HY 345 - Assignment 3 Tutorial

System calls



Outline

e Linux kernel

e System calls

e Emulator

e Implementing a new system call

e Notes



Kernel

e core of the operating system library functions
system calls
e interface between resources and user
kernel
processes
e what the kernel does: hardware

o memory management
o  process management
o device drivers

o system calls




System calls

e the interface between a process and the library functions
operating system

system calls

. kernel
e how a program requests a service from the

kernel

hardware




System calls - Examples

e Process control: fork, exit, wait

e File manipulation: open, read, close
e Device manipulation: ioctl, release
e Information: getpid, gettid

e Communication: pipe, socket

e Security: chmod, chown



System calls

e How do we make a system call ina C program?

syscall(long number, ...);

o number: the number that corresponds to the system call
o %.):the arguments we want to pass to the system call

e System call numbers can be found in <sys/syscall.h>



System calls

printf( “The process ID is %d\n”, getpid() );

a

<

User space
getpid() .
User :
program C library
return

N

Kernel space

eax = _NR_getpid call

trap N table[eax] .
System
Kernel y
call
return to user
space return

4




Assignment 3

e Introduce 2 new fields for each process:
o deadline: the deadline of the process from now in seconds o
o est_runtime: the expected execution time, in milliseconds

e Implement 2 new system calls
o set _proc_info(...)
o get _proc_info(...)

e Support for a new scheduling policy
o  will be implemented in Assignment 4



Linux Kernel

Getting the source code:

$
$
$
$
$
$

cd spare

mkdir <username>
chmod 700 <username>
cd <username>

cp ~hy345/gemu-1linux/linux-2.6.38.1-patched.tar.bz2 .
tar -jxvf linux-2.6.38.1-patched.tar.bz2




Linux Kernel

Compiling it:

$ cd 1linux-2.6.38.1
$ cp ~hy345/gemu-1linux/.config .

<Implement additional functionality>

$export PATH="/home/misc/courses/hy345/gcc-4.9.2-standalone/bin/:$PATH"
$export
PATH="/home/misc/courses/hy345/gcc-4.9.2-standalone/libexec/gcc/x86_64-unknown

-linux-gnu/4.9.2/:$PATH"

$ make ARCH=1i386 bzImage




Emulator

e Load the image and start the guest OS

$ cp ~hy345/gemu-1linux/hy345-1linux.img .
$ gemu-system-i386 -hda hy345-linux.img -display curses

e Load the image and start the guest OS with the new kernel

$ gemu-system-i386 -hda hy345-linux.img -append "root=/dev/hda"
-kernel linux-2.6.38.1/arch/x86/boot/bzImage -display curses




Implementing a new system call

1. Define a system call number
2. Define a function pointer
Define a function
4. Implement the system call

w

Example: Implement the system call dummy_sys. Takes one integer as an
argument, prints something and returns the integer multiplied by 2.



1. Define a system call number

e Each system call has an invocation number

#define NR_rt_tgsigqueueinfo

#define __NR_perf_event_open

e Edit linux-2.6.38.1/arch/x86/include/asm/unistd 32.h BRI

#define NR_fanotify_init

o Define a new system call number #define __NR_fanotify_mark
#define __NR_prlimité4|
#define__ NR dummy sys 341 Bl #dcfine __NR_dunny_sys

o Increase the number of system calls by 1 ST
#define NR_syscalls 342 T

#define __ARCH_WANT_IPC_PARSE_VERSION
#define __ARCH_WANT OLDLREADDIR

#define __ARCH_WANT_OLD_STAT

#define __ARCH_WANT_STATé64




2. Define a function pointer

e The kernel needs to have a function pointer pointing to the new system call

e Edit linux-2.6.38.1/arch/x86/kernel/syscall_table_32.5
o Add an entry at the bottom of the list
.long sys dummy sys

sys_pipe2

sys_inotify_initl

sys_preadyv

sys_pwritev

sys_rt_tgsigqueueinfo /* 335 x/
sys_perf_event_open

sys_recvmmsg
sys_fanotify_init
sys_fanotify_mark
sys_prlimités
sys_dummy_sys




3. Define a function

e We need to define a function signature

e Edit linux-2.6.38.1/include/asm-generic/syscalls.h
o Atthe bottom of the file add
#ifndef sys dummy sys
asmlinkage long sys _dummy sys(int arg®);
#endif #ifndet sys_rt_sigsuspend

asmlinkage long sys_rt_sigsuspend(sigset_t __user *
#endif

#ifndef sys_rt_sigaction

asmlinkage long sys_rt_sigaction(int sig, const str
struct sigaction __user *oa

#endif

#ifndef sys_dummy_sys
asmlinkage long sys_dummy_sys(int arg®@);
#endif

#endif /% __ASM_GENERIC_SYSCALLS_H x/




4. Implement the system call

e Create linux-2.6.38.1/kernel/dummy_sys.c

#tinclude <linux/kernel.h>

asmlinkage long sys dummy_ sys(int
argd){ printk(“Called
dummy_sys\n”); return ((long)
argo*2);

1
J

e Add to linux-2.6.38.1/kernel/ Makefile:
obj-y += dummy sys.o



Simple demo application

#include <stdio.h>

#include <unistd.h>

#tinclude <errno.h>

#tdefine NR_dummy sys 341

int main(void){

printf("Trap to kernel level\n");

syscall(__NR_dummy_sys, 42); /* you should check return value for errors */

printf("Back to user level\n");

return 0;




Test the new system call

e Start the VM with the new kernel
o $ gemu-system-i386 -hda hy345-linux.img -append "root=/dev/hda" -kernel
linux-2.6.38.1/arch/x86/boot/bzImage -curses

e Write a test application
o $ vi test.c

Compile the test application
o $ gcc -o demo.out test.c

e Run the test
o $ ./demo.out

e Check the kernel log
o $ dmesg | tail



Wrapper function

e Macro

#define dummy sys(argl) syscall(341, argl)

e Wrapper function

long dummy sys(int argl){
return syscall(341, argl);




Notes




Process Data

e Edit linux-2.6.38.1/include/linux/sched.h

o  Find the task_struct structure
o Introduce the 2 new fields

e Your system calls will interact with those fields



Faster Compiling Using ccache

210 directory mou 00UAgUETE yia TNV AOKNON PTIAXVETE £va subdirectory:
mkdir -p /spare/csdXXXX/ccache

Kavete export 1o path:
export PATH="/ home/misc/courses/ hy345/ccache-4.7.4-linux-x86_64/ : SPATH"

MA£ov yia va kavete build tov kernel xpnolPoToLEITE TNV EVIOAN:
CCACHE_DIR=/spare/csdXXXX/ccache/ make CC="ccache gcc” ARCH=i386

bzimage



Printk()

e Prints messages to the kernel log

e Every time one of your system calls is executed, you should print a message
o Your name,A.M. and the name of the system call

e You can view these messages from the user level
o dmesg
o cat /var/log/messages

e Very useful for debugging



Hints

Useful kernel functions:

for_each_process()
get_current()
access_ok()
copy_to_user()
copy_from_user()



E-LEARN

What to submit:

bzlmage

Modified or created source files

Test programs and headers in Guest OS
README



START COMPILING LINUX
KERNEL

£ D

§ ¢

WARITING|FOR IT TO FINISH

Good luck!




