Assignment 4 Tutorial

Linux Scheduler

*

Papadogiannakis Manos
papamano@csd.uoc.gr

CS-345: Operating Systems
Computer Science Department
University of Crete

e Linux Scheduler
e Scheduler internals
e History

e Assignment 4

Computer Science Department, University of Crete

HY-345: Operating Systems

Linux Kernel

e Heart of the Operating System

e Interface between resources and
user processes

e What the Kernel does

o Memory Management
o Process Management
o Device Drivers
o System Calls

Computer Science Department, University of Crete

Library Functions

System Calls

Kernel

Hardware

HY-345: Operating Systems

Process Management

e Multitasking operating systems
o Tasks must run in parallel

e Usually tasks are more than the CPU cores

e Need to make it possible to execute tasks at the
“same” time

processor(s)

Coordinates how tasks share the available

e

Linux kernel SCI (System Call Interface)

D

Memory " Process "
SR "::bs;stem ms‘:llbs:ystem
Linux kernel N D) Y
o ’ Virtual File System ‘ Vittual Signal
o Prevents taSk Sta rvatIOn | Terminals H Sockets || File systems | memory handling
° 9 Netfilter / Nftables Generic
and preserves fairness Network || bogkiByer | paging ||| process/nread
-2 protocols Linux kernel replacement termination
° Linux kernel 1/0 Scheduler
Packet Scheduler
Character Network Block Page Lli;‘r“gc“;;‘;'
° device device device cache Schedul
. Ta ke I nto a CCO u nt drivers drivers drivers checil

system tasks

Computer Science Department, University of Crete

HY-345: Operating Systems

Task Types

e Balance between two types of processes:
a. Batch processes
b. /O Bound tasks) — 1 ,_,\ .

Long CPU burst

Waiting for 1/0

e Not mutually exclusive / \
® COH— { { ———_—— —_—A—
e Preemption: temporarily L Ra—

evict a running task

e Quantum: Variable but keep it as long as possible

Computer Science Department, University of Crete HY-345: Operating Systems

Real-time processes

e Need guarantee about their execution in time boundaries

e Soft real-time processes
o A task might run a bit late

e Hard real-time processes
o Strict time limits
o Not supported by default Linux

HY-345: Operating Systems

Scheduler Internals

Terms

e Scheduling Policy: defines what type of scheduling behavior should apply to a

process

o Expresses rules and priorities
o SCHED_NORMAL, SCHED_BATCH, SCHED_IDLE, SCHED_RR

e Scheduling Algorithm: defines how the scheduler actually selects the next

task to run, within the rules set by the policy.
o Completely Fair Scheduler, First-In-First-Out, Round-Robin, Earliest Deadline First

e Scheduling Class: kernel structure that defines how tasks belonging to certain
scheduling policies are managed

Computer Science Department, University of Crete HY-345: Operating Systems

Priority

e Linux provides Priority-based scheduling

e A “number” determines how important a task is

Process Priority

(Niceness) Real-Time Process
Priority
-20 0 19
I &—High Priority I—Low Priority—}l (I) bl ae b e | 9I9
I I I ‘
A | |

Default value

Computer Science Department, University of Crete HY-345: Operating Systems

Process Descriptor

e Scheduler needs information for each process

e Useful fields in task_struct:
O prio: Process priority
o sched_class: Scheduling class
o policy: Scheduling policy

Computer Science Department, University of Crete HY-345: Operating Systems

Scheduler Design

e Extensible hierarchy of scheduler modules

.pick_next task
.put_prev_task

pick next task fair,
put_prev_task_ fair,

static const struct sched class fair sched class = {
o EaCh mOdUIe .next = &idle_sched class,
.enqueue_task = enqueue_task fair,
encapsulates a .dequeue_task = dequeue_task fair,
.yield task = yield task_fair,
scheduling policy .check preempt curr = check_ preempt wakeup,

e Real-time classes:
o SCHED_FIFO
o SCHED_RR

https://elixir.bootlin.com/linux/v2.6.38.1/source/kernel/sched fair.c

Computer Science Department, University of Crete HY-345: Operating Systems

https://elixir.bootlin.com/linux/v2.6.38.1/source/kernel/sched_fair.c

schedule (void)

e Main scheduler function is schedule ()
o Replace currently executing process with another

e Called from different places
o Periodic scheduler @

o Current task enters sleep state @
o Sleeping task wakes up

HY-345: Operating Systems

Run queue

e Data structure that manages active
processes

e Holds tasks in the “runnable” state

History

History

e Genesis r D

o Circular queue Runnable | Runnable | Runnable
© Round-robin policy

\ S

e Linuxv2.4 - O(n) scheduler
o Each task runs a quantum of time in each epoch
o Epoch advances after all runnable tasks have their quantum
o At the beginning of each epoch, all tasks get a new quantum

Computer Science Department, University of Crete HY-345: Operating Systems

e Linuxv2.6 - O(1) Scheduler
o Division between real-time and normal tasks
o Early preemption based on priority
o One list per priority (as many as 140 lists)

e Linuxv2.6.23 - CFS
o Introduced in 2007, Improved in 2016
o Default scheduler

Computer Science Department, University of Crete HY-345: Operating Systems

Completely Fair Scheduler

e Models an “ideal, precise multitasking CPU”

e Ideal scheduling: n tasks share 100/n percentage of CPU effort each

e Calculates how long a task should run based on the number of runnable
processes

e Fairness:
o Tasks get their share of the CPU relative to others
o A task should run for a period proportional to its priority

Computer Science Department, University of Crete HY-345: Operating Systems

Completely Fair Scheduler

e Time-ordered red-black tree
o Runnable tasks are sorted by vruntime

Nodes represent
sched_entity(s)
indexed by their
virtual runtime

e When a task is executing

NLCNL NG [N [

its vruntime increases
o Moves to the right of the tree

Vvirtual runtime

-

Most need of CPU Least need of CPU

e Scheduler always selects leftmost leaf
o Task with smallest vruntime

Computer Science Department, University of Crete HY-345: Operating Systems

Completely Fair Scheduler - Improvements

e Virtual clock ticks slowly for important tasks
o Move slower to the right of the tree
o Chance to be scheduled again sooner

e Leftmost node is cached >
O 0(1) aCCeSS Most need of CPU e Least need of CPU

e Reinsertion of preempted tasks takes O (1ogn)

Computer Science Department, University of Crete HY-345: Operating Systems

Assignment 4

Assignment 4 - Least Tolerance First

Completed time Remaining time

e Assume computation-heavy processes:

while (true) Simulate Universe(...); I— % —|— % —|—)
0 |

e Each process is defined by: Execution time %
o Deadlines (D)
o (Estimated) Execution Time (E)

e Our algorithm prioritizes tasks that are most
in danger of missing their deadlines
o Relative to their remaining execution time

How do we measure that? [22 |

Computer Science Department, University of Crete

HY-345: Operating Systems

Tolerance Definition

Tolerance\ Process Deadline System Time
T D—-C Deadline — Current Time
R Remaining Execution Time

= Execution time - Completed time

LTF schedules the process with the smallest Tolerance, prioritizing
tasks that have the least wiggle room before their deadlines

Computer Science Department, University of Crete HY-345: Operating Systems

Time until deadline

5

T — Deadline — Current Time

Remaining Execution Time V\

Work still to be done

e Large Tolerance e Small Tolerance
o Plenty of time to work o Little time left until deadline
o Process can wait o Process should be scheduled first

> Smaller Tolerance = Less room to maneuver = Higher Priority

Computer Science Department, University of Crete HY-345: Operating Systems

Remaining Time

e Process has already =
run for C ms =
1
e Its execution time is E ms ‘ ‘ | | ‘ ‘ ‘ i
e Its remaining computation T I T
time is (E - C) ms Gored Weare wih ond
here e here

e Might not be consecutive

Computer Science Department, University of Crete HY-345: Operating Systems

Completed time: 4s

vy

Parameters
o Deadline: 10s | |
o Execution Time: 6s o

t=0 t=6 t=10
Has run for 4s

Current time: 6s

D — Current Time

Remaining Execution Time

Tolerance =

Computer Science Department, University of Crete HY-345: Operating Systems

Completed time: 4s

Parameters
o Deadline: 10s | |

o Execution Time: 6s

t=0 t=6 t=10
Has run for 4s
Current time: 6s
D — Current Time 10—-6 4
Tolerance = — : . = - _ =2
Remaining Execution Time 6 —4 2

Computer Science Department, University of Crete HY-345: Operating Systems

Preemption

I I I | I I I :

Start

Execution Time = 5s, Deadline = 10s

P2:
Execution Time = 4s, Deadline = 11s T — Deadline — Current Time

Remaining Execution Time

Computer Science Department, University of Crete -345: Operating Systems

Preemption

Time P, P2
I I I) 0 10;(1 = 114—0 - 2.75
I I I 1 101 _ g5 | Mo

2 10-2 _ 11-2 _
10-3 11-3

I I I I I I I : — : s ‘
5 o = .2 5 . - 3
0

Execution Time = 5s, Deadline = 10s

P2:

Execution Time = 4s, Deadline = 11s T Deadline — Current Time

Remaining Execution Time

Computer Science

University of Crete

HY-345: Operating Systems

Termination

e When is a process done?

e Once it has completed its execution time
o Your responsibility to kill it

e If it misses its deadline (Tolerance < 0) “
o Your responsibility to kill it
o Simulate hard deadlines

Computer Science Department, University of Crete HY-345: Operating Systems

Special Case

T — Deadline — Current Time
e There is a special case when Tolerance <1 Remaining Execution Time

o Time until deadline < Work still to be done

Execution Time = 8s, Deadline = 10s

e The process is doomed to Completed time: 2s
miss its deadline

o Infeasible to complete |_ l l _I_l_)

e How to handle? t=10
1. Kill the process immediately, treating it as infeaS|bIe
2. Skip it temporarily until it misses its deadline
3. Schedule it anyway (might delay other process)

> You need to understand your decision and explain it!!!

HY-345: Operating Systems

Computer Science Department, University of Crete

Time

e How do we measure time?
o Do we use absolute values (like in examples)?
o Do we use wall clock time? P
L

o Do we use a reference point?
14:35:28

l/ 5s from boot time
e Free to choose whatever I I I I

suits your implementation S
T 1733134948

Computer Science Department, University of Crete HY-345: Operating Systems

Implementation

e Use your code from assignment 3
o System calls set deadlines

e Linux kernel compilation process
o Instructions in assignment 3

e Might need to make changes to task struct

Computer Science Department, University of Crete

Testing

e Create simple demo processes

o Each initially sets its parameters

e Each process should spin forever

o Infinite loop, not sleep

o Scheduler will kill process once computation time has been fulfilled

e Scheduler should print:
o PID of the task it selected
o Its parameters

e Don’t forget existing processes

o Don’t want to schedule only ours

Computer Science Department, University of Crete

[LTF Scheduler][Timestamp:
[LTF Scheduler][Timestamp:
[LTF Scheduler][Timestamp:
[LTF Scheduler][Timestamp:
[LTF Scheduler][Timestamp:
[LTF Scheduler][Timestamp:

I— You can grep this

Selected
Selected
Selected
Selected
Selected
Selected

Process
Process
Process
Process
Process
Process

tolerance 2

tolerance 2.25
tolerance 2.25
tolerance 2.3
tolerance 2.3
tolerance 2.5

HY-345: Operating Systems

Notes

e Actual context switch e Process descriptor

o kernel/sched.c o include/linux/sched.h
e Completely Fair Scheduler e Real-time scheduling
o kernel/sched_fair.c o kernel/sched rt.c

e Scheduling structs

o include/linux/sched.h Iﬁ

Computer Science Department, University of Crete HY-345: Operating Systems

asmlinkage void sched schedule(void) {

struct task struct *prev, *next;
struct rg * rqg;
égéempt_disable();

prev = rg->curr;

pur prev task(rqg, prev);

next = pick next task(rq);

if (likely(prev != next)) {

context switch(rqg, prev, next);

Previous and next tasks

The processors runqueue (1 in this assignment)
Disable preemption (avoid schedule inside schedule)
Previous is the current task runnin

Put prev task in the runqueue

The appropriate pick function is called depending on
the scheduling class

Actual context switch

Computer Science Department, University of Crete

HY-345: Operating Systems

e Use Bootlin to find functions, structs, etc...
o https://elixir.bootlin.com/linux/v2.6.38.4/source

e You can also map source code using ctags
o http://www.tutorialspoint.com/unix_commands/ctags.htm

e Understand how the scheduler works
o Use printk to observe kernel behavior
o Follow the call to find out how the next tasked is picked

https://elixir.bootlin.com/linux/v2.6.38.1/source
http://www.tutorialspoint.com/unix_commands/ctags.htm

e Reuse existing code snippets within the kernel
o E.g. traversing data structures

e Compile often with small changes
o Massively helps debugging

e Submit anything you can to show your effort!!!
o A README file goes a long way
o Even if your implementation does not fully work

Computer Science Department, University of Crete

Turnin

What to submit: ‘[

B WN

bzlmage — T

Modified or created source files

Test programs and headers in Guest OS
README

Thank You!

>

papamano@csd.uoc.gr

Questions?

Credit

Icons created by Freepik - Flaticon

