
Assignment 4 Tutorial

Linux Scheduler

Papadogiannakis Manos
papamano@csd.uoc.gr

CS-345: Operating Systems
Computer Science Department

University of Crete

Computer Science Department, University of Crete HY-345: Operating Systems

Outline

● Linux Scheduler

● Scheduler internals

● History

● Assignment 4

2

Computer Science Department, University of Crete HY-345: Operating Systems

Linux Kernel

● Heart of the Operating System

● Interface between resources and
user processes

● What the Kernel does
○ Memory Management
○ Process Management
○ Device Drivers
○ System Calls

3

Hardware

Kernel

System Calls

Library Functions

Computer Science Department, University of Crete HY-345: Operating Systems

Process Management

● Multitasking operating systems
○ Tasks must run in parallel

● Usually tasks are more than the CPU cores

● Need to make it possible to execute tasks at the
“same” time

4

Computer Science Department, University of Crete HY-345: Operating Systems

Scheduler

● Coordinates how tasks share the available
processor(s)

● Prevents task starvation
and preserves fairness

● Take into account
system tasks

5

Computer Science Department, University of Crete HY-345: Operating Systems

Task Types

● Balance between two types of processes:
a. Batch processes
b. I/O Bound tasks

● Not mutually exclusive

● Preemption: temporarily
evict a running task

● Quantum: Variable but keep it as long as possible
6

Computer Science Department, University of Crete HY-345: Operating Systems

Real-time processes

● Need guarantee about their execution in time boundaries

● Soft real-time processes
○ A task might run a bit late

● Hard real-time processes
○ Strict time limits
○ Not supported by default Linux

7

Scheduler Internals

8

Computer Science Department, University of Crete HY-345: Operating Systems

Terms

● Scheduling Policy: defines what type of scheduling behavior should apply to a
process

○ Expresses rules and priorities
○ SCHED_NORMAL, SCHED_BATCH, SCHED_IDLE, SCHED_RR

● Scheduling Algorithm: defines how the scheduler actually selects the next
task to run, within the rules set by the policy.

○ Completely Fair Scheduler, First-In-First-Out, Round-Robin, Earliest Deadline First

● Scheduling Class: kernel structure that defines how tasks belonging to certain
scheduling policies are managed

9

Computer Science Department, University of Crete HY-345: Operating Systems

Priority

● Linux provides Priority-based scheduling

● A “number” determines how important a task is

10

Computer Science Department, University of Crete HY-345: Operating Systems

Process Descriptor

● Scheduler needs information for each process

● Useful fields in task_struct:
○ prio: Process priority
○ sched_class: Scheduling class
○ policy: Scheduling policy

11

Computer Science Department, University of Crete HY-345: Operating Systems

Scheduler Design

● Extensible hierarchy of scheduler modules

● Each module
encapsulates a
scheduling policy

● Real-time classes:
○ SCHED_FIFO
○ SCHED_RR

12

static const struct sched_class fair_sched_class = {
 .next = &idle_sched_class,
 .enqueue_task = enqueue_task_fair,
 .dequeue_task = dequeue_task_fair,
 .yield_task = yield_task_fair,
 .check_preempt_curr = check_preempt_wakeup,
 .pick_next_task = pick_next_task_fair,
 .put_prev_task = put_prev_task_fair,

...

https://elixir.bootlin.com/linux/v2.6.38.1/source/kernel/sched_fair.c

https://elixir.bootlin.com/linux/v2.6.38.1/source/kernel/sched_fair.c

Computer Science Department, University of Crete HY-345: Operating Systems

schedule(void)

● Main scheduler function is schedule()
○ Replace currently executing process with another

● Called from different places
○ Periodic scheduler
○ Current task enters sleep state
○ Sleeping task wakes up

13

Computer Science Department, University of Crete HY-345: Operating Systems

Run queue

● Data structure that manages active
processes

● Holds tasks in the “runnable” state

14

History

15

Computer Science Department, University of Crete HY-345: Operating Systems

History

● Genesis
○ Circular queue
○ Round-robin policy

● Linux v2.4 - O(n) scheduler
○ Each task runs a quantum of time in each epoch
○ Epoch advances after all runnable tasks have their quantum
○ At the beginning of each epoch, all tasks get a new quantum

16

Computer Science Department, University of Crete HY-345: Operating Systems

History

● Linux v2.6 - O(1) Scheduler
○ Division between real-time and normal tasks
○ Early preemption based on priority
○ One list per priority (as many as 140 lists)

● Linux v2.6.23 - CFS
○ Introduced in 2007, Improved in 2016
○ Default scheduler

17

Computer Science Department, University of Crete HY-345: Operating Systems

Completely Fair Scheduler

● Models an “ideal, precise multitasking CPU”

● Ideal scheduling: n tasks share 100/n percentage of CPU effort each

● Calculates how long a task should run based on the number of runnable
processes

● Fairness:
○ Tasks get their share of the CPU relative to others
○ A task should run for a period proportional to its priority

18

Computer Science Department, University of Crete HY-345: Operating Systems

Completely Fair Scheduler

● Time-ordered red-black tree
○ Runnable tasks are sorted by vruntime

● When a task is executing
its vruntime increases
○ Moves to the right of the tree

● Scheduler always selects leftmost leaf
○ Task with smallest vruntime

19

Computer Science Department, University of Crete HY-345: Operating Systems

Completely Fair Scheduler - Improvements

● Virtual clock ticks slowly for important tasks
○ Move slower to the right of the tree
○ Chance to be scheduled again sooner

● Leftmost node is cached
○ O(1) access

● Reinsertion of preempted tasks takes O(logn)
20

Assignment 4

21

Computer Science Department, University of Crete HY-345: Operating Systems

Assignment 4 - Least Tolerance First

● Assume computation-heavy processes:
while(true) Simulate_Universe(...);

● Each process is defined by:
○ Deadlines (D)
○ (Estimated) Execution Time (E)

● Our algorithm prioritizes tasks that are most
in danger of missing their deadlines
○ Relative to their remaining execution time

22How do we measure that?

Computer Science Department, University of Crete HY-345: Operating Systems

Tolerance Definition

Process Deadline

= Execution time - Completed time

Tolerance

LTF schedules the process with the smallest Tolerance, prioritizing
tasks that have the least wiggle room before their deadlines

23

System Time

Computer Science Department, University of Crete HY-345: Operating Systems

Intuition

● Large Tolerance
○ Plenty of time to work
○ Process can wait

➢ Smaller Tolerance = Less room to maneuver = Higher Priority
24

Work still to be done

Time until deadline

● Small Tolerance
○ Little time left until deadline
○ Process should be scheduled first

Computer Science Department, University of Crete HY-345: Operating Systems

Remaining Time

● Process has already
run for C ms

● Its execution time is E ms

● Its remaining computation
time is (E - C) ms

● Might not be consecutive
25

Computer Science Department, University of Crete HY-345: Operating Systems

Example 1

● Parameters
○ Deadline: 10s
○ Execution Time: 6s

● Has run for 4s

● Current time: 6s

●
26

Computer Science Department, University of Crete HY-345: Operating Systems

Example 1

● Parameters
○ Deadline: 10s
○ Execution Time: 6s

● Has run for 4s

● Current time: 6s

●
27

Computer Science Department, University of Crete HY-345: Operating Systems

Preemption

28

Computer Science Department, University of Crete HY-345: Operating Systems

Preemption

29

Computer Science Department, University of Crete HY-345: Operating Systems

Termination

● When is a process done?

● Once it has completed its execution time
○ Your responsibility to kill it

● If it misses its deadline (Tolerance < 0)
○ Your responsibility to kill it
○ Simulate hard deadlines

30

Computer Science Department, University of Crete HY-345: Operating Systems

Special Case

● There is a special case when Tolerance < 1
○ Time until deadline < Work still to be done

● The process is doomed to
miss its deadline
○ Infeasible to complete

● How to handle?
1. Kill the process immediately, treating it as infeasible
2. Skip it temporarily until it misses its deadline
3. Schedule it anyway (might delay other process)

➢ You need to understand your decision and explain it!!!
31

Computer Science Department, University of Crete HY-345: Operating Systems

Time

● How do we measure time?
○ Do we use absolute values (like in examples)?
○ Do we use wall clock time?
○ Do we use a reference point?

● Free to choose whatever
suits your implementation

32

Computer Science Department, University of Crete HY-345: Operating Systems

Implementation

● Use your code from assignment 3
○ System calls set deadlines

● Linux kernel compilation process
○ Instructions in assignment 3

● Might need to make changes to task_struct

33

Computer Science Department, University of Crete HY-345: Operating Systems

Testing

● Create simple demo processes
○ Each initially sets its parameters

● Each process should spin forever
○ Infinite loop, not sleep
○ Scheduler will kill process once computation time has been fulfilled

● Scheduler should print:
○ PID of the task it selected
○ Its parameters

● Don’t forget existing processes
○ Don’t want to schedule only ours

34
You can grep this

Notes

35

Computer Science Department, University of Crete HY-345: Operating Systems

Files

● Actual context switch
○ kernel/sched.c

● Completely Fair Scheduler
○ kernel/sched_fair.c

● Scheduling structs
○ include/linux/sched.h

36

● Process descriptor
○ include/linux/sched.h

● Real-time scheduling
○ kernel/sched_rt.c

Computer Science Department, University of Crete HY-345: Operating Systems

sched.c

37

asmlinkage void __sched schedule(void) {

struct task_struct *prev, *next; Previous and next tasks

struct rq * rq; The processors runqueue (1 in this assignment)

preempt_disable(); Disable preemption (avoid schedule inside schedule)

prev = rq->curr; Previous is the current task runnin

pur_prev_task(rq, prev); Put prev task in the runqueue

next = pick_next_task(rq); The appropriate pick function is called depending on
the scheduling class

if (likely(prev != next)) {

 context_switch(rq, prev, next);

Actual context switch

. . .

. . .

. . .

. . .

. . .

. . .

Computer Science Department, University of Crete HY-345: Operating Systems

Notes

● Use Bootlin to find functions, structs, etc…
○ https://elixir.bootlin.com/linux/v2.6.38.1/source

● You can also map source code using ctags
○ http://www.tutorialspoint.com/unix_commands/ctags.htm

● Understand how the scheduler works
○ Use printk to observe kernel behavior
○ Follow the call to find out how the next tasked is picked

38

https://elixir.bootlin.com/linux/v2.6.38.1/source
http://www.tutorialspoint.com/unix_commands/ctags.htm

Computer Science Department, University of Crete HY-345: Operating Systems

Notes

● Reuse existing code snippets within the kernel
○ E.g. traversing data structures

● Compile often with small changes
○ Massively helps debugging

● Submit anything you can to show your effort!!!
○ A README file goes a long way
○ Even if your implementation does not fully work

39

Computer Science Department, University of Crete HY-345: Operating Systems

Turnin

What to submit:

1. bzImage
2. Modified or created source files
3. Test programs and headers in Guest OS
4. README

40

Credit
Icons created by Freepik - Flaticon

Thank You!

papamano@csd.uoc.gr

Questions?

