dpovtiotrplo 10
duoikn 2 yedloon Baoewv Aedopévwv

diMdTtoc [Novidne

TpApo eToTARNG UTIOAOYLOTOV
Mavemothipo Kpheng

15 Aekepppiov 2023

1/24

‘Evoc B-tree(Balanced Tree) té&ng p etvon évo 8évtpo pe Tig
TPOKAT® LBLOTNTEG:
@ H oupd éxeL Touldytotov 800 Taudid, ektdc v givor @OAAO
o Kawvévac kéuPoc dev éxel mévw amd p moudid
o KdBe kduPoc extdc amd tnv oupd ko tor YOANaL éxeL
TouAdxLoTOV [%1 TeoudLd
@ ‘O)at taL UM epyavilovtan oto i8lo eTimedo
o KébBe kduPog mepréxel kAeldLd kol Seikteg.

@ Eva uméddevdpo mou Eekvdel amd éva deiktn Tov PplokeTou
aPLOTEPA £VOG KAELBLOU, TeepLEXEL LTLOKAELOTIKE KAELBLEL e
MLKPOTEPEG TULEG

@ Av évog kduPog mepiéxel k kheldid téte Tepéyxel k+1 Seikteg
Tpo¢ &ANovc kéuPouc

2/24

o Evodloktikd, éva B-tree utopsei va oplotel amd to
apdyovta d. Tuykekpipéva, k&Be ecwtepikdc kéuPoc
ptopel va éxel to ToA) 2d-1 Toudid ko vou TtepLéxel 2d-2
EYYPOLPEG.

@ Avtiotowxa, o eAdxlotog oplBude Toudldv sivo § ko o
ehduytotoc apbudc eyypapnv d-1. Avtiotouya, kdbe @ONo
uropel vou eptéyxel ard d péxpt 2d-1 eyypapéc (khetdid).

@ Y& K&ATOLEG TEPLTLTOOELS O EAAXLOTOC aplBUdC £YYPOLPDVY oTAL
QUM evBéyetou vou eivor Slocpopetikdc amd Tov eAdyLoTo
aplBd eYYpPAP®OV 0TOUC £0WTEPLKOUC KOuPBouc. Ytnv
TipokeLévT TepiTtwon to B-tree opileto amd to d ko e.

3/24

Ou embdpevol 800 mivokeg ouvodilovv Tig SLocpopeTikég
mepLtoels. O TPOTOC AvalpépeTall OTNV TEPITTWOT ToV £ivall M
yvwoth M Téd&n m tov dévtpov. Evd o Seltepoc apopd tnv
TepimTTwoT Tovu Eépoupe Tl d Kol €.

Méy. op. TeuBin EX ap. mecBibu Méy. ep eyypoupdv | EM ep. eyypecpisy
ea. kéufog m [E' m-1 [g' -1
piAho - - m-1 21-1
plfo m 2* m-1 1*
Méy. op. Teoudidnw [ZNTE Méy. op eyypoupdw | EA op. eyypocpiw
co. képfeg 2d-1 d 2d-2 1
pih ke - - 2e-1 [
plec 2d-1 (2e)! 2% 2d-2 (2e-1)1 1*

YOtav eivor @OAo

MNopaderypor B-trees

(a)

FAEARY
/ \

Left subtree Right subtree

(b)

FECIRE IR
\

Left subtree Middle subtree Right subtree

Ewkéve.: a)BTree pe 2 moudid, b) BTree pe 3 madid, c) BTree pe m moudid

5/24

To B+trees amoteholv vtokatryopial Twv B-trees mou

xapaktnpilovtal amd tnv e&fc didtnTa:
o Méva tar UM TepLéyouv dedopévar L, evid oL uTtéhottol
k6puPoL TepLéxouv deikteg B-(pointers) mpog dANoug kduPoug.

@ Y uveT®c, oL eowtepikol kduPol kabodnyolv tnv avalftnon
(Yio e0peon, eloaywy N Staypapn Sedopévwv) ka to
QUA TeepLEXOLV TIC OLVTIOTOLYEG EYYPAUPEG.

@ lMpoooyn! H mapovaia kdmolou kAeldlol og ecwtepikd kduPo
Bev ouvemdiyeTan TV OTopEn ey ypopfic Tou val avtioTouel
oe ouTd TO KAELS.

Mo v akpiBela, Seiktec Tpoc dedopéva
6/24

Aiepyoolec oe B+Trees

e Avalftnon (Lookup):
o Avalftnom pac eyypognc ue kAewdl n. Evpeon evéc
povoratiol atd tnv pila Tpog To PUANO Tou TEPLEXEL TNV &V
Aoyw eyypaet, edv outn UTtdp)EL.
e Ewaywy1 (Insertion):
o Ewoaywyn pmiog eyypo@nc e kAeldi n
o Awypoph (Deletion):
o Aiaypan Tne eyypawnc e kAeldi n

7/24

Aly6plBuoc Avalhtnonc oe B+tree

fune find (search key value K) returns nodepointer

// Given a scarch key value, finds its leaf node

return tree search(root, K /[searches from root
endfunc

fune tree_search (nodepointer, search key value K) returns nodepointer

Searches tree for entry

if *nodepointer is a leaf, return nodepointer;
else,
if K = K, then return tree_search(f,. /);
else,
it £ = K, then return tree_search(P,,, &) /i m # entries

else,

find ¢ such that K, < K < K44
return treesearch(P, K

endfunc

8/24

AlyéplBuoc Eloaywync os B+tree

proc inseTt inodepointel’, entry. newchildentry)
/1 InseTis eniry into subtree with TOw "*nodepointer’; degree is d;

I/ newehildentry” null initially, and null on return unless child is split

if *nodepointer is a non-leaf node, say N,

find'i such that K; < entry's key value € Ji+l: /¢ choose subtree
insert(F,, entry. newchildentry); 11 recurs'ively, insert entry
if newchildentry is null, return; /1 usual case; didn't split child
else. /1 we split child, must insert *newchildentry in N
if N has space, / usual case

put *newchildentry on it, set newchildentry to null, return:

else, [/ note difference wrt splitting of leaf page!
split N: /1 2d + 1 key values and 2d + 2 nodepointers

first d key values and d + 1 nodepointers stay,
last o keys and o + 1 pointers move to new node, N2;
/f *newchildentry set to guide searches between Nand N2
newchildentry = & ((smallest key value on N2,
pointer to N2j);
if N is the root, !/ root node was just split
create new node with (pointer to N. *newchildentry):
make the tree's root-node pointer point to the new node:
return;

if *nodepointer is a leaf node, say L,
if L has space, [usual case
put entry on it, set newchildentry to null, and return;
else, I/ once in a while, the leaf is full
split L: first d entries stay, rest move to brand new node L2;
newchildentry = & ((smallest key value on L2, pointer to L2));
set sibling pointers in Land 127
return;
endproc

9/24

AlybplBuoc Avaypapnc os B4-tree

proc delete (parentpointer, nodepointer. entry, oldchildentry)
11 Deletes entry from s'ubtree with TOot '*nodepointer’; degree is d:

11 Coldchildentry’ null initially, and nuil upon return unless child deleted
if *nodepointer is a non-leaf node. say N.
find 1 such that K, £ entry's key value < K+i; /! choose subtree
delete(nodepointer. Pi entry, oldchildentry): I recursive delete
if oldchildentry is null, return: FI usual case: child not deleted
else, F1 we disca

ded child node (see discussion)
remove *oldchildentry from A, // next, check for underflow
if N has entries to spare, /1 usual case

set oldchildentry to null, return; // delete doesn't go further
clse, /1 note difference wrt merging of leaf pages!
get a sibling § of N:' // parentpointer arg used to find §
if S has extra entries,

redistribute evenly hetween Nand § through parent:
set oldchildentry to null, return;

else, merge Nand § /7 call node on rhs M
oldchildentry = & (current entry in parent for M);
pull splitting key from parent down into node on left;
move all entries from M to node on lefi;

discard empty node M, return;

if *nodepointer is a leaf node, say L,
if L has entries to spare 1 usual case
remaove entry, set oldchildentry to null, and return;

// once in a while, the leaf becomes underfull

get a sibling § of
if § has extra entries,
redistribute evenly between Land S

/! parentpointer used to find §

find entry in parent for node on right; 11 eall it M
replace key value in parent entry hy new low-key value in M
set oldchildentry to null, return;

e, merge Land § £ call node on rhs M
oldchildentry = & (current entry in parent for M);
mave all entries from Af to node on left;

discard empty node M, adjust sibling pointers, return;
endproc

10/24

Eioaywyn oe B+tree : lNepimtwoeic

The insert algorithm for B+ Trees

Leaf Page Index Page "
Full FULL Action

NO NO Place the record in sorted position in the appropriate leaf page

Split the leaf page

. Place Middle Key in the index page in sorted order.

. Left leaf page contains records with keys below the middle key.
Right leaf page contains records with keys equal to or greater than
the middle key.

YES NO

£ b e

. Split the leaf page.
Records with keys < middle key go to the left leaf page
- Records with keys >= middle key go to the right leaf page.

Led b =

Split the index page
YES YES 5. Keys < middle key go to the left index page.
. Keys > middle key go to the right index page.
. The middle key goes to the next (higher level) index

-3 o

IF the next level index page is full, continue splitting the index
pages

11/24

Avaypapn oe B-tree : [epimtwoeic

Leaf Page
Below Fill
Factor

NO

YES

YES

Index Page
Below Fill
Factor

NO

NO

YES

The ge1ete algorithm for B+ Trees

Action

Delete the record from the leaf page. Arrange keys in ascending order
to fill void. If the key of the deleted record appears in the index page,
use the next key to replace it.

e b —

Combine the leaf page and its sibling. Change the index page to
reflect the change.

. Combine the leaf page and its sibling.
. Adjust the index page to reflect the change.
. Combine the index page with its sibling

Continue combining index pages until you reach a page with the
correct fill factor or you reach the root page

12/24

Avaypagn o B4tree

o Ye ké&motec Tapalhayéc Tou adyopiBuov Staypaghc? , o
TepimTwon daypaehc tTe TPOTNG eYYpotc ot éva YOANO,
alvalve@veTow ko 1 Tu Tou kAeldlov Tov Selyvel oto @ilo.
Evtoltolg, To ouykekpipévo PBripa Sev elvor atapaitnto ko
utopset vou TtopoAnBet.

@ 2 To eTdpevo TOPABELYLaL YLOL TNV SLatypo@n TG €Y YPAPNS
3, mapovotdlovtal oL 800 evaA\okTikol TpdToL. Y To
apLotepd M Slaypop Tpayportotmoteiton Ywplc avavéwon
Tou KAeldLo¥, v ota e€Ld pe avavéwor avtioTolya.

Crans] [LCraxs]

I s | f
c b < ‘

2H ouykekpuyévn TPooéyyion akoAouBeiTan oTIc ONUELDTELS TOV

poBfiuotog
13 /24

MNopdderypo Siepyooiwv os B+-tree

e Eotw to B+Tree tédéewg 4.

o Acite Ppo-Pripca to B+ dévBpo petd tnv eloaywyn twv 5,
3,21,9,1,13,2,7,112, 4, 8 ko Tnv darypayn 2, 21, 10, 3,
4

14 /24

MNopdderypo Siepyooiwv os B+-tree

Ewooywyn 5, 3, 21

| *3%5%21* | a

15 /24

MNopdderypo Siepyooiwv os B+-tree

Eiooywyn 9

[on_]®

| ®3 ok gk | | L ERIE: |

16 /24

MNopdderypo Siepyooiwv os B+-tree

Eiooywyn 1,13

o]
b / \ c
| ol B R T | | xQ* (3% * |

17 /24

MNopdderypo Siepyooiwv os B+-tree

Eicorywyd 2
_ 319 |2
b d c
s1eae | [*3%s* | [s9=13v21

18 /24

MNopdderypo Siepyooiwv os B+-tree

Ewcaywyn 7
A3 0|0
b d c
PR | | FIESETE | |*9*13*21*

19 /24

MNopdderypo Siepyooiwv os B+-tree

Ewoaywyd 12

379%13]2

b d ; e
*1#2% | [*3*5x7* |[*g+12% | [*13*21*

20/24

MNopdderypo Siepyooiwv os B+-tree

Eicaywyt 4

N
I*l*z*l | *3*4* || *5*7* “*9*12*“*13*21*}
b c d e f

21 /24

MNopdderypo Siepyooiwv os B+-tree

Eicorywyh 8

|*l*2*|| *’3*4* ||*5*7*8*||*9*12*||*l3*2l*]
b c d e f

22 /24

MNopdderypo Siepyooiwv os B+-tree

Avaypopry 2,21,3

b c d e f

23 /24

MNopdderypo Siepyooiwv os B+-tree

Avocypoyn 4

{ *]k | |*5*7*g*| |t()*|2*| | *13 * |
b d e f

24/24

DBMS Layers

\ Queries /

Query Optimization
and Execution

Relational Operators

Transaction
Manager

Lock
Manager

——————————————————————————————

I Files and Access Methods i
Recovery

Buffer Management Manager

| Disk Space Management

Outline

Why Indexing?

Storing Data Records and Index Types

) Indexed Sequential Access Method (ISAM) Trees

B+ Trees

Motivation

= Consider a file of student records sorted by GPA

Page 1 Page 2 Page 3 Page N Data File

= How can we answer a range selection (E.g., “Find all
students with a GPA higher than 3.0”)?

* What about doing a binary search followed by a scan?
= Yes, but...

* What if the file becomes “very” large?
" Cost is proportional to the number of pages fetched
" Hence, may become very slow!

Motivation

» What about creating an index file (with one entry per
page) and do binary search there?

Index Entry = <first key on the page, pointer to the page>
A

Ki|Pq| Ka|Po s - = KN |PN Index File

L

Page 1 Page 2 “ e Page N Data File

= But, what if the index file becomes also “very” large?

Motivation

* Repeat recursively!

Non-leaf
Pages v

- T A A A

S o o S o o S o o S © o

Leaf
Pages

Each tree page is a disk block and all data records reside (if chosen to be
part of the index) in ONLY leaf pages

How else data records can be stored?

Outline

Why Indexing?

Storing Data Records and Index Types /

) Indexed Sequential Access Method (ISAM) Trees

B+ Trees

Where to Store Data Records?

" In general, 3 alternatives for “data records” (each
referred to as K*) can be pursued:

= Alternative (1): K* is an actual data record with key k

= Alternative (2): K* is a <k, rid> pair, where rid is the
record id of a data record with search key k

= Alternative (3): K* is a <k, rid-list> pair, where rid-list
is a list of rids of data records with search key k

Where to Store Data Records?

" |In general, 3 alternatives for “data records” (each
referred to as K*) can be pursued:

()

Alternative (1): Leaf pages contain the actual data (i.e., the data records)
& J

4 N
Alternative (2): Leaf pages contain the <key, rid> pairs and actual data

records are stored in a separate file

4 N
Alternative (3): Leaf pages contain the <key, rid-list> pairs and actual data

records are stored in a separate file
& J

The choice among these alternatives is orthogonal to the indexing technique

Clustered vs. Un-clustered Indexes

" |ndexes can be either clustered or un-clustered

= Clustered Indexes:

" When the ordering of data records is the same as
(or close to) the ordering of entries in some index

= Un-clustered Indexes:

* When the ordering of data records differs from the
ordering of entries in some index

Clustered vs. Un-clustered Indexes

" |s an index that uses Alternative (1) clustered or
un-clustered?
= Clustered

" |s an index that uses Alternative (2) or (3)

clustered or un-clustered?

= Clustered “only” if data records are sorted on the
search key field

" |n practice:
= A clustered index is an index that uses Alternative (1)
= |ndexes that use Alternatives (2) or (3) are un-clustered

Outline

Why Indexing?

Storing Data Records and Index Types

) Indexed Sequential Access Method (ISAM) Trees

B+ Trees

ISAM Trees

* |ndexed Sequential Access Method (ISAM) trees

are static
/_ Root ——au
40
Non-Leaf
Pages
20 | | 33 51 | | 63
/ | |

Leaf 10* 15+ 20* 27% 33* 37* 40* ‘ 46* 51* 55* *
Pages

[E.g., 2 Entries Per Page

ISAM Trees: Page Overflows

» What if there are a lot of insertions after creating
the tree?

Non-leaf i
Pages coe
— /[&\ [&\ [&\ [g\
Leaf .- oo .- .-
Pages)) %, A 7
Overflow ------= >) e
page

Primary pages

ISAM File Creation

= How to create an ISAM file?

= All leaf pages are allocated sequentially and
sorted on the search key value

" |f Alternative (2) or (3) is used, the data records
are created and sorted before allocating
leaf pages

" The non-leaf pages are subsequently allocated

ISAM: Searching for Entries

= Search begins at root, and key comparisons direct it
to a leaf

= Search for 27*

Root T=au

T

20 33 51 | | 63

ISAM: Inserting Entries

" The appropriate page is determined as for a search, and the
entry is inserted (with overflow pages added if necessary)

" |nsert 23*
Root =
|40 |
20 33 51 | 63
/.
10* 15* 20* 27* 33% 37* 40* | 46* 51* 55* 63* 97*

1

23*

ISAM: Inserting Entries

" The appropriate page is determined as for a search, and the
entry is inserted (with overflow pages added if necessary)

" |nsert48*
Root =
40 |_
/’ \\
20 | | 33 51 | | 63
10* | 15* 20% | 27* 33* | 37* 40* | 46* 51* | 55* 63* | 97*
Y
23 A8*

ISAM: Inserting Entries

" The appropriate page is determined as for a search, and the
entry is inserted (with overflow pages added if necessary)

" |nsert41*
Root =
40 J
/’ \\
20 33 51 63
10* 15* 20* 27* 33* 37* 40* | 46* 51* 55* 63* 97*
~
23* ag* | 41*

ISAM: Inserting Entries

" The appropriate page is determined as for a search, and the
entry is inserted (with overflow pages added if necessary)

" |nsert42*
Root =
40 |
/’ \\
20 33 51 63
10* 15* 20* 27* 33* 37* 40* | 46* 51* 55* 63* 97*
Y
23* 48* | 41*

Y
Chains of overflow pages can easily develop! 40

ISAM: Deleting Entries

The appropriate page is determined as for a search, and the

entry is deleted (with ONLY overflow pages removed when

becoming empty)

Delete 42*

Root =

40

\\

P

20

33

/|

T~

51

63

10* | 15* 20*

27*

33*

37*

40* | 46+

51*

55*

63*

97*

RV

23*

48*

41*

42*

ISAM: Deleting Entries

The appropriate page is determined as for a search, and the

entry is deleted (with ONLY overflow pages removed when

becoming empty)

Delete 42*

Root =

40

\\

P

20

33

/|

T~

51

63

10* | 15* 20*

27*

33*

37*

40* | 46+

51*

55*

63*

97*

RV

23*

48*

41*

ISAM: Deleting Entries

The appropriate page is determined as for a search, and the

entry is deleted (with ONLY overflow pages removed when

becoming empty)

Delete 42*

Root =

40

\\

P

20

33

/|

T~

51

63

10* | 15* 20*

27*

33*

37*

40* | 46+

51*

55*

63*

97*

RV

23*

48 | 41*

ISAM: Deleting Entries

The appropriate page is determined as for a search, and the

entry is deleted (with ONLY overflow pages removed when

becoming empty)

Delete 51* Root

20 33

—au

40

\\

T~

51

63

10* | 15* 20* 27*

33*

37*

40* | 46*

51*

55*

63*

97*

48 | 41*

Note that 51 still appears in an index entry, but not in the leaf!

ISAM: Deleting Entries

The appropriate page is determined as for a search, and the

entry is deleted (with ONLY overflow pages removed when
becoming empty)

Delete 55*

Root =

40

\\

P

20

33

/|

T~

51

63

\

10* | 15* 20*

27*

33*

37*

40* | 46+

55*

63* 97*

N\

23*

48 | 41*

Primary pages are NOT removed, even if they become empty!

ISAM: Some Issues

Once an ISAM file is created, insertions and deletions affect only
the contents of leaf pages (i.e., ISAM is a static structure!)

Since index-level pages are never modified, there is no need to
lock them during insertions/deletions

= Critical for concurrency!

Long overflow chains can develop easily
® The tree can be initially set so that ~20% of each page is free

If the data distribution and size are relatively static, ISAM might
be a good choice to pursue!

Outline

Why Indexing?

Storing Data Records in Indexes and Index Types

) Indexed Static Access Method (ISAM) Trees

B+ Trees

Dynamic Trees

= |SAM indices are static

= Long overflow chains can develop as the file grows, leading to
poor performance

= This calls for more flexible, dynamic indices that adjust
gracefully to insertions and deletions

* No need to allocate the leaf pages sequentially as in ISAM

" Among the most successful dynamic index schemes is
the B+ tree

B+ Tree Properties

= Fach node in a B+ tree of order d (this is a measure

of the capacity of a tree):
*" Has at most 2d keys

" Has at least d keys (except the root, which may
have just 1 key)

= All leaves are on the same level
" Has exactly n-1 keys if the number of pointers is n

Points to a sub-tree
in which all keys are
greater than or equal k|

Points to a sub-tree

1
 P1 Py
in which all keys are |+ H.H k ‘ ‘ ‘
1
less than k, :
]

—-——

3
=
e

h—
~~-~
L]
-

Points to a sub-tree in which all keys are greater
than or equal k, and less than to k,

B+ Tree: Searching for Entries

Search begins at root, and key comparisons direct it
to a leaf (as in ISAM)

Example 1: Search for entry 5*

Root \

* 16*

* | 39*

B+ Tree: Searching for Entries

Search begins at root, and key comparisons direct it
to a leaf (as in ISAM)

Example 2: Search for entry 15*

Root

AN

/

* | 39*

X

15* is not found!

B+ Trees: Inserting Entries

" Find correct leaf L

" Put data entryonto L
* |f L has enough space, done!
* Else, split L into L and a new node L,
" Re-partition entries evenly, copying up the middle key

* Parent node may overflow

= Push up middle key (splits “grow’ trees; a root split
increases the height of the tree)

B+ Tree: Examples of Insertions

" |nsert entry 8*

Root \

* | 39*

Leaf is full;, hence, split!

B+ Tree: Examples of Insertions

" |nsert entry 8*

Root \

13

17

24

30

19*

20*

22*

24*

27*

29*

33*

34*

38*

39*

The middle key (i.e., 5) is “copied up”
and continues to appear in the leaf

B+ Tree: Examples of Insertions

" |nsert entry 8*

Root \

* 34*

38*

39*

5 || 13

17

24

30

> 2d keys and 2d + 1 pointers

Parent is full, hence, split!

B+ Tree: Examples of Insertions

" |nsert entry 8*

Root \

24 30
TN N
22% 24* | 27| 29+ 33*| 34* [38* [39*
The middle key (i.e., 17)
is “pushed up”
17 ||=—
5 (| 13 24| 30

4 b/

B+ Tree: Examples of Insertions

17 ||
} A
= |nsert entry 8
2411 30
Root
£ N\
2 | 3* | 5% | 7*)14* 16* 19* 20*| 22* 24*| 27*| 29* 33* | 34*[38* | 39*
\N~ ’f
K O\
2* 3* 5* 7* 8*

B+ Tree: Examples of Insertions

" |nsert entry 8*

FINAL TREE! oo -

5 13 j 24 30
4 N a N
2% 3* 5 7*| 8* 14*| 16* 1979 20% 22* 24*| 27* 29* 33* 34* 38*| 39*

Splitting the root lead to an increase of height by 1!

é)

What about re-distributing entries instead of splitting nodes?

\ S

B+ Tree: Examples of Insertions

" |nsert entry 8*

* 34*

38*

39*

Leaf is full, hence, check the sibling

B+ Tree: Examples of Insertions

" |nsert entry 8*

Do it through the parent

Root \

24

S

2* 3* 5*

7*

14~

16*

19*

20*

22*

24~

27*

29*

33*

34*

38*

39*

" |nsert entry 8*

B+ Tree: Examples of Insertions

Do it through the parent

Root \

8

17

24

30

%/_\ v Ve

2*

3*

5*

7*

8*

14*

16*

19*

20*

22*

24~

27*

29*

33*

34*

38*

39*

“Copy up” the new low key value!

But, when to redistribute and when to split?

Splitting vs. Redistributing

= |Leaf Nodes

" Previous and next-neighbor pointers must be updated
upon insertions (if splitting is to be pursued)

" Hence, checking whether redistribution is possible does
not increase |/O

* Therefore, if a sibling can spare an entry, re-distribute

= Non-Leaf Nodes

" Checking whether redistribution is possible usually
increases |I/0O

= Splitting non-leaf nodes typically pays off!

B+ Insertions: Keep in Mind

Every data entry must appear in a leaf node;
hence, “copy up” the middle key upon splitting

When splitting index entries, simply “push up” the
middle key

Apply splitting and/or redistribution on leaf nodes

Apply only splitting on non-leaf nodes

B+ Trees: Deleting Entries

= Start at root, find leaf L where entry belongs

= Remove the entry
= |f L is at least half-full, done!
" If L underflows

" Try to re-distribute (i.e., borrow from a “rich
sibling” and “copy up” its lowest key)

" |f re-distribution fails, merge L and a “poor
sibling”
= Update parent
" And possibly merge, recursively

B+ Tree: Examples of Deletions

= Delete 19*

Root
17 L

5 13 j 24 30

SN o o SN e,

Removing 19* does not cause an underflow

* 3* S*| 7*| 8* 14*| 16* 1979 20% 22* 24*| 27*|29* 33* 34* 38*| 39*

B+ Tree: Examples of Deletions

= Delete 19*

Root
17

5 13 j 24 30

4 N / ~
1 14*)16*

* 3* S*| 7*| 8*

FINAL TREE!

20%| 22* 24*| 27%29* 33*| 34* 38*| 39*

B+ Tree: Examples of Deletions

= Delete 20*

/' - L\

5 || 13 j 24 || 30
4 N y N
/ X \ x& Ao £\ x&
2+ | 3 5+ [7+] 8¢ 14+ 16+ (20 22+ 24| 27% 207 334 34+ 38+ 30
P

~ -
—————————

Deleting 20* causes an underflow; hence, check a sibling for redistribution

B+ Tree: Examples of Deletions

= Delete 20*

Root

17
5 || 13 j 24 || 30
4 N 2 N
/ X \ x& £ / SN - ----KN\&
2% | 3 5r| 7+ | 8 14*| 16* 20%| 22 ([|24+ 27+ 29~ B3+ 34+ 38| 39*

S -
—————————

The sibling is ‘rich’ (i.e., can lend an entry); hence, remove 20* and redistribute!

= Delete 20*

B+ Tree: Examples of Deletions

/'

Root
17

1

/s

N

m

\ ‘\\\\\\\\\\\\\\\\“~ﬁ>

Is it done?

24

30

y

m

T

* 3*

5*

3
7*

8*

x&
14*| 16*

22*

24~

27*

29*

33*

34*

38*

39*

“Copy up” 27%, the lowest value in the leaf from which we borrowed 24*

= Delete 20*

B+ Tree: Examples of Deletions

/'

Root
17

1

/s

N

m

\ ‘\\\\\\\\\\\\\\\“‘1>

27

30

y

m

T

* 3*

5*

3
7*

8*

x&
14*| 16*

22*

24~

27*

29*

33*

34*

38*

39*

“Copy up” 27%, the lowest value in the leaf from which we borrowed 24*

B+ Tree: Examples of Deletions

= Delete 20*

Root
17

5 13 j 27 30

4 N / ~
1 14*)16*

* 3* S*| 7*| 8*

FINAL TREE!

22*|24* 27*|29* 33*| 34* 38*| 39*

B+ Tree: Examples of Deletions

= Delete 24*

/' - L\,

5 || 13 j 27 || 30
y N\ y \
/}’N \ x& m_-.—_#{\ x
2% | 3 5% | 7*| 8* 14*| 16* (| |22%| 24 P27+ (29 33*| 34 38*| 39*

-~ -
-

The affected leaf will contain only 1 entry and the sibling cannot lend
any entry (i.e., redistribution is not applicable); hence, merge!

B+ Tree: Examples of Deletions

= Delete 24*

“Toss” 27 because the page that it was
pointing to does not exist anymore!

17

P,

A
s
A
Ao
4 1
Il !
,l
\—s ------
- S
’ ~
(27 30)
\\; I’

2* | 3 5% 7%| 8* 14*| 16* (,'.'IZE* 24* 27|29 Tt 33| 347 38+ 39*
\ -~ T I oSS
Merge A > -
22* | 27* | 29 33* | 34* | 38* | 39"

B+ Tree: Examples of Deletions

= Delete 24* Is it done?

Root [T No, but almost there...

5 13j \T 30
4 N

SN e

22% | 27* | 29* 33* | 34* | 38* | 39*

B+ Tree: Examples of Deletions

This entails an underflow; hence,
we must either redistribute or merge!

= Delete 24*

P,

2% 3* S*| 7*| 8* 14*| 16*

22% | 27* | 29* 33* | 34* | 38* | 39*

B+ Tree: Examples of Deletions

= Delete 24*

The sibling is “poor” (i.e., redistribution

is not applicable); hence, merge!

2*

3*

16*

22*%

27*

29*

34*

38*

39*

B+ Tree: Examples of Deletions

= Delete 24*

Root

17
¢ || 5 || 13)
S N "z'
* * * * * ~ et
2 3 5 7 8 ~ \;\4* 16* 22* 27*/ ,29* 33* 34* 38* 39*

Lacks a pointer for 30!

B+ Tree: Examples of Deletions

= Delete 24*

Root
17
¢ 5 13 N
Solk \ A
* * * * * ~ et
2 3 5 7 8 ~ \;\4* 16* 22* 27*/ ,29* 33* 34* 38* 39*
N <oy
RON anf -
5 13 i 1 30
II

Lacks a key value to create a complete index entry!

B+ Tree: Examples of Deletions

= Delete 24*

(17

\
(/ 5 13 s‘ \‘\
S y N ‘,l \“

2% | 3* Bx| 7*| 8* . 14*| 16* \ e
Ny \ 22* 27*/ ,'29* 33* | 34* | 38* 309*
RON “Pull down” 17!
5 13 17 30

B+ Tree: Examples of Deletions

= Delete 24*

RON

N

x| 27+

29*

33*

34*

38*

39*

FINAL TREE!

B+ Tree: Examples of Deletions

= Delete 24*

24* was originally here

- —

-~
-~y
-~
-
-~
-~
~
~
~

N

—"
-

2*

3*

174

184

207

21%

227

277

297

397

Assume (instead) the above tree during deleting 24*

Now we can re-distribute (instead of merging) keys!

= Delete 24*

B+ Tree: Examples of Deletions

13 20| 22 30
i , i -
2% 3* S*| 7*| 8* 144 16* 17418 20% 21% 22% 271 29* 33% 34%38*|39*

[DONE! It suffices to re-distribute only 20; 17 was redistributed for illustration.

\

J

