
1

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

Physical DB Design

 Indexed Sequential Access Method (ISAM)

 File records are assumed to have unique keys.

 File records must be kept sorted according to their key values.

 Sorting Keys

 Independently of their domains, keys can be compared

 Numerical order is used to compare integers or reals

 Lexicographic order is used for character strings

 To sort keys containing more than one field, an order must be
imposed on the keys; then records are sorted according to the value
of the first field, forming sequences of clusters.

 Each cluster consists of records with the same value in the first
field; clusters are sorted by the value of the second field, etc.

Lecture 16

2

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

Physical DB Design

 Example: assume record keys consist of two integer-valued fields.

Sorting the list of key values (2,3), (1,2), (2,2), (3,1), (1,3) results in

the list (1,2),(1,3),(2,2),(2,3),(3,1).

 Accessing Sorted Files

 The knowledge of the order of records in a sorted file can be

exploited for providing efficient access to the file records.

 A file called a sparse index is created for a sorted file. The index

contains pairs of the form: (<key value>,<block address>).

 For every block b of the file, there is a record (v,b) in the index; v

is a key value that is at least as low as any key value on b, but

higher than any key value on any block preceding b. If b is the first

block, v=- is used.

3

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

Physical DB Design

 Accessing Sorted Files

 The key for the index file is the first field of (v,b) and it is kept
sorted according to this field.

 Index files differ from general files in that index file records are
not pinned by pointers from elsewhere.

 Index files must be organized so that queries of the following sort
can be answered efficiently:

Given a key value v1 for the file being indexed, find that record
(v2,b) in the index such that v2 <=v1 and either (v2,b) is the last
record in the index, or the next record (v3,b’) in the index has
v1<v3. Value v2 is said to cover v1.

 The result of the query is the block b that contains the record
with key value v1, since the index is sorted at all times.

4

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

Physical DB Design

 Note: certain file organizations cannot provide such functionality. E.g.,

hashed files cannot be used, since the entire file must be searched in

order to find the required values.

 Searching Index Files:

1. Linear Search: scan the index from the beginning, examining each

record until the one that covers the one searched for is found

 Inefficient for large indices: half the index blocks will have to

be examined on average in a successful lookup

 Linear search of the index is preferable over linear search of the

file: if R records are on a block, the main file has R times as

many records as the index file.

 Index records are usually shorter than file records.

5

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

Physical DB Design

 Searching Index Files:

2. Binary Search: assume B1, B2, …, Bn are the blocks of the index

file and v1,v2, …,vn are the keys of the first records in the

respective blocks. To locate record with key v:

 Retrieve index block Bn/2 and let w be the value of its key: if

v<w, repeat the search for the blocks B1, B2, …, B n/2-1 ; if

v>=w, repeat the search for the blocks Bn/2 … Bn ; when only

one block remains, use linear search to find the record.

 Roughly log2 n block accesses are needed.

6

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

Physical DB Design

 Example: A file contains 1,000,000 records of 200 bytes each. Blocks

are 212=4096 bytes long. The length of the key fields is 20 bytes.

 R=20, hence the main file uses 50,000 blocks. The same number of

records is needed for the index file.

 An index record used 24 bytes: 20 bytes for the key, 4 for a pointer

to a block. 170 index records can fit in one block if no additional

bits are used. Then 50,000/170=294 blocks are needed for the

index file.

 Linear search would require about 147 block accesses on average

for a successful lookup.

 Binary search requires about log2 294 = 9 block accesses.

7

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

Physical DB Design

 Example(cont’d):

 Hashed organization would only require 3 accesses: (1 to read the

bucket directory, and 2 to read/write the block)

 However, binary search is preferable to hashed organization for

answering range queries, i.e., queries of the form “retrieve all

records with keys in the range (a,b)”. A hashed organization would

require examining practically all buckets.

8

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

Physical DB Design

 Operations on Sorted Files with Unpinned Records

 The operations insertion, deletion and modification require

insertions, deletions and modifications to the index file.

 Assumptions:

 The original sorted file is kept on the sequence of blocks B1, B2,

…Bk.

 The records in each block are kept in sorted order.

 The records of block Bi precede those of block Bi+1

 Used/unused information is kept in a known area in the

beginning of the file.

9

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

Physical DB Design

 Initialization:

1. The initial file of records must be sorted and distributed among

blocks.

2. Create the index file by examining the first record in each block of

the main file. Form the records of the index file by combining the

key values of the file records with the block addresses.

3. Distribute the index file records among blocks.

4. Create a directory containing the addresses of the index blocks.

10

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

Physical DB Design

 Operations:

1. Lookup: find the record with key value v1

examine the index to find the record with a value v2 that covers v1.

The index record containing v2 also contains a pointer to a block

of the main file. If the record with key value v1 exists, it will be on

that block.

2. Modification: modify the record with key value v1

use the lookup procedure to find the record. If the modification

changes the key, treat the operation as a deletion followed by an

insertion. If not, make the modification and rewrite the record.

11

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

Physical DB Design

 Operations:

1. Insertion: insert a record with key value v1

use the lookup procedure to find the block Bi of the main file, on
which a record with key value v1 would be found. Place the new
record in Bi keeping the records sorted. If Bi does not have space
for the new record, a new block must be created. One option is to
use the next block (if it has space). Then the new record must
become the block’s first record.

2. Deletion: delete the record with key value v1

use the lookup procedure to find the record. Shift the records that
are located to the right of the deleted record one position to the left.
If the block becomes empty after the deletion, the record for the
block must be deleted from the index.

12

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

Physical DB Design

 Example: sorted list of numbers: 2,4,5,16,25,37,54,68,79,80,88

2 4 5 16

25

68 79 80 88

25
37 54 56

68

After insertion of numbers

19,58,31:

2 4 5 16

25

68 79 80 88

25
37 54 56

58

19

31

58

13

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

Physical DB Design

 B-Trees

 Index files can become quite large for large main files

 Indices on index files are possible

Main file

1st-level index

2nd-level index

3rd-level index

14

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

Physical DB Design

 The 1st-level index consists of pairs (v,b), where b is a pointer to a

block B of the main file and v is the key of the first record in the block.

The index is also sorted by key values.

 The 2nd-level index consists of pairs (v,b) where b points to a block of

the 1st-level index whose first key is v, and so on.

 Multilevel indexing can be considerably more efficient than a single

level of indexing.

 A multilevel index structure can have many forms. These are

collectively referred to as balanced trees (B-trees).

 The main file is part of the B-tree and it is assumed that the file

contains unpinned records.

15

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

Physical DB Design

 Although the insertion / deletion procedures of single-level index
structures can be used, they do not result in the optimum organization
of the B-tree: nodes can have between one and the maximum possible
number of records.

 B-trees use a particular insertion / deletion strategy that ensures that no
node, except possibly the root, is less than half full.

 A B-tree is characterized by two parameters d,e:

 d and e are integers such that, the number of index records a block
can hold is 2*d-1 and the number of records of the main file a
block can hold is 2*e-1.

 Convention: the key value in the first record is omitted. It is assumed
that all values that are less than the key value of the second record are
covered by the missing value.

16

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

Physical DB Design

 Operations on B-trees:

1. Lookup: to search for a record with key value v, find a path from

the root of the B-tree to some leaf node where the desired record

will be found if it exists

 Paths in B-trees: every search path begins at the root. When a

block B is reached during the search, if B is a leaf node, then B has

to be examined for a record with key value v. If B is not a leaf,

then it is an index record. The key value that covers v has to be

found and the associated pointer must be followed, leading to

another index block or main file block.

 Property: the key value in record i of block B is the lowest key

value of any leaf descending from the i-th child of B.

17

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

Physical DB Design

 This property and the fact that the main file is sorted, guarantee

that, if a record exists in a leaf node, then it can only be found by

following the pointers as described above.

2. Modification:

 If a key field is to be modified, then modification is performed by a

deletion followed by an insertion.

 Otherwise, modification is a lookup followed by the rewriting of

the record involved.

18

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

Physical DB Design

 Example: d=e=2, i.e., 3 records in blocks of the index and main files.

1 4 9 16 25 36 49 64 81 100121 144 169 196 225 256

9 64 100 196

25 144
B1

B2 B3 B4

B5 B6 B7 B8 B9 B10 B11

19

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

Physical DB Design

3. Insertion: to insert a record with key value v

 Apply the lookup procedure to find the block B in which this

record belongs

 If there are fewer than 2e-1 records in B, insert the new record in

sorted order

 If there are already 2e-1 records in B, create a new block B1 and

divide the records of B and the inserted record in two groups of e

records each. The first e go to block B and the remaining e to block

B1.

 A record for B1 needs to be inserted in the parent record of B. The

insertion procedure is applied recursively (with d in place of e) for

inserting a record for B1 to the right of the record for B.

20

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

Physical DB Design

3. Insertion: to insert a record with key value v

 If many ancestors of B have the maximum 2d-1 records, the effects

of inserting a record may ripple up the tree. It is only ancestors of

B that are affected.

 If the insertion ripples up to the root, then the root node is split and

a new node with two children is created.

 Example: assume we want to insert the record with key value 32 in

the B-tree of the previous example

Record 32 belongs to B7, but B7 is full. A new block (B12) is

created and a record for B12 must be inserted in B3.

B3 is also full, so a new block (B13) is created.

21

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

Physical DB Design

 Example: d=e=2, i.e., 3 records in blocks of the index and main files.

1 4 9 16 25 36 49 64 81 100121 144 169 196 225 256

9 64 100 196

25 144
B1

B2 B3 B4

B5 B6 B7 B8 B9 B10 B11

Record 32 belongs to B7, but B7 is full; a new block (B12) must be created and a record

must be inserted in B3. But B3 is also full.

22

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

Physical DB Design

1 4 9 16 25 32 64 81 100121 144 169 196 225 256

9 36 196

25
B1

B2 B3 B4

B5 B6 B7 B8 B9 B10 B11

36 49

B12

B13

100

B14

144

B15

64

23

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

Physical DB Design

4. Deletion: to delete a record with key value v

 Apply the lookup procedure to find the block B in which this

record belongs

 If after the deletion, B still has e or more records, we’re done.

 If the deleted record was the first in B, the value of the parent

record must be changed to contain the value of the new first key of

B.

 If B is the first child of its parent node, the parent has no key value

for B, so the parent’s parent must be changed. The process

continues until an ancestor A1 of B is found that is not the first

child of its parent A2. Then, the new lowest value of B goes in the

record of A2 that points to A1.

24

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

Physical DB Design

4. Deletion: to delete a record with key value v

 If after deletion block B has e-1 records, we examine the block B1

that has the same parent as B and that is immediately next to B, If

B1 has more than e records, we distribute the records of B and B1

as evenly as possible, keeping them sorted.

 The key values in the parents of B and B1 may need to be

modified.

 If B1 has only e records, then combine the records of B and B1.

This requires that a record be deleted from the parent node.

 Example: delete the record with key value 64 in the B-tree of the

previous example.

25

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

Physical DB Design

1 4 9 16 25 32 64 81 100121 144 169 196 225 256

9 36 196

25
B1

B2 B3 B4

B5 B6 B7 B8 B9 B10 B11

36 49

B12

B13

100

B14

144

B15

64

26

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

Physical DB Design

1 4 9 16 25 32 81 100121 144 169 196 225 256

9 36

196

25 81

B2 B3

B5 B6 B7 B8 B10 B11

36 49

B12

B13

144

B14

B-tree after the deletion of record 64

27

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

Physical DB Design

 Cost of Operations on B-trees:

 Assume that a file of n records is organized as a B-tree with

parameters d and e. Then the tree will have at most n/e leaf nodes

and n/de parent nodes of leaf nodes, n/d2e parents of parents of leaf

nodes, etc.

 Lookup: if there exist i nodes on a path from the root to a leaf node

where a particular record is located, then i block accesses are

needed.

 For insertion, deletion and modification, 2 + logd (n/e) accesses are

required on average

 We will assume that all operations take 2 + logd (n/e) block

accesses on average.

28

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

Physical DB Design

 Example: A file contains 1,000,000 records of 200 bytes each. Blocks

are 212=4096 bytes long. The length of the key fields is 20 bytes.

Pointers take 4 bytes.

 e=10 (up to 20 records can fit in a block)

 171 index records can fit in a block (171*20 + 171*4 = 4084).

Thus, d=86.

 The expected number of block accessed per operation is

2 + logd (n/e) = 2 + log86 (1000000 / 10) < 5

