
1

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

Locking to ensure serializability

 Concurrent access to database items is controlled by strategies
based on locking, timestamping or certification

 A lock is an access privilege to a single database item

 Lock Manager: manages the locks requested by transactions.

 Locks are

obtained by transactions

stored in a lock table

Lock is an entry of the form (item, lock-type, transactionID)

 item is the item that the transaction locks

 lock-type can be shared or exclusive

 transactionID is the transaction identifier

Lecture 14

2

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

Locking

 When a transaction holds an exclusive lock on a database item,
no other transaction can read or write the item
used for writing

 When a transaction holds a shared lock, other transactions can
obtain a shared lock on the same item
used for reading

 Assumptions (for now)

there is a single type of lock and

every transaction must obtain a lock on an item before accessing it.

all items locked by a transaction must be unlocked, otherwise no
other transaction may gain access to them.

a transaction must wait until the lock it requests is released by the
transaction that holds it.

3

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

Transaction Management

1. Locking can prevent the lost update problem:

T1 = Lock1(A) R1(A) W1(A) Unlock1(A) C1

T2 = Lock2 (A) R2(A) W2(A) Unlock2(A) C2

2. Locking enforces a serial execution of the transactions

3. Locking can also prevent the blind write problem:

T1 = Lock1(A) W1(A) Lock1 (B) W1(B) Unlock1 (A) Unlock1 (B) C1

T2 = Lock2 (A) W2(A) Lock2(B) W2(B) Unlock2(A) Unlock2(B) C1

Then the following schedule is valid:

Lock1(A) W1(A) Lock1(B) W1(B) Unlock1(A) Lock2(A) W2(A)
Unlock1(B) Lock2(B) W2(B) Unlock2(A) Unlock2(B) C1 C2

4

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

LiveLock

 Undesirable phenomena if locks are granted in an arbitrary
manner

 Example:

while T2 is waiting for T1 to release the lock on A, another
transaction T3 that has also requested a lock on A is granted the
lock instead of T2. When T3 releases the lock on A the lock is
granted to T4 etc.

 Livelock: The situation where a transaction may wait for ever while
other transactions obtain a lock on a database item

Can be avoided by using a first-come-first-served lock granting
strategy but, even then a deadlock might occur

5

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

Deadlock

 Occurs when a transaction is waiting to lock an item that is
currently locked by some other transaction

 Example: Consider the transactions:

T1 = Lock1(A) Lock1(B) …. Unlock1(A) Unlock1(B) C1

T2 = Lock2 (B) Lock2 (A) …. Unlock2 (B) Unlock1 (A) C2

 Assume T1 is granted a lock on A and T2 is granted a lock on B

 Then T1 requests a lock on B but is forced to wait because T2

has the lock on B.

Similarly, T2 requests a lock on A but is forced to wait because
T1 has the lock on A.

Neither transaction can proceed because each one is waiting for
the other to release a lock: both processes wait for ever

6

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

Different solutions for Deadlocks

 Solution 1: Require each transaction to request all locks at once.
Either all locks are granted or none.

 Solution 2: Assign an arbitrary linear order to the items and
require all transactions to request their locks in that order.

 Solution 3: Do nothing to prevent deadlocks: abort one or more
of the deadlocked transactions if a deadlock arises.

7

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

Deadlock Discovery

 Deadlocks can be discovered using wait-for graphs:

Given a set of transactions S, a wait-for graph is a directed graph:

vertices correspond to transactions in the set

there exists an edge from Ti to Tj if Ti is waiting to lock an item on
which Tj is holding a lock.

 Theorem: A set of transactions is deadlocked if and only if there exists
a cycle in the wait-for graph.

 Example: The wait-for graph for the transactions contains a cycle

T1 = Lock1(A) Lock1 (B) …. Unlock1 (A) Unlock1 (B) C1

T2 = Lock2(B) Lock2 (A) …. Unlock2 (B) Unlock2 (A) C2

T1 T2

8

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

2-Phase Locking (2PL)

 2-Phase Locking (2PL): a protocol ensuring serializability of schedules

 Definition: A schedule is said to obey the 2-phase locking protocol if
the following rules are obeyed by each transaction in the schedule

1. When a transaction attempts to read (write) a data item, a read
lock (write lock) must be acquired first

2. If a transaction T1 holds a lock on data item A for operation op1

and some other transaction T2 requests the lock to perform a
conflicting operation op2 on the same item, the transaction
requesting the lock (T2) is forced to wait until no conflicting lock
on the item exists

 (only read locks are non-conflicting)

3 A transaction cannot request additional locks once it releases any
lock!

9

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

2-Phase Locking (2PL): Conflicts

 two locks by the same transaction never conflict

 a transaction with a read lock on a data item can acquire a
write lock on the item as long as no other transaction has a lock
on the data item;

 a transaction with a write lock on a data item need not acquire
a read lock on the same item.

 2PL permits the early release of locks
 Notation:

 RLi: transaction Ti obtains a read lock

 WLi: transaction Ti obtains a write lock

 RUi: transaction Ti releases a read lock

 WUi: transaction Ti releases a write lock

10

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

2-Phase Locking (2PL): Example

 Does the following schedule obey the 2PL protocol?

S = R1(A) R2(B) W2(B) R2(A) W2(A) R1(B) C1 C2

Lock/unlock operations must be added first. The schedule becomes:

S’ = RL1(A) R1(A) RU1(A) RL2(B) R2(B) WL2(B) W2(B) WU2(B) RL2(A)

R2(A) WL2(A) W2(A) RL1(B) R1(B) C1 C2

 Rule 1 : no item is accessed without a lock being granted to the
requested transaction

 obeyed

11

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

2-Phase Locking (2PL): Example

 Does the following schedule obey the 2PL protocol?

S = R1(A) R2(B) W2(B) R2(A) W2(A) R1(B) C1 C2

Lock/unlock operations must be added first. The schedule becomes:

S = RL1(A) R1(A) RU1(A) RL2(B) R2(B) WL2(B) W2(B) WU2(B) RL2(A)

R2(A) WL2(A) W2(A) RL1(B) R1(B) C1 C2

 Rule 2 : no two conflicting operations have a lock on the same
item at the same time

 obeyed

12

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

2-Phase Locking (2PL): Example

 Does the following schedule obey the 2PL protocol?

S = R1(A) R2(B) W2(B) R2(A) W2(A) R1(B) C1 C2

 Lock/unlock operations must be added first. The schedule becomes:

S = RL1(A) R1(A) RU1(A) RL2(B) R2(B) WL2(B) W2(B) WU2(B) RL2(A) R2(A)

WL2(A) W2(A) RL1(B) R1(B) C1 C2

Rule 3: A transaction cannot request additional locks once it
releases any lock!

Violated!

13

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

2-Phase Locking (2PL): Example

 Applying the 2PL discipline to the schedule

S = R1(A) R2(B) W2(B) R2(A) W2(A) R1(B) C1 C2

yields the following interleaved execution (all locks released at commit)

T1 RL1(A) R1(A)

T2 RL2(B) R2(B) WL2(B) W2(B) RL2(A) R2(A) WL2(A)

T1 RL1(B) wait abort restart C1

T2 wait W2(A) C2

The deadlock had to be resolved by aborting and restarting one of the
transactions.

Under 2PL S is equivalent to the serial schedule T2 T1

14

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

2-Phase Locking (2PL): Example

 Theorem: A schedule that follows 2PL is always serializable.

 Example:

 The schedule S’= R1(A) R2(A) W1(A) W2(A) C1 C2 is forced to
execute as follows by a transaction scheduler that uses 2PL:

T1 RL1 (A) R1 (A) WL1(A) wait abort

T2 RL2(A) R2(A) WL2 (A) wait

T1 restart C1

T2 W2(A) C2

If no locking were imposed S’ would be

non-serializable

15

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

Transaction Management

 Example: Consider the following transactions

 T1: W1(U) R1(Y) W1(U) C1

 T2: R2(X) W2(U) W2(Y) W2(W) C2

 T3: W3(W) R3(X) W3(U) W3(Z) C3

 Is it possible to add lock/unlock steps to these transactions so
that every legal schedule is serializable?

 Answer: yes by adding add lock/unlock steps using 2PL

16

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

Transaction Management

T1

T2 RL2(X) WL2(U) wait

T3 WL3(W) RL3(X) WL3(U) WL3(Z) W3(W)

T1 WL1(U)

T2 wait wait wait wait wait WL2(Y)

T3 WU3(W) R3(X) RU3(X) W3(U) WU3(U)

1. T1: W1(U) R1(Y) W1(U) C1

2. T2: R2(X) W2(U) W2(Y) W2(W) C2

3. T3: W3(W) R3(X) W3(U) W3(Z) C3

17

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

Transaction Management

T1 wait wait wait wait wait RL1(Y) wait

T2 WL2(W) R2(X) W2(U) WU2(U) W2(Y)

T3 W3(Z)

T1 WL1(U) wait W1(U) R1(Y) W1(U)

T2 W2(W) WU2(W) C2

T3 WU3(Z) C3

T1 WU1(U) RU1(Y) C1

T2

T3

1. T1: W1(U) R1(Y) W1(U) C1

2. T2: R2(X) W2(U) W2(Y) W2(W) C2

3. T3: W3(W) R3(X) W3(U) W3(Z) C3

18

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

Transaction Management

Tree Protocols

 In many instances, the set of items accessed by a transaction can be
viewed naturally as a tree or forest

 E.g., items are nodes in a B-tree; items have different granularities
(relations, tuples, attributes).

 Two different policies may be followed:

1. each node in the tree is locked independently of its descendants

2. a lock on an item implies a lock on all of its descendants

The latter policy saves time by avoiding locking many items
separately

E.g., when the content of an entire relation needs to be read, the
relation can be locked in one step instead of locking each tuple
individually

19

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

Transaction Management

Tree Protocol #1 (TP1)

 Definition: A transaction obeys the TP1 policy if:

o except for the first item locked, no item can be locked unless the
transaction holds a lock on the item’s parent

o no item is ever locked twice by a transaction

 A schedule obeys the TP1 policy if every transaction in the schedule
obeys it.

Example: Consider the following hierarchy of items

D

A

B C

E

F G

20

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

Transaction Management

The following schedule obeys TP1

Does it obey 2PL?

T1 L1(A) L1(B) L1(D) U1(B) L1(C) U1(D)

T2 L2(B)

T3 L3(E) L3(F)

T1 U1(A) U1(C)

T2 L2(E) U2(B) U2(E)

T3 L3(G) U3(E) U3(F) U3(G)

21

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

Transaction Management

Note: A transaction that obeys TP1 need not necessarily obey 2PL.

Theorem: Every legal schedule that obeys the protocol TP1 is serializable

Example: The schedule of the previous example is serializable.

 its precedence graph is acyclic

T1 T2 T3

22

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

Transaction Management

Tree Protocol #2 (TP2)

 Definition: A transaction obeys the TP2 policy if whenever an item is
locked, all its descendants are locked

 Indiscriminate locking under TP2 may result in schedules where two
transactions hold a lock on the same item at the same time.

 Example: in the hierarchy

transaction T1 locks E (therefore F,G). Then T2 locks B, therefore acquires
conflicting locks on E,F,G.

A

B C

E

F G

D

23

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

Transaction Management

To avoid conflicts of this sort, the warning protocol may be followed:

 a transaction cannot place a lock on an item unless it first places a
warning on all its ancestors

 a warning on an item X prevents any other transaction from locking
X, but does not prevent them from also placing a warning on X, or
from locking some descendant of X that does not have a warning

Definition: A transaction obeys the warning protocol if:

1. It begins by placing a lock or warning at the root

2. It does not place a lock or warning on an item unless it holds a
warning on its parent.

3. It does not remove a lock or warning unless it holds no lock or
warnings on its children

4. It obeys 2PL in the sense that all unlock operations follow all
warnings or lock operations

24

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Δημήτρης Πλεξουσάκης

Transaction Management

 This protocol acts in conjunction with the assumption that a lock can be

placed on an item only if no other transaction has a lock or warning on

the same item.

 Furthermore, a warning can be placed on an item as long as not other

transaction has a lock on the item.

 Theorem: Legal schedules obeying the warning protocol are

serializable.

