
1

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών

Transaction Processing
(Διαχείριση Δοσοληψιών)

Χαρίδημος Κονδυλάκης

Τμήμα Επιστήμης Υπολογιστών,

Πανεπιστήμιο Κρήτης

2

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών

Transaction Processing (Διαχείριση Δοσοληψιών)

✓ In modern applications databases are

✓shared by more than one users at the same time

✓who can query and update them

✓ It is not possible to provide each user with their own copy of the
database

✓ A database management system must ensure that:

✓concurrent access is provided

✓each user has a consistent view of the data

Lecture 13

3

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών

Transaction Management

✓ The problems encountered in the development of large database
applications led to the development of transaction management
techniques

✓Creation of inconsistent results (Consistency)

✓ the machine crashes in the middle of the execution process

✓Errors in concurrent execution (Concurrency)

✓arbitrary concurrent execution of processes lead to the inconsistent
views of data

✓Uncertainty as to when changes become permanent:

✓can we be confident about the results residing in secondary
storage even if processes have completed successfully?

The concept of a transaction was invented to solve these problems

4

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών

Transaction Processing (Διαχείριση Δοσοληψιών)

✓ A transaction is a series of database operations (reads and writes)
that form a single logical entity with respect to the application
being modeled.

✓Example: a transfer of funds between accounts is considered a
logical entity

✓ A transaction commits when it finishes execution normally
otherwise it aborts

✓ User transactions appear to execute in isolation, although they
may execute concurrently

5

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών

Inconsistent view of Data (Ασυνέπεια στα Δεδομένα)

✓ Process P1 transfers $400 from account 1234 to account 5678

✓ Transfer is implemented by

1. (S1) subtracting $400 from the balance of account 1234

2. (S2) adding $400 to the balance of account 5678

✓ Accounts can be found in the following 3 states:

account# lname fname type balance

1234 Doe John Checking 900.00

5678 Doe John Savings 100.00

…. …. …. …. ….

accounts

Balance 1234 Balance 5678

After S1 $500 $100

Before P1 $900 $100

After S2 $500 $500

6

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών

Inconsistent view of Data: Process Interleaving
(Ασυνέπεια στα Δεδομένα: Παρεμβολές μεταξύ Διαδικασιών)

✓ Process P2 performs a credit
check on the account holder
and requires a minimum of
$900 as the total balance of
the accounts to approve the
issuance of a credit card

✓ P2 reads the balance values of
the two accounts and
computes their sum

✓ P2 and P1 are running
concurrently

✓ Execution is incorrect since the
‘real’ sum is 1000$

Process P1 Process P2

sum:=0

subtract 400$ from
the balance of 1234
balance:=500

add balance of 1234 to sum
sum:=sum+500 = 500

add balance of 5678 to sum
sum:=500 + 100 = 600

reject

add $400 to the
balance of 5678

7

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών

Inconsistent view of Data: Process Interleaving

✓ It is equivalent to serial
executions P1, P2

✓ This execution is correct

✓both processes see the
correct data

✓ Transaction management
must ensure that only
correct interleaving of
processes takes place

Process P1 Process P2

sum:=0

add balance of 1234 to
sum
sum:=900

subtract 400$
from the balance
of 1234
balance:=500

add balance of 5678 to
sum
sum:=900+ 100 = 1000

add $400 to the
balance of 5678

Issue approval

8

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών

Transaction Management

✓ Transactions guarantee the following properties:

✓Atomicity (Ατομικότητα)

✓Consistency (Συνέπεια)

✓Isolation (Μεμονωμένη Εκτέλεση Διαδικασιών)

✓Durability (Διάρκεια)

✓ Known as ACID Properties

9

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών

Transaction Management: ACID Properties

✓ Atomicity

✓Transactions are considered atomic when considering their
effect on the database:

✓all operations that make up the transaction are executed or
none is: the set of operations that make up the transaction is
considered indivisible

✓result of the transaction is preserved even when crashes
occur:

✓a database recovery procedure performs a rollback to
bring the database back to its state prior to transaction
execution

10

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών

Transaction Management: ACID Properties

✓ Consistency

✓a transaction should preserve a domain-specific consistency
constraint independently of whether it is executed concurrently
with other transactions or in isolation.

✓ Isolation (serializability)

✓serial schedule: when transactions are executed one after the
other

✓any schedule of interleaved execution of transactions is
equivalent to some serial schedule

✓ Durability

✓After a transaction commits, it is guaranteed to be recoverable

✓ transactions are durable to crashes

11

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών

Transaction Management (ACID Properties)

✓ Atomicity and durability are trivially satisfied by any transaction
that performs only read operations

✓ Notation:

✓Transactions: T1, T2, … Tk

✓Ri (X): transaction Ti reads database item X

✓Ri (X,u): transaction Ti reads database item X, u is the value read

✓Wi (X): transaction Ti writes database item X

✓Wi (X,u): transaction Ti writes database item X, u is the value written

✓Ci : transaction Ti commits

✓Ai: transaction Ti aborts

12

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών

Transaction Management (ACID Properties)

✓ A schedule or history is an interleaved sequence of operations.

✓Transactions: T1, T2

✓Schedule : R2(A) W2(A) R1(A) R1(B) R2(B) W2(B) C1 C2

✓ A schedule is the result of the translation of processes - specified in
some high-level language - into a series of primitive operations

✓ The scheduler component of the transaction processing component
of a DBMS ensures that only “correct” schedules are executed

13

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών

Transaction Management (ACID Properties)

✓ Given a set of transaction specifications, the scheduler component
produces a schedule that is equivalent to some serial execution of
the transaction

✓ If no such schedule is possible, the transaction manager aborts or
delays some of the transactions

✓ The scheduler also detects deadlocks

✓Situations in which none of the transactions participating in the
schedule can proceed unless one of them is aborted

14

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών

Example: Scheduling

✓ Schedule S = R2 (A) W2(A) R1(A) R1(B) R2(B) W2(B) C1 C2

✓involves transactions T1, T2

✓is not equivalent to any serial execution of the two transactions.

✓ Interpretation of the schedule

✓T1 = R1(A), R1(B), C1

✓T2 = R2 (A), W2(A), R2(B),W2(B), C2

15

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών

Example: Scheduling

✓Schedule S = R2 (A) W2(A) R1(A) R1(B) R2(B) W2(B) C1 C2

✓T1 = R1(A), R1(B), C1

✓T2 = R2 (A), W2(A), R2(B), W2(B), C2

✓ S is correct only if it is equivalent to one of the serial schedules T1, T2 or
T2, T1

✓Case 1: serial schedule S’ = T1, T2

✓ S: T1 reads A after T2 has modified it.

✓S’ : the values of A and B read by T1 have not been modified by T2

✓Case 2: serial schedule S’ = T2, T1

✓ S: T1 reads B before T2 writes it.

✓S’: T2 modifies the values of A and B, then T1 reads it.

Hence the schedule has different effects than any serial execution

16

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών

Interleaving of DB Operations

✓ Interleaving of database operations can yield large performance gains

✓ While some transaction is performing I/O, another transaction can
use the CPU

✓ System throughput

✓the number of transactions that can finish execution in a given period of
time) increases whereas response time remains constant

17

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών

Serial vs Concurrent Execution (Example)

✓ Transaction Manager services database transactions

✓ Each transaction uses both CPU and I/O Resources

✓ Ti: (cpu operation) RI() (cpu operation) WI() CI

✓ The system has a single CPU with a 5ms interval and a single disk.

✓ Each I/O operation requires 50ms of wait time.

✓ Serial Execution: Resource usage

18

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών

Serial vs Concurrent Execution (Example)

✓ Serial Execution

✓ a transaction needs 110ms

✓ throughput is 1 transaction per 110ms (9.09 transactions per second)

✓CPU is underutilized: active 9.09% of the time

Interleaved execution of transactions can increase

CPU utilization and thus the system throughput

19

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών

Serial vs Concurrent Execution (Example)

✓ Interleaved Execution

✓ throughput has increased

✓ throughput will increase with the number of transactions processes
executed concurrently

✓ additional improvements: more than one I/O devices are used

20

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών

Testing Serializability

✓ Criteria to determine given a set of transactions S if

✓interleaved schedules for S are equivalent to some serial
execution for the transactions in S

✓ Conflicting database operations when they

I. belong to different transactions

II. refer to the same data item

III. at least one of them is a write operation

a transaction reads an attribute and another
tries to write its value

21

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών

Properties of Schedules

✓ Two schedules are called equivalent if for any initial state of the
database, they result to the same database state.

✓ Two schedules are equivalent if all pairs of conflicting operations occur in
the same order

✓ A schedule is called serializable if it can be shown to be equivalent to
some serial execution of its transactions

✓ Only serializable schedules are acceptable

✓ Example:

✓T1 = R1(A), R1(B), W1(A), C1

✓T2 = W2(A), R2(A), C2

✓S = W2(A) R1(A) R1(B) R2(A) W1(A)

✓Is S serializable?

✓Yes, it is equivalent to T2 T1

There may be more than one serial schedules

equivalent to some serializable schedule

22

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών

Testing Schedule Serializability

✓ Notation: opi(X) <<S opj (X) means that operation opi of some
transaction Ti on item X, precedes operation opj of some
transaction Tj on item X in schedule S

✓ Cases:

✓If opi(X)<<S1 opj (X) then opi(X)<<S2 opj (X) where S2 is a serial
schedule equivalent to S1

✓If opi(X)<<S1 opj (X) and opj (Y) <<S1 opi (Y), then S1 is not
serializable.

✓If it were, then, in the equivalent serial schedule S2, transaction
Ti should both precede and follow transaction Tj.

23

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών

Testing Serializability: The lost update problem

✓ The case in which two users want to update the same item in a
database.

✓Suppose transaction T1 reads item A first : R1(A)

✓Assume transaction T2 reads item A: R2(A)

✓T2 writes immediately its value to A, before T1 performs the
update: W2(A)

✓T1 writes its value to A: W1(A)

✓Hence any changes made by T2, are lost.

24

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών

Testing Serializability: The lost update problem

✓ Schedule: S1 = R1(A) R2(A) W2(A) W1(A) C1 C2

✓ Conflicting Operations:

✓R1(A), W2(A)

✓R2(A), W1(A)

✓ Assume there is a serial schedule S2 equivalent to S1.

✓ S1: R1(A) << S1 W2(A)➔S2: R1(A) << S2 W2(A)

✓T1 must precede T2

✓ S1: R2(A) << S1 W1(A)➔S2:R2(A) << S2 W1(A)

✓T2 must precede T1

✓ The schedule is non-serializable

25

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών

Testing Serializability: The blind write problem

✓ Occurs when a transaction writes a value before reading it

✓ Schedule: S1 = W1(A) W2(A) W2(B) W1(B) C1 C2

✓ Conflicting Operations:

✓W1(A) W2(A)

✓W2(B) W1(B)

✓ Assume there is a serial schedule S2 equivalent to S1.

✓ S1: W1(A) << S1 W2(A)➔S2: W1(A) << S2 W2(A)

✓T1 must precede T2

✓ S1: W2(B) << S1 W1(B)➔S2:W2(B) << S2 W1(B)

✓T2 must precede T1

✓ The schedule is non-serializable

26

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών

Testing Serializability: Precedence Graphs

✓ Given a schedule S, a precedence graph graph PG(S) for S is a
directed graph whose

✓ vertices correspond to the transactions T in the schedule and

✓ set of edges consists of an edge Ti→ Tj whenever there exist two
conflicting operations opi, opj in S and opi << S opj

✓ Example:

✓S1 = R1(A) R2(A) W1(A) W2(A) C1 C2

✓Schedule S2 = W1(A) W2(A) W2(B) W1(B) C1 C2

T1 T2PG(S1)

PG(S2)

27

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών

Serializability

✓ Theorem: A schedule S is serializable if and only if the precedence graph
PG(S) contains no cycle

✓ Lemma 1: In any finite directed acyclic graph G, there is always a vertex u
with no incoming edges

✓ Proof:

✓Case 1: If PG(S) has no cycles, S is serializable

✓Assume that there are m transactions T1, T2, … Tm in S. We need to
find a reordering Ti1, Ti2, … T im of the transactions in order to
construct an equivalent serial schedule

✓By Lemma 1, in the precedence graph PG(S) there will be some
vertex Tk with no incoming edges. Let Ti1 be Tk.

28

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών

Serializability

✓Since Tk has no incoming edges in PG(S), there is no pair of
conflicting operations of Tk and some other transaction Tj such that
the operation of Tj should precede that of Tk. Hence in the
equivalent serial schedule, Tk. should be the first to be executed.

✓Remove Tk from PG(S) along with all its incident edges. The
resulting graph is still acyclic. Hence we can find a vertex Tl that
has no incoming edges. Let Ti2 be Tl .Then Tl should follow Tk in the
serial schedule.

✓Continue this process until the precedence graph contains one
vertex. The corresponding transaction is the last one in the serial
schedule.

✓Case (2): If S is serializable, then PG(S) is acyclic.

✓Let PG(S) contain a cycle: T1 << S T2 <<S T3 …. << Tk << S T1
(contradiction)

HY 360 - Lecture 14

