
HY-345: Λειτουργικά Συστήματα​
Χειμερινό Εξάμηνο 2025​

Άσκηση 4

Implementation of the “Least Tolerance First” Scheduling
Policy in the Linux Operating System​

Φροντιστήριο: 25/11/2025
Παράδοση: 16/12/2025​

Εισαγωγή
Ο πυρήνας του λειτουργικού συστήματος Linux περιέχει έναν χρονοπρογραμματιστή

(Scheduler) ο οποίος αποφασίζει ποια θα είναι η επόμενη διεργασία η οποία θα εκτελεστεί στον
επεξεργαστή του υπολογιστή (CPU). Ο χρονοπρογραμματιστής παίρνει αποφάσεις σύμφωνα με
την πολιτική χρονοπρογραμματισμού (Scheduling Policy) η οποία βοηθάει στην αποδοτική
χρήση του επεξεργαστή. Στην άσκηση αυτή θα υλοποιήσετε μια νέα πολιτική
χρονοπρογραμματισμού ως μέρος του λειτουργικού συστήματος Linux.

Least Tolerance First
Στην άσκηση αυτή σας ζητείται να υλοποιήσετε τον αλγόριθμο χρονοπρογραμματισμού

“Least Tolerance First” (LTF). Σύμφωνα με τον αλγόριθμο, κάθε διεργασία οφείλει να δηλώσει
ποια είναι η προθεσμία D (deadline) μέσα στην οποίο θέλει να έχει ολοκληρωθεί, καθώς και
ποιος είναι ο εκτιμώμενος χρόνος εκτέλεσης της E (estimated execution time). O αλγόριθμος
“Least Tolerance First” δίνει δυναμικά προτεραιότητα σε διεργασίες ανάλογα με τον χρόνο που
απομένει μέχρι την προθεσμία και πόσος χρόνος εκτέλεσης απομένει στην διεργασία.

Σύμφωνα με τον αλγόριθμο Least Tolerance First, η κάθε διεργασία χαρακτηρίζεται από
μια τιμή Τ (tolerance) η οποία ορίζει ποια διεργασία θα εκτελεστεί πρώτη. Η τιμή T ορίζεται ως

 όπου D είναι η προθεσμία της διεργασίας, Current Time είναι ο 𝑇 = 𝐷 − 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑇𝑖𝑚𝑒
𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒

τρέχων χρόνος του συστήματος και Remaining Execution Time είναι ο υπολογιστικός χρόνος
που απομένει στη διεργασία να εκτελέσει. Ο αλγόριθμος Least Tolerance First επιλέγει να
εκτελέσει πάντα την διεργασία με την μικρότερη τιμή Τ.

Σε κάθε απόφαση χρονοπρογραμματισμού ο χρονοπρογραμματιστής υπολογίζει την
τιμή Τ για όλες τις διεργασίες που έχουν δηλώσει προθεσμία και χρόνο εκτέλεσης και επιλέγει
την διεργασία με την μικρότερη τιμή Τ για να εκτελεστεί. Μικρή τιμή Τ σημαίνει ότι η διεργασία
είναι πιο κρίσιμη γιατί πλησιάζει η προθεσμία της οπότε πρέπει να εκτελεστεί άμεσα.

Ο αλγόριθμος Least Tolerance First είναι υπεύθυνος και για τον χρόνο εκτέλεσης της
κάθε διεργασίας. Όταν ο αλγόριθμος έχει επιτρέψει σε μια διεργασία να εκτελεστεί για τον χρόνο
που εκείνη δήλωσε, τότε ο αλγόριθμος οφείλει να τερματίσει (σκοτώσει) την διεργασία και να
τυπώσει το κατάλληλο μήνυμα. Εάν μια διεργασία δεν καταφέρει να εκτελεστεί για όλο τον χρόνο
εκτέλεσης που έχει δηλώσει αρχικά και περάσει η προθεσμία που είχε δηλώσει, τότε ο
χρονοπρογραμματιστής θα πρέπει να την τερματίζει και να τυπώνει το κατάλληλο μήνυμα.
Τέλος, ο αλγόριθμος είναι preemptive. Αυτό σημαίνει ότι εάν υπάρχει μια διεργασία που έχει
μεγαλύτερη προτεραιότητα σύμφωνα με την πολιτική Least Tolerance First, τότε ο
χρονοπρογραμματιστής θα διακόψει την τρέχουσα διεργασία και θα την αντικαταστήσει με αυτήν
με την μεγαλύτερη προτεραιότητα.

Παράδειγμα Εκτέλεσης
Έστω δύο διαφορετικές διεργασίας P1 και P2. Η διεργασία P1 δηλώνει χρόνο εκτέλεσης 5s και
προθεσμία 10s. Η διεργασία P2 δηλώνει χρόνο εκτέλεσης 4s και προθεσμία 11s. Θεωρούμε ότι
και οι δύο διεργασίες ξεκινούν την εκτέλεση τους ταυτόχρονα την χρονική στιγμή 0s. Συνεπώς, ο
χρονοπρογραμματιστής θα πρέπει τώρα να αποφασίσει ποια διεργασία θα εκτελεστεί.​

1.​ Την χρονική στιγμή t=0
○​ Η διεργασία P1 έχει Τ = 10 − 0

5 = 2

○​ Η διεργασία P2 έχει Τ = 11 − 0
4 = 2. 75

2.​ Ο χρονοπρογραμματιστής αποφασίζει ότι η διεργασία P1 έχει μεγαλύτερη προτεραιότητα
οπότε θα την επιλέξει για εκτέλεση.

3.​ Την χρονική στιγμή t=1
○​ Η διεργασία P1 έχει Τ = 10 − 1

4 = 2. 25

○​ Η διεργασία P2 έχει Τ = 11 − 1
4 = 2. 5

4.​ Ο χρονοπρογραμματιστής αποφασίζει ότι η διεργασία P1 εξακολουθεί να έχει
μεγαλύτερη προτεραιότητα οπότε θα συνεχίσει την εκτέλεση της.

5.​ Την χρονική στιγμή t=2
○​ Η διεργασία P1 έχει Τ = 10 − 2

3 = 2. 666

○​ Η διεργασία P2 έχει Τ = 11 − 2
4 = 2. 3

6.​ Ο χρονοπρογραμματιστής αποφασίζει πως η διεργασία P2 έχει τώρα εκείνη μεγαλύτερη
προτεραιότητα οπότε πρέπει να πάρει χρόνο στον επεξεργαστή. Συνεπώς, διακόπτει την
διεργασία P1 και την αντικαθιστά με την P2.​

Η εκτέλεση των διεργασιών συνεχίζει σύμφωνα με τους κανόνες του αλγορίθμου Least
Tolerance First μέχρι να μην υπάρχει άλλη διεργασία που να μπορεί να εκτελεστεί (είτε επειδή
ολοκλήρωσε τον χρόνο εκτέλεσης της είτε επειδή πέρασε η προθεσμία της).

Τροποποιήσεις στον πυρήνα του Linux
Για την άσκηση αυτή, θα χρησιμοποιήσετε τον κώδικα της άσκησης 3 ως βάση.

Επιπλέον, θα χρησιμοποιήσετε τον emulator QEMU καθώς και το virtual disk image που
χρησιμοποιήσατε στην άσκηση 3. Οδηγίες σχετικά με την μεταγλώττιση του Linux Kernel και την
χρήση του virtual disk image μπορείτε να βρείτε στην εκφώνηση της προηγούμενης άσκησης.

Για την άσκηση αυτή χρειάζεται να τροποποιήσετε τον πυρήνα του λειτουργικού
συστήματος και να υλοποιήσετε την νέα πολιτική χρονοπρογραμματισμού. Για την σωστή
λειτουργία της πολιτικής αυτής θα γίνει χρήση των system calls που υλοποιήσατε στην
προηγούμενη άσκηση. Η κυριότερη συνάρτηση του Linux Scheduler καθώς και το σημείο
εισόδου είναι η συνάρτηση void __sched schedule(void) στο αρχείο
kernel/sched.c.
​
Τα βήματα που πρέπει να ακολουθήσετε είναι:

1.​ Ο scheduler εντοπίζει τις διεργασίας που χρησιμοποιούν την πολιτική LTF ελέγχοντας
ποιες από αυτές έχουν ορίσει προθεσμία D και χρόνο εκτέλεσης E.

○​ Οι διεργασίες αυτές έχουν προτεραιότητα σε σχέση με τις υπόλοιπες που
τρέχουν στο σύστημα. Εάν δεν υπάρχει κάποια “προνομιούχα” διεργασία ο
scheduler δεν χρειάζεται να αλλάξει συμπεριφορά και γι’ αυτό χρησιμοποιεί τον
προκαθορισμένο αλγόριθμο χρονοπρογραμματισμού.

2.​ Για κάθε μια από “προνομιούχες” διεργασίες, υπολογίζει πόσο χρόνο έχουν εκτελεστεί
ήδη στον επεξεργαστή.

3.​ Για κάθε μια από τις διεργασίας υπολογίζει τον απομένων χρόνο εκτέλεσης R. Η χρονική
στιγμή αυτή εξαρτάται από τον χρόνο που έχει εκτελεστεί ήδη η διεργασία και τον χρόνο
που έχει ζητήσει να εκτελεστεί συνολικά.

4.​ Εάν η διεργασία έχει ξεπεράσει την προθεσμία της, ο χρονοπρογραμματιστής την
τερματίζει. Εάν κάποια διεργασία έχει ήδη ολοκληρώσει τον χρόνο εκτέλεσης που είχε
ζητήσει, ο χρονοπρογραμματιστής την τερματίζει.

5.​ Για κάθε μια από τις διεργασίες υπολογίζει την τιμή Τ. Η διεργασία που έχει την
χαμηλότερη τιμή Τ επιλέγεται από τον αλγόριθμο για να εκτελεστεί.

○​ Σε αυτή την περίπτωση, ο χρονοπρογραμματιστής θα διακόψει την διεργασία
χαμηλότερης προτεραιότητας που τρέχει ήδη στον επεξεργαστή ώστε να
εκτελεστεί η διεργασία που επέλεξε.​

Στον αλγόριθμο LTF, μία διεργασία με τιμή T μικρότερη από 1 έχει λιγότερο χρόνο μέχρι την
προθεσμία από ότι χρόνο εκτέλεση που της απομένει. Αυτό σημαίνει ότι δεν μπορεί να προλάβει
την προθεσμία της. Στα πλαίσια αυτής της άσκησης, μπορείτε να χειριστείτε τέτοιες περιπτώσεις
με έναν από τους παρακάτω τρόπους:

1.​ Ο χρονοπρογραμματιστής τερματίζει κατευθείαν την διεργασία γιατί δεν μπορεί να
πετύχει την προθεσμία της.

2.​ Ο χρονοπρογραμματιστής αγνοεί την συγκεκριμένη διεργασία και επιλέγει κάποια άλλη η
οποία μπορεί να έχει μεγαλύτερη τιμή Τ.

3.​ Ο χρονοπρογραμματιστής επιλέγει κανονικά την συγκεκριμένη διεργασία γνωρίζοντας ότι
δεν θα προλάβει την προθεσμία της και ότι μπορεί να καθυστερήσει κάποια άλλη.

Υλοποίηση
Στόχος της άσκησης είναι υλοποιήσετε τον ζητούμενο αλγόριθμο χρονοπρογραμματισμού. Η
υλοποίηση που θα κάνετε βρίσκεται στην κρίση σας και δεν υπάρχει μια σωστή υλοποίηση.
Ακολουθούν κάποιες χρήσιμες δομές και συναρτήσεις που μπορεί να σας βοηθήσουν.

File Entity Description

include/linux/sched.h

struct task_struct

Process descriptor. Each process is
represented as such a struct. It offers all the
information about one particular task (i.e.
process) such as pid, state, parent process,
children, opened files, etc.

struct rq

Runqueue. It is the main data structure in
process scheduling. It manages active
processes by holding the tasks that are in a
runnable state at any given moment of time.

struct sched_entity
CFS works with more general entities than
tasks. This struct contains attributes for
accounting run time of processes.

struct sched_class

The current Linux scheduler has been
designed with an extensible hierarchy of
modules in mind. These modules encapsulate
scheduling policy details. Scheduling classes
are implemented through the sched_class
structure, which contains hooks to the
functions that implement the policy.

kernel/sched.c

schedule(void)
Main function of the Linux scheduler.
Responsible for implementing the process
scheduling functionality.

void context_switch(...)
Performs the actual context switch operation
by switching from the old task_struct to the
new one.

pick_next_task(...)
Selects task_struct of the next process that will
run on the processor. Iterates over the list of
processes in the runnable state.

Επιπλέον, μπορείτε να εξετάσετε το αρχείο kernel/sched_rt.c αλλά και το

kernel/sched_fair.c που υλοποιούν το Real-Time Scheduling Class και τον Completely
Fair Scheduler αντιστοίχως. Οι υλοποιήσεις τους μπορεί να σας βοηθήσουν να καταλάβετε πως
λειτουργεί ο Linux scheduler αλλά και πως γίνεται το process management. Τέλος, στο αρχείο
include/linux/time.h υπάρχουν διάφορα structs για μέτρηση χρόνου καθώς και διάφορες
συναρτήσεις για μετατροπές μεταξύ μονάδων μέτρησης.

Παρατηρήσεις
●​ Φροντίστε στην υλοποίηση σας να μην γίνονται starve οι υπόλοιπες διεργασίες του

συστήματος. Αυτό μπορείτε να το επιτύχετε είτε θέτοντας κατάλληλες παραμέτρους
μέσω των system calls είτε εναλλάσσοντας μεταξύ policies που επιλέγονται στον
scheduler.​

●​ Για την άσκηση αυτή θα χρησιμοποιήσετε τον Linux kernel 2.6.38.1 Μπορείτε να
χρησιμοποιήσετε το Elixir platform για να περιηγηθείτε στον κώδικα του Linux Kernel.​

●​ Για να πάρετε το task_struct της τρέχουσας διεργασίας που έκανε το system call
μπορείτε κοιτάξτε στο αρχείο arch/x86/include/asm/current.h

●​ O Linux kernel αποθηκεύει τις αναλυτικές πληροφορίες για όλες τις τρέχουσες διεργασίες
σε μία λίστα από task_struct objects. Για να προσπελάσετε όλες τις διεργασίες του
συστήματος στη λίστα, μπορείτε να χρησιμοποιήσετε το macro for_each_process.

●​ Χρησιμοποιήστε την συνάρτηση printk για να ελέγξετε τη σωστή λειτουργία της
υλοποίησης σας. Για να δείτε τα μηνύματα αυτά μπορείτε να χρησιμοποιήσετε το dmesg
ή να εκτελέσετε την εντολή “cat /var/log/messages”.

Demo Programs
Πρέπει να φτιάξετε και να παραδώσετε τουλάχιστον ένα δοκιμαστικό πρόγραμμα το

οποίο θα κάνει χρήση των system calls της προηγούμενης άσκησης και θα επιδεικνύει την
σωστή υλοποίηση του νέου αλγόριθμου χρονοπρογραμματισμού. Ενδεικτικά, αναφέρονται
κάποιες περιπτώσεις που μπορείτε να ελέγξετε.

1.​ Δημιουργήστε ένα απλό πρόγραμμα το οποίο καλεί την set_proc_info (από την
προηγούμενη άσκηση) και ορίζει τις παραμέτρους χρονοπρογραμματισμού. Ελέγξτε ότι
η υλοποίηση σας διαχειρίζεται σωστά τις παραμέτρους αυτές και μπορεί να υπολογίζει
σωστά την τιμή Τ όπως ορίζει ο αλγόριθμος LTF.

2.​ Δημιουργήστε ένα απλό πρόγραμμα το οποίο ορίζεις τις παραμέτρους του και
βεβαιωθείτε ότι η δική σας υλοποίηση του αλγορίθμου καλείται σωστά όταν εντοπίζει μια
τέτοια διεργασία.

3.​ Δημιουργήστε πολλαπλά processes που ορίζουν διαφορετικές παραμέτρους η κάθε μια
και βεβαιωθείτε ότι η υλοποίηση σας δουλεύει σωστά και επιλέγει σωστά ποια διεργασία
θα εκτελεστεί πρώτα ανάλογα με την προτεραιότητα τους.

○​ Οι διεργασίες σας πρέπει να απαιτούν την χρήση του επεξεργαστή (spinning) και
να μην βρίσκονται σε sleep state. Αυτό μπορείτε να το πετύχετε με την χρήση
ενός loop και αριθμητικών πράξεων.

4.​ Ορίστε για μια διεργασία συγκεκριμένο χρόνο εκτέλεσης και αφήστε την να εκτελεστεί για
τουλάχιστον τόσο χρόνο. Ελέγξτε ότι όταν η διεργασία εκτελεστεί για τον χρόνο που
ζήτησε, ο χρονοπρογραμματιστής την τερματίζει.

https://elixir.bootlin.com/linux/v2.6.38.1/source

5.​ Για κάθε δοκιμαστικό πρόγραμμα που θα δημιουργήσετε, χρησιμοποιήσετε τα κατάλληλα
prints τα οποία θα δείχνουν τις παραμέτρους που έχει ορίσει η κάθε διεργασία καθώς και
πότε ξεκινάει να κάνει spin. Τα prints αυτά θα σας βοηθήσουν να καταλάβετε εάν η
υλοποίηση σας παίρνει τις σωστές αποφάσεις.

Παράδοση
Αφού κάνετε την άσκηση θα πρέπει να παραδώσετε τα παρακάτω:​

1.​ Το καινούργιο kernel image που προέκυψε από τη μεταγλώττιση, δηλαδή το αρχείο
linux-2.6.38.1/arch/x86/boot/bzImage.

2.​ Όλα τα αρχεία που χρειάστηκε να τροποποιήσετε ή να δημιουργήσετε στον source code
του Linux kernel για να υλοποιήσετε τα system calls. Αυτό σημαίνει ότι θα παραδώσετε
όλα τα αρχεία .c, .h, Makefile, κλπ στα οποία κάνατε οποιαδήποτε αλλαγή ή
δημιουργήσατε εσείς. Προσοχή, μην παραδώσετε αρχεία που δεν χρειάστηκε να τα
τροποποιήσετε για την υλοποίησή σας (π.χ. όλο το υπόλοιπο source tree του kernel).

3.​ Τον κώδικα από όλα τα test προγράμματα που γράψατε και τρέξατε μέσα στο guest
Linux OS για να δοκιμάσετε τα system calls που υλοποιήσατε. Επίσης, ότι header files
χρησιμοποιήσατε για type και function definitions αλλά και ότι Mekefiles χρειάζονται για
την μεταγλώττιση των προγραμμάτων αυτών. Δεν χρειάζεται να παραδώσετε τα
executable αρχεία.

4.​ Ένα README file στο οποίο να περιγράφετε συνοπτικά (αλλά περιεκτικά και ξεκάθαρα)
όλα τα βήματα που ακολουθήσατε για την προσθήκη και υλοποίηση των νεων system
calls. Επίσης, πρέπει να σχολιάσετε τι παρατηρήσατε από τα test προγράμματα που
τρέξατε. Αν έχετε κάνει κάτι διαφορετικό ή παραπάνω από όσα αναφέρονται στην
εκφώνηση της άσκησης σε οποιοδήποτε βήμα μπορείτε επίσης να το αναφέρετε στο
README. Λόγω της πολυπλοκότητας της άσκησης αυτής, προτείνεται να αναφέρετε στο
README και όποιες προσπάθειες υλοποίησης κάνατε ακόμα κι αν αυτές δεν σας
οδήγησαν κάπου ή δεν δούλευαν σωστά.

5.​ Μπορείτε να φτιάξετε έναν κατάλογο με τα τροποποιημένα αρχεία του kernel (αν θέλετε
θα είναι καλό να κρατήσετε και την δομή των αρχείων μέσα στον πυρήνα) καθώς και
έναν κατάλογο με τα test προγράμματα και header files από το guest OS.​

Προσοχή:

1.​ ΔΕΝ χρειάζεται να παραδώσετε το disk image (hy345-linux.img) ακόμα και αν αυτό έχει
τροποποιηθεί. Όντως, το disk image μπορεί να αλλάξει όσο χρησιμοποιείτε το guest OS
αλλά δεν χρειάζεται να το παραδώσετε.

2.​ ΔΕΝ χρειάζεται να παραδώσετε κάποιο αρχείο με ολόκληρο τον source code του Linux
kernel. Πρέπει να σημειώσετε και να παραδώσετε μόνο τα αρχεία που τροποποιήσατε ή
δημιουργήσατε. To kernel image (bzImage), τα source και header files καθώς και τα test
προγράμματα που θα παραδώσετε θα πρέπει να είναι αρκετά ώστε η άσκησή σας να
μπορεί να τρέξει με το αρχικό disk image και το QEMU έτσι ώστε να φαίνεται η σωστή
υλοποίηση της άσκησης.

Resources
Μπορείτε να χρησιμοποιήσετε τις παρακάτω πηγές για να καταλάβετε καλύτερα πως δουλεύει ο
Linux Scheduler καθώς και διάφορα components και συναρτήσεις του.

[1] Completely Fair Scheduler
[2] Kernel Scheduler Documentation
[3] Columbia University - Linux Scheduler
[4] Linux Processes and Scheduling
[5] Linux Data Structures
[6] Process Management and Process Descriptor
[7] A study on Linux Kernel Scheduler version 2.6.32
[8] A complete guide to Linux process scheduling
[9] Kernel Scheduling Classes Documentation
[10] Completely Fair Scheduler Internals

https://en.wikipedia.org/wiki/Completely_Fair_Scheduler
https://www.kernel.org/doc/Documentation/scheduler/
https://www.cs.columbia.edu/~smb/classes/s06-4118/l13.pdf
https://tldp.org/LDP/tlk/kernel/processes.html
https://tldp.org/LDP/tlk/ds/ds.html
https://www.pearsonhighered.com/assets/samplechapter/0/6/7/2/0672327201.pdf
https://kernelnewbies.org/Linux_2_6_32
https://trepo.tuni.fi/bitstream/handle/10024/96864/GRADU-1428493916.pdf
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/scheduler
https://developer.ibm.com/tutorials/l-completely-fair-scheduler/

	HY-345: Λειτουργικά Συστήματα​Χειμερινό Εξάμηνο 2025​Άσκηση 4
	Implementation of the “Least Tolerance First” Scheduling Policy in the Linux Operating System​
	Εισαγωγή
	Least Tolerance First
	Παράδειγμα Εκτέλεσης
	Τροποποιήσεις στον πυρήνα του Linux
	Υλοποίηση
	Παρατηρήσεις
	Demo Programs
	Παράδοση
	Resources

