 (see Fig. 11).

4The images in Fig. 10(a) row 1, Fig. 11(a) row 1, and Fig. 12(a) are from
http://www.escience.cn/people/dengliangjian/Data.html.
The image in Fig. 10(a) row 2 is from the PASCAL object recognition
database.

5The image in Fig. 11(a) row 2 is from the Berkeley segmentation dataset.

Authorized licensed use limited to: George Tziritas. Downloaded on December 25,2020 at 20:31:18 UTC from IEEE Xplore. Restrictions apply.

1716 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 28, NO. 4, APRIL 2019

Fig. 10. Effect of various order-statistic filters. (a) Original image (b) Image with a missing region (in yellow mask). Inpainted image using the proposed
algorithm with (c) a mean filter, (d) a median filter, (e) the α-trimmed mean filter.

Fig. 11. Effect of choosing the location of center pixel p of the target
patch. (a) Image with a missing region (in yellow mask). (b) Inpainted image
using the proposed algorithm with p ∈ δ�. (c) Inpainted image using the
proposed algorithm with p ∈ δ�.

In order to overcome this issue, we select the location of the
center pixel p on the contour surrounding the outer border of
the missing region, i.e. p ∈ δ�. For example in Fig. 11(b),
we see that the inpainted region has artifacts due to the wrong
inpainting order, whereas the inpainted images in Fig. 11(c)
are more visually plausible.

D. Updating the Source Region

In the proposed algorithm, we add the inpainted target patch
into the source region at the end of each iteration, thereby
increasing the source region with inpainted patches that are
often different from other known patches within the source
region �c. Fig. 12 shows two examples of inpainting the
image with or without updating the source region.4 From
Figs. 12(b) and (c), we observe that the inpainted images using
our algorithm with updating the source region are better than
the inpainted images using our algorithm without updating the
source region (see the wrong dark texture in the center of the
inpainted region as shown in Fig. 12(b), which does not appear

Fig. 12. Effect of updating the source region by including the inpainted
patches. (a) Image with a missing region (in yellow mask). (b) Inpainted image
using the proposed algorithm with updating the source region during each
iteration. (c) Inpainted image using the proposed algorithm without updating
the source region.

in Fig. 12(c)). After incorporating the inpainted target patch
into the source region, the next target patch can be inpainted by
a nearby inpainted patch rather than a patch far away from the
source region resulting in a more consistent inpainted image.

E. Number of Candidate Patches (λ)

In order to determine how many candidate patches should
be chosen for a given target patch in the proposed algo-
rithm, we compute the average PSNR and SSIM values of
the inpainted images while varying the number of candidate
patches λ. We vary λ ∈ [1, 10], as the matching error
between the candidate patches and the target patch gets very
large for λ > 10. The average PSNR and SSIM values for
varying values of λ inpainted using the proposed method on
images in Fig. 6(a) are plotted in Fig. 13. From the plot,
we observe that the average PSNR and SSIM values of the

Authorized licensed use limited to: George Tziritas. Downloaded on December 25,2020 at 20:31:18 UTC from IEEE Xplore. Restrictions apply.

DING et al.: IMAGE INPAINTING USING NONLOCAL TEXTURE MATCHING AND NONLINEAR FILTERING 1717

Fig. 13. Varying the number of candidate patches λ.

Fig. 14. Example of an inpainted image with texture defects. Some defects
appear when there is no patch from the source region to describe the interface
of the vertical structure and the horizontal texture that meet in the missing
region underneath the man’s head. (a) Original. (b) Mask. (c) Proposed.

inpainted images increase by an amount of 2.6 dB and 0.023,
respectively, when λ is chosen between 1 and 5, and the values
decrease as λ increases from 6 to 10. Thus, it is good to choose
about 5 candidate patches (i.e., λ ≈ 5) for inpainting each
target patch using the proposed algorithm.

F. Limitations

The proposed algorithm can produce some defects when
there is no information in the image source region to describe
the interface where different texture and structure would meet
in the missing region, as shown in Fig. 14. In some cases
when the structure is strong, since the priority function is
more biased toward strong structure than texture, it some-
times causes problems in term of repeated patches as shown
in Fig. 4(e) row 8.

V. CONCLUSION

In this paper, we have developed an efficient and robust
exemplar-based image inpainting method that uses a new
nonlocal texture similarity measure to search for several can-
didate exemplars for each target patch, which are then fused
together using the α-trimmed mean filter to fill in each pixel
within the target patch. We evaluate the proposed algorithm
against some of the current inpainting algorithms includ-
ing Li’s algorithm, the AAIR algorithm, Buades’ algorithm,
the ALOHA algorithm, Huang’s method, Deng’s method, and
Buyssens’ method. For the application of object removal, our

experimental results demonstrate that the proposed algorithm
performs better than the other inpainting algorithms w.r.t. both
the qualitative analysis and the observer studies. For the appli-
cation of inpainting texture images, the proposed algorithm
outperforms the other inpainting algorithms in terms of the
qualitative appearance, even though the quantitative metrics
do not always agree. For the application of error concealment,
our experimental results show that the proposed algorithm is
capable of recovering different textures and structures within
the missing blocks of the received image. In addition, our
proposed algorithm is also very fast in inpainting images as
compared to Li’s algorithm, the AAIR algorithm, Buades’
algorithm, the ALOHA algorithm, and Deng’s method.

REFERENCES

[1] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, “Image inpaint-
ing,” in Proc. ACM Conf. Comput. Graph., 2000, pp. 417–424.

[2] M. Bertalmio, A. N. Bertozzi, and G. Sapiro, “Navier-Stokes, fluid
dynamics, and image and video inpainting,” in Proc. IEEE Int. Conf.
Comput. Vis. Pattern Recognit., Jun. 2001, pp. I355–I362.

[3] F. Li, L. Pi, and T. Zeng, “Explicit coherence enhancing filter with
spatial adaptive elliptical kernel,” IEEE Signal Process. Lett., vol. 19,
no. 9, pp. 555–558, Sep. 2012.

[4] T. Chan and J. Shen, “Mathematical models for local nontexture inpaint-
ings,” SIAM J. Appl. Math., vol. 62, no. 3, pp. 1019–1043, Jul. 2006.

[5] T. F. Chan and J. Shen, “Nontexture inpainting by curvature-driven
diffusions,” J. Vis. Commun. Image Represent., vol. 4, no. 12,
pp. 436–449, Dec. 2001.

[6] C. Ballester, M. Bertalmio, V. Caselles, G. Sapiro, and J. Verdera,
“Filling-in by joint interpolation of vector fields and gray levels,” IEEE
Trans. Image Process., vol. 10, no. 8, pp. 1200–1211, Aug. 2001.

[7] J. Shen, S. H. Kang, and T. F. Chan, “Euler’s elastica and curvature-
based inpainting,” SIAM J. Appl. Math., vol. 63, no. 2, pp. 564–592,
Jul. 2002.

[8] H. Grossauer and O. Scherzer, “Using the complex Ginzburg-Landau
equation for digital inpainting in 2D and 3D,” in Proc. 4th Int. Conf.
Scale Space Methods Comput. Vis., 2003, pp. 225–236.

[9] J. Dahl, P. C. Hansen, S. H. Jensen, and T. L. Jensen, “Algorithms and
software for total variation image reconstruction via first-order methods,”
Numer. Algorithms, vol. 53, no. 1, pp. 67–92, 2010.

[10] P. Li, S.-J. Li, Z.-A. Yao, and Z.-J. Zhang, “Two anisotropic fourth-order
partial differential equations for image inpainting,” IET Image Process.,
vol. 7, no. 3, pp. 260–269, Jun. 2013.

[11] H. Grossauer, “A combined PDE and texture synthesis approach to
inpainting,” in Proc. Eur. Conf. Comput. Vis., vol. 3022, T. Pajdla and
J. Matas, Eds. Berlin, Germany: Springer, May 2004, pp. 214–224.

[12] A. Bugeau and M. Bertalmio, “Combining texture synthesis and dif-
fusion for image inpainting,” in Proc. Int. Conf. Comput. Vis. Theory
Appl., 2009, pp. 26–33.

[13] A. Criminisi, P. Pérez, and K. Toyama, “Region filling and object
removal by exemplar-based image inpainting,” IEEE Trans. Image
Process., vol. 13, no. 9, pp. 1200–1212, Sep. 2004.

[14] J. Wu and Q. Ruan, “Object removal by cross isophotes exemplar-
based inpainting,” in Proc. IEEE Int. Conf. Pattern Recognit., Jun. 2006,
pp. 810–813.

[15] L. Cai and T. Kim, “Context-driven hybrid image inpainting,” IET Image
Process., vol. 9, no. 10, pp. 866–873, Oct. 2015.

[16] O. Le Meur, J. Gautier, and C. Guillemot, “Super-resolution-based
inpainting,” in Proc. 12th Eur. Conf. Comput. Vis., 2012, pp. 554–567.

[17] O. Le Meur, M. Ebdelli, and C. Guillemot, “Hierarchical super-
resolution-based inpainting,” IEEE Trans. Image Process., vol. 22,
no. 10, pp. 3779–3790, Oct. 2013.

[18] J. Wang, K. Lu, D. Pan, N. He, and B.-K. Bao, “Robust object removal
with an exemplar-based image inpainting approach,” Neurocomputing,
vol. 123, pp. 150–155, Jan. 2014.

[19] V. Kumar, J. Mukherjee, and S. K. Das Mandal, “Image inpainting
through metric labeling via guided patch mixing,” IEEE Trans. Image
Process., vol. 25, no. 11, pp. 5212–5226, Nov. 2016.

[20] T. Ružić and A. Pižurica, “Context-aware patch-based image inpainting
using Markov random field modeling,” IEEE Trans. Image Process.,
vol. 24, no. 1, pp. 444–456, Nov. 2015.

Authorized licensed use limited to: George Tziritas. Downloaded on December 25,2020 at 20:31:18 UTC from IEEE Xplore. Restrictions apply.

1718 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 28, NO. 4, APRIL 2019

[21] Y. Liu and V. Caselles, “Exemplar-based image inpainting using mul-
tiscale graph cuts,” IEEE Trans. Image Process., vol. 22, no. 5,
pp. 1699–1711, May 2013.

[22] C. Guillemot and O. L. Meur, “Image inpainting: Overview and recent
advances,” IEEE Signal Process. Mag., vol. 31, no. 1, pp. 127–144,
Jan. 2014.

[23] O. Le Meur, J. Gautier, and C. Guillemot, “Examplar-based inpainting
based on local geometry,” in Proc. 18th IEEE Int. Conf. Image Process.,
Sep. 2011, pp. 3401–3404.

[24] Z. Li, H. He, H. M. Tai, Z. Yin, and F. Chen, “Color-direction patch-
sparsity-based image inpainting using multidirection features,” IEEE
Trans. Image Process., vol. 24, no. 3, pp. 1138–1152, Mar. 2015.

[25] C. Barnes, E. Shechtman, A. Finkelstein, and D. Goldman, “PatchMatch:
A randomized correspondence algorithm for structural image editing,”
ACM Trans. Graph., vol. 28, no. 3, p. 24, 2009.

[26] J. H. Lee, I. Choi, and M. H. Kim, “Laplacian patch-based image
synthesis,” in Proc. IEEE Comput. Vis. Pattern Recognit., Jun. 2016,
pp. 2727–2735.

[27] S. Darabi, E. Shechtman, C. Barnes, D. B. Goldman, and P. Sen, “Image
melding: Combining inconsistent images using patch-based synthesis,”
ACM Trans. Graph., vol. 31, no. 4, pp. 82:1–82:10, Aug. 2012.

[28] J. Huang, S. Kang, N. Ahuja, and J. Kopf, “Image completion
using planar structure guidance,” ACM Trans. Graph., vol. 33,
no. 4, pp. 129:1–129:10, Jul. 2014. [Online]. Available: https://github.
com/jbhuang0604/StructCompletion

[29] K. He and J. Sun, “Image completion approaches using the statistics
of similar patches,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 36,
no. 12, pp. 2423–2435, Dec. 2014.

[30] L.-J. Deng, T.-Z. Huang, and X.-L. Zhao, “Exemplar-based image
inpainting using a modified priority definition,” PLoS ONE, vol. 10,
no. 10, pp. 1–18, Oct. 2015. [Online]. Available: http://www.
escience.cn/people/dengliangjian/codes.html

[31] Y. Wexler, E. Shechtman, and M. Irani, “Space-time completion of
video,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 3,
pp. 463–476, Mar. 2007.

[32] S. Ram, “Sparse representations and nonlinear image processing for
inverse imaging solutions,” Ph.D. dissertation, Dept. Elect. Comput.
Eng., Univ. Arizona, Tucson, AZ, USA, Aug. 2017.

[33] T. Ogawa and M. Haseyama, “Image inpainting based on sparse repre-
sentations with a perceptual metric,” EURASIP J. Adv. Signal Process.,
vol. 2013, no. 179, pp. 1–26, Dec. 2013.

[34] D. Ding, S. Ram, and J. J. Rodriguez, “Perceptually aware image
inpainting,” Pattern Recognit., vol. 83, pp. 174–184, Nov. 2018.

[35] M. Bertalmio, L. Vese, G. Sapiro, and S. Osher, “Simultaneous structure
and texture image inpainting,” IEEE Trans. Image Process., vol. 12,
no. 8, pp. 882–889, Aug. 2003.

[36] A. Wong and J. Orchard, “A nonlocal-means approach to exemplar-
based inpainting,” in Proc. IEEE Int. Conf. Image Process., Oct. 2008,
pp. 2600–2603.

[37] P. Arias, G. Facciolo, V. Caselles, and G. Sapiro, “A variational
framework for exemplar-based image inpainting,” Int. J. Comput. Vis.,
vol. 93, no. 3, pp. 319–347, 2011.

[38] A. Buades, B. Coll, and J.-M. Morel, “A review of image denoising
algorithms, with a new one,” Multiscale Model. Simul., vol. 4, no. 2,
pp. 490–530, 2005.

[39] C. Yang, X. Lu, Z. Lin, E. Shechtman, O. Wang, and H. Li,
“High-resolution image inpainting using multi-scale neural
patch synthesis,” in Proc. IEEE Comput. Vis. Pattern Recognit.,
Jul. 2017, pp. 6721–6729. [Online]. Available: http://vgl.ict.usc.edu/
Research/NeuralPatchSynthesis/

[40] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Deep image prior,” in
Proc. IEEE Comput. Vis. Pattern Recognit., Jun. 2018, pp. 9446–9454.
[Online]. Available: https://dmitryulyanov.github.io/deep_image_prior

[41] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang, “Generative
image inpaining with contextual attention,” in Proc. IEEE Comput. Vis.
Pattern Recognit., Jun. 2018, pp. 5505–5514.

[42] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang. (2018). “Free-
form image inpainting with gated convolution.” [Online]. Available:
https://arxiv.org/abs/1806.03589

[43] X. Zhu, Y. Qian, X. Zhao, B. Sun, and Y. Sun, “A deep learning
approach to patch-based image inpainting forensics,” Signal Process.,
Image Commun., vol. 67, pp. 90–99, Sep. 2018. [Online]. Available:
https://dmitryulyanov.github.io/deep_image_prior

[44] J. Xie, L. Xu, and E. Chen, “Image denoising and inpainting with deep
neural networks,” in Proc. 25th Int. Conf. Neural Inf. Process. Syst.
(NIPS), 2012, pp. 341–349.

[45] S. Ram and J. J. Rodríguez, “Single image super-resolution using
dictionary-based local regression,” in Proc. IEEE Southwest Symp.
Image Anal. Interpretation, Apr. 2014, pp. 121–124.

[46] S. Ram and J. J. Rodríguez, “Image super-resolution using graph
regularized block sparse representation,” in Proc. IEEE Southwest Symp.
Anal. Interpretation, Apr. 2016, pp. 69–72.

[47] V. Duval, J. F. Aujol, and Y. Gousseau, “On the parameter choice for
the non-local means,” SIAM J. Imag. Sci., vol. 3, pp. 1–37, Mar. 2010.
[Online]. Available: http://hal.archivesouvertes.fr/docs/00/46/88/56/
PDF/nlmeans2.pdf

[48] I. Pitas and A. N. Venetsanopoulos, “Order statistics in digital image
processing,” Proc. IEEE, vol. 80, no. 12, pp. 1893–1921, Dec. 1992.

[49] J. Bednar and T. Watt, “Alpha-trimmed means and their relation-
ship to median filters,” IEEE Trans. Acoust., Speech, Signal Process.,
vol. ASSP-32, no. 1, pp. 145–153, Feb. 1984.

[50] X. Li, “Image recovery via hybrid sparse representations: A deter-
ministic annealing approach,” IEEE J. Sel. Topics Signal Process.,
vol. 5, no. 5, pp. 953–962, Sep. 2011. [Online]. Available:
http://www.csee.wvu.edu/~xinl/demo/inpainting.html

[51] B. Wohlberg, “Inpainting by joint optimization of linear combina-
tions of exemplars,” IEEE Signal Process. Lett., vol. 18, no. 1,
pp. 75–78, Jan. 2011. [Online]. Available: http://math.lanl.gov/~brendt/
Software/LibAAIR

[52] K. H. Jin and J. C. Ye, “Annihilating filter-based low-rank Hankel
matrix approach for image inpainting,” IEEE Trans. Image Process.,
vol. 24, no. 11, pp. 3498–3511, Nov. 2015. [Online]. Available:
http://bispl.weebly.com/aloha-inpainting.html

[53] P. Buyssens, M. Daisy, D. Tschumperlé, and O. Lézoray, “Exemplar-
based inpainting: Technical review and new heuristics for better geo-
metric reconstructions,” IEEE Trans. Image Process., vol. 24, no. 6,
pp. 1809–1824, Jun. 2015. [Online]. Available: http://gmic.eu/

[54] N. Abbadeni, “Computational perceptual features for texture repre-
sentation and retrieval,” IEEE Trans. Image Process., vol. 20, no. 1,
pp. 236–246, Jan. 2011.

[55] J. E. Farrell, “Image quality evaluation,” in Colour Imaging: Vision and
Technology, L. W. MacDonald and M. R. Luo, Eds. New York, NY,
USA: Wiley, 1999, pp. 285–313.

[56] A. B. Mansoor and A. Anwar, “Subjective evaluation of image quality
measures for white noise distorted images,” in Proc. 12th Int. Conf. Adv.
Concepts Intell. Vis. Syst., vol. 6474, 2010, pp. 10–17.

[57] S. Siegel and N. J. Castellan, Jr., Nonparametric Statistics for The
Behavioral Sciences, 2nd ed. New York, NY, USA: McGraw-Hill, 1988.

[58] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: From error visibility to structural similarity,” IEEE
Trans. Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[59] S. D. Rane, G. Sapiro, and M. Bertalmio, “Structure and texture filling-
in of missing image blocks in wireless transmission and compression
applications,” IEEE Trans. Image Process., vol. 12, no. 3, pp. 296–303,
Mar. 2003.

[60] O. Russakovsky et al., “ImageNet large scale visual recognition chal-
lenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252, Dec. 2015.

Ding Ding received the B.S. degree in electronic
information engineering from the Hefei University
of Technology, Hefei, China, in 2010, and the
Ph.D. degree in electrical and computer engineering
from The University of Arizona, Tucson, AZ, USA
in 2017.

Dr. Ding is currently an AI engineer at Midea
Emerging Technology Center, San Jose, CA, USA.
Her research interests include signal, image, and
video processing/analysis, machine learning, image
restoration, segmentation and classification, and
pattern recognition.

Authorized licensed use limited to: George Tziritas. Downloaded on December 25,2020 at 20:31:18 UTC from IEEE Xplore. Restrictions apply.

DING et al.: IMAGE INPAINTING USING NONLOCAL TEXTURE MATCHING AND NONLINEAR FILTERING 1719

Sundaresh Ram (S’04–M’14) received the
B.E. degree in electrical and electronics engineering
from the College of Engineering, Anna University,
Chennai, India, in 2007, and the M.S. and Ph.D.
degrees in electrical and computer engineering
from The University of Arizona, Tucson, AZ,
USA, in 2010 and 2017, respectively. He was a
Post-Doctoral Research Fellow with the School
of Electrical and Computer Engineering and
the School of Biomedical Engineering, Cornell
University, Ithaca, NY, USA, from 2017 to 2018.

Dr. Ram is currently a Post-Doctoral Research Fellow with the
Department of Radiology, Center for Molecular Imaging, and the
Department of Biomedical Engineering, University of Michigan, Ann Arbor,
MI, USA. His research interests include signal processing, image and
video processing/analysis, machine learning, computational imaging, and
compressive sensing and applications of these methods in the biological
sciences, conventional and medical imaging, and data science. He is a
member of SIAM and SPIE.

Jeffrey J. Rodríguez (M’90–SM’02) received the
B.S. and Ph.D. degrees from The University of Texas
at Austin in 1984 and 1990, respectively, and the
M.S. degree from the Massachusetts Institute of
Technology in 1986, all in electrical engineering.

Since 1990, he has been a Faculty Member
with the Department of Electrical and Computer
Engineering, The University of Arizona, Tucson,
where he is currently the Director of the Signal
and Image Laboratory. His research area includes
signal/image/video processing and analysis, with a

particular emphasis on automated image analysis. From 2003 to 2008, he
was the Co-Director of Connection One, a National Science Foundation
research center. From 2005 to 2011, he served on the IEEE Signal Processing
Society Technical Committee on Image, Video, and Multidimensional Signal
Processing. He has served on the organizing committees for numerous other
technical conferences.

Dr. Rodriguez served as the General Chair for the 2016 IEEE Southwest
Symposium on Image Analysis and Interpretation and the 2007 IEEE Inter-
national Conference on Image Processing. From 1996 to 2000, he was an
Associate Editor of the IEEE TRANSACTIONS ON IMAGE PROCESSING.

Authorized licensed use limited to: George Tziritas. Downloaded on December 25,2020 at 20:31:18 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

