
HY345 -Assignment 3 Tutorial

System calls

Outline

● Linux kernel

● System calls

● Emulator

● Implementing a new system call

● Notes

Kernel

● core of the operating system

● interface between resources and user

processes

● what the kernel does:
○ memory management

○ process management

○ device drivers

○ system calls

hardware

kernel

system calls

library functions

System calls

● the interface between a process and the

operating system

● how a program requests a service from the

kernel

hardware

kernel

system calls

library functions

System calls - Examples

● Process control: fork, exit, wait

● File manipulation: open, read, close

● Device manipulation: ioctl, release

● Information: getpid, gettid

● Communication: pipe,socket

● Security: chmod, chown

System calls

● How do we make a system call in a C program?

syscall(long number, …);
○ number: the number that corresponds to the system call

○ ‘…’: the arguments we want to pass to the system call

● System call numbers can be found in <sys/syscall.h>

System calls

printf(“The process ID is %d\n”, getpid());

User space Kernel space

User

program
C library Kernel

System

call

getpid()

return

eax = _NR_getpid

trap

call

table[eax]

return

return to user

space

Assignment 3

● Introduce 2 new fields for each process:
○ deadline:the deadline of the process from now in seconds ○

○ est_runtime: the expected execution time, in milliseconds

● Implement 2 new system calls
○ set_proc_info(...)

○ get_proc_info(...)

● Support for a new scheduling policy
○ will be implemented in Assignment 4

Linux Kernel

Getting the source code:

$ cd spare
$ mkdir <username>
$ chmod 700 <username>
$ cd <username>
$ cp ~hy345/qemu-linux/linux-2.6.38.1-patched.tar.bz2 .
$ tar -jxvf linux-2.6.38.1-patched.tar.bz2

Linux Kernel

Compiling it:

$ cd linux-2.6.38.1
$ cp ~hy345/qemu-linux/.config .

<Implement additional functionality>

$export PATH="/home/misc/courses/hy345/gcc-4.9.2-standalone/bin/:$PATH"
$export
PATH="/home/misc/courses/hy345/gcc-4.9.2-standalone/libexec/gcc/x86_64-unknown
-linux-gnu/4.9.2/:$PATH"

$ make ARCH=i386 bzImage

Emulator

● Load the image and start the guest OS

$ cp ~hy345/qemu-linux/hy345-linux.img .
$ qemu-system-i386 -hda hy345-linux.img -display curses

● Load the image and start the guest OS with the new kernel

$ qemu-system-i386 -hda hy345-linux.img -append "root=/dev/hda"
-kernel linux-2.6.38.1/arch/x86/boot/bzImage -display curses

Implementing a new system call

1. Define a system call number

2. Define a function pointer

3. Define a function

4. Implement the system call

Example: Implement the system call dummy_sys. Takes one integer as an

argument, prints something and returns the integer multiplied by 2.

1. Define a system call number

● Each system call has an invocation number

● Edit linux-2.6.38.1/arch/x86/include/asm/unistd_32.h

○ Define a new system call number

#define NR_dummy_sys 341

○ Increase the number of system calls by 1

#define NR_syscalls 342

2. Define a function pointer

● The kernel needs to have a function pointer pointing to the new system call

● Edit linux-2.6.38.1/arch/x86/kernel/syscall_table_32.S

○ Add an entry at the bottom of the list

.long sys_dummy_sys

3. Define a function

● We need to define a function signature

● Edit linux-2.6.38.1/include/asm-generic/syscalls.h

○ At the bottom of the file add

#ifndef sys_dummy_sys

asmlinkage long sys_dummy_sys(int arg0);

#endif

4. Implement the system call

● Create linux-2.6.38.1/kernel/dummy_sys.c

#include <linux/kernel.h>

asmlinkage long sys_dummy_sys(int
arg0){ printk(“Called
dummy_sys\n”); return ((long)
arg0*2);

}

● Add to linux-2.6.38.1/kernel/Makefile:
obj-y += dummy_sys.o

Simple demo application

#include <stdio.h>

#include <unistd.h>

#include <errno.h>

#define NR_dummy_sys 341

int main(void){

printf("Trap to kernel level\n");

syscall(NR_dummy_sys, 42); /* you should check return value for errors */

printf("Back to user level\n");

return 0;

}

Test the new system call

● Start the VM with the new kernel
○ $ qemu-system-i386 -hda hy345-linux.img -append "root=/dev/hda" -kernel

linux-2.6.38.1/arch/x86/boot/bzImage -curses

● Write a test application
○ $ vi test.c

● Compile the test application
○ $ gcc -o demo.out test.c

● Run the test
○ $./demo.out

● Check the kernel log
○ $ dmesg | tail

Wrapper function

● Macro

#define dummy_sys(arg1) syscall(341, arg1)

● Wrapper function

long dummy_sys(int arg1){

return syscall(341, arg1);

}

Notes

Process Data

● Edit linux-2.6.38.1/include/linux/sched.h
○ Find the task_struct structure

○ Introduce the 2 new fields

● Your system calls will interact with those fields

Faster Compiling Using ccache

Στο directory που δουλεύετε για την άσκηση φτιάχνετε ένα subdirectory:

mkdir -p /spare/csdXXXX/ccache

Κάνετε export το path:

export PATH="/home/misc/courses/hy345/ccache-4.7.4-linux-x86_64/:$PATH"

Πλέον για να κάνετε build τον kernel χρησιμοποιείτε την εντολή:

CCACHE_DIR=/spare/csdXXXX/ccache/ make CC="ccache gcc" ARCH=i386

bzImage

Printk()

● Prints messages to the kernel log

● Every time one of your system calls is executed, you should print a message
○ Your name,A.M. and the name of the system call

● You can view these messages from the user level
○ dmesg

○ cat /var/log/messages

● Very useful for debugging

Hints

Useful kernel functions:

● for_each_process()

● get_current()

● access_ok()

● copy_to_user()

● copy_from_user()

E-LEARN

What to submit:

● bzImage

● Modified or created source files

● Test programs and headers in Guest OS

● README

Good luck!

