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Linux Kernel

● Heart of the Operating System

● Interface between resources and
user processes

● What the Kernel does
○ Memory Management
○ Process Management
○ Device Drivers
○ System Calls
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Process Management

● Multitasking operating systems
○ Tasks must run in parallel

● Usually tasks are more than the CPU cores

● Need to make it possible to execute tasks at the 
“same” time 
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Scheduler

● Coordinates how tasks share the available 
processor(s)

● Prevents task starvation
and preserves fairness

● Take into account
system tasks
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Task Types

● Balance between two types of processes:
a. Batch processes
b. I/O Bound tasks

● Not mutually exclusive

● Preemption: temporarily
evict a running task

● Quantum: Variable but keep it as long as possible
6
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Real-time processes

● Need guarantee about their execution in time boundaries

● Soft real-time processes
○ A task might run a bit late

● Hard real-time processes
○ Strict time limits
○ Not supported by default Linux
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Scheduler Internals
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Terms

● Scheduling Policy: defines what type of scheduling behavior should apply to a 
process

○ Expresses rules and priorities
○ SCHED_NORMAL, SCHED_BATCH, SCHED_IDLE, SCHED_RR

● Scheduling Algorithm: defines how the scheduler actually selects the next 
task to run, within the rules set by the policy.

○ Completely Fair Scheduler, First-In-First-Out, Round-Robin, Earliest Deadline First

● Scheduling Class: kernel structure that defines how tasks belonging to certain 
scheduling policies are managed
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Priority

● Linux provides Priority-based scheduling

● A “number” determines how important a task is
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Process Descriptor

● Scheduler needs information for each process

● Useful fields in task_struct:
○ prio: Process priority
○ sched_class: Scheduling class
○ policy: Scheduling policy
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Scheduler Design

● Extensible hierarchy of scheduler modules

● Each module
encapsulates a
scheduling policy 

● Real-time classes:
○ SCHED_FIFO
○ SCHED_RR
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static const struct sched_class fair_sched_class = {
  .next               = &idle_sched_class, 
  .enqueue_task       = enqueue_task_fair,
  .dequeue_task       = dequeue_task_fair,
  .yield_task         = yield_task_fair,
  .check_preempt_curr = check_preempt_wakeup,
  .pick_next_task     = pick_next_task_fair,
  .put_prev_task      = put_prev_task_fair,

...

https://elixir.bootlin.com/linux/v2.6.38.1/source/kernel/sched_fair.c

https://elixir.bootlin.com/linux/v2.6.38.1/source/kernel/sched_fair.c
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schedule(void)

● Main scheduler function is schedule( )
○ Replace currently executing process with another

● Called from different places
○ Periodic scheduler
○ Current task enters sleep state
○ Sleeping task wakes up
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Run queue

● Data structure that manages active 
processes

● Holds tasks in the “runnable” state
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History
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History

● Genesis
○ Circular queue
○ Round-robin policy

● Linux v2.4 - O(n) scheduler
○ Each task runs a quantum of time in each epoch
○ Epoch advances after all runnable tasks have their quantum
○ At the beginning of each epoch, all tasks get a new quantum
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History

● Linux v2.6 - O(1) Scheduler
○ Division between real-time and normal tasks
○ Early preemption based on priority
○ One list per priority (as many as 140 lists)

● Linux v2.6.23 - CFS
○ Introduced in 2007, Improved in 2016
○ Default scheduler

17



Computer Science Department, University of Crete HY-345: Operating Systems

Completely Fair Scheduler

● Models an “ideal, precise multitasking CPU”

● Ideal scheduling: n tasks share 100/n percentage of CPU effort each

● Calculates how long a task should run based on the number of runnable 
processes

● Fairness:
○ Tasks get their share of the CPU relative to others
○ A task should run for a period proportional to its priority
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Completely Fair Scheduler

● Time-ordered red-black tree
○ Runnable tasks are sorted by vruntime

● When a task is executing 
its vruntime increases
○ Moves to the right of the tree

● Scheduler always selects leftmost leaf
○ Task with smallest vruntime
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Completely Fair Scheduler - Improvements

● Virtual clock ticks slowly for important tasks
○ Move slower to the right of the tree
○ Chance to be scheduled again sooner

● Leftmost node is cached
○ O(1) access

● Reinsertion of preempted tasks takes O(logn)
20



Assignment 4

21



Computer Science Department, University of Crete HY-345: Operating Systems

Assignment 4 - Least Tolerance First

● Assume computation-heavy processes:
while(true) Simulate_Universe(...);

● Each process is defined by:
○ Deadlines (D)
○ (Estimated) Execution Time (E)

● Our algorithm prioritizes tasks that are most
in danger of missing their deadlines
○ Relative to their remaining execution time

22How do we measure that?
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Tolerance Definition

Process Deadline

= Execution time - Completed time

Tolerance

LTF schedules the process with the smallest Tolerance, prioritizing 
tasks that have the least wiggle room before their deadlines

23

System Time
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Intuition

● Large Tolerance
○ Plenty of time to work
○ Process can wait

➢ Smaller Tolerance = Less room to maneuver = Higher Priority
24

Work still to be done

Time until deadline

● Small Tolerance
○ Little time left until deadline
○ Process should be scheduled first
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Remaining Time

● Process has already
run for C ms

● Its execution time is E ms

● Its remaining computation
time is (E - C) ms

● Might not be consecutive
25
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Example 1

● Parameters
○ Deadline: 10s
○ Execution Time: 6s

● Has run for 4s

● Current time: 6s

●
26
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Example 1

● Parameters
○ Deadline: 10s
○ Execution Time: 6s

● Has run for 4s

● Current time: 6s

●
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Preemption
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Preemption
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Termination

● When is a process done?

● Once it has completed its execution time
○ Your responsibility to kill it

● If it misses its deadline (Tolerance < 0)
○ Your responsibility to kill it
○ Simulate hard deadlines
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Special Case

● There is a special case when Tolerance < 1
○ Time until deadline < Work still to be done

● The process is doomed to
miss its deadline
○ Infeasible to complete

● How to handle?
1. Kill the process immediately, treating it as infeasible
2. Skip it temporarily until it misses its deadline
3. Schedule it anyway (might delay other process)

➢ You need to understand your decision and explain it!!!
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Time

● How do we measure time?
○ Do we use absolute values (like in examples)?
○ Do we use wall clock time?
○ Do we use a reference point?

● Free to choose whatever
suits your implementation
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Implementation

● Use your code from assignment 3
○ System calls set deadlines 

● Linux kernel compilation process
○ Instructions in assignment 3

● Might need to make changes to task_struct
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Testing

● Create simple demo processes
○ Each initially sets its parameters

● Each process should spin forever
○ Infinite loop, not sleep
○ Scheduler will kill process once computation time has been fulfilled

● Scheduler should print:
○ PID of the task it selected
○ Its parameters

● Don’t forget existing processes
○ Don’t want to schedule only ours

34
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Notes
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Files

● Actual context switch
○ kernel/sched.c

● Completely Fair Scheduler
○ kernel/sched_fair.c

● Scheduling structs
○ include/linux/sched.h

36

● Process descriptor
○ include/linux/sched.h

● Real-time scheduling
○ kernel/sched_rt.c
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sched.c
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asmlinkage void __sched schedule(void) {

struct task_struct *prev, *next; Previous and next tasks

struct rq * rq; The processors runqueue (1 in this assignment)

preempt_disable(); Disable preemption (avoid schedule inside schedule)

prev = rq->curr; Previous is the current task runnin

pur_prev_task(rq, prev); Put prev task in the runqueue

next = pick_next_task(rq); The appropriate pick function is called depending on 
the scheduling class

if (likely(prev != next)) {

    context_switch(rq, prev, next);

Actual context switch

. . .

. . .

. . .

. . .

. . .

. . .
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Notes

● Use Bootlin to find functions, structs, etc…
○ https://elixir.bootlin.com/linux/v2.6.38.1/source

● You can also map source code using ctags
○ http://www.tutorialspoint.com/unix_commands/ctags.htm

● Understand how the scheduler works
○ Use printk to observe kernel behavior
○ Follow the call to find out how the next tasked is picked

38

https://elixir.bootlin.com/linux/v2.6.38.1/source
http://www.tutorialspoint.com/unix_commands/ctags.htm
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Notes

● Reuse existing code snippets within the kernel
○ E.g. traversing data structures

● Compile often with small changes
○ Massively helps debugging

● Submit anything you can to show your effort!!!
○ A README file goes a long way
○ Even if your implementation does not fully work
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Turnin

What to submit:

1. bzImage
2. Modified or created source files
3. Test programs and headers in Guest OS
4. README
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Thank You!

papamano@csd.uoc.gr

Questions?


