
HY-345: Operating Systems​
Winter Semester 2025​

Assignment 4

Implementation of the “Least Tolerance First” Scheduling
Policy in the Linux Operating System​

Tutorial: ​ 25/11/2025
Submission: 16/12/2025​

Introduction
The kernel of the Linux operating system contains a scheduler that decides which process will
be executed next on the computer's processor (CPU). The scheduler makes decisions
according to the scheduling policy, which helps to ensure efficient use of the processor. In this
assignment, you will implement a new scheduling policy as part of the Linux operating system.

Least Tolerance First
In this assignment, you are asked to implement the "Least Tolerance First" (LTF)

scheduling algorithm. According to the algorithm, each process must declare its deadline D by
which it wants to be completed, as well as its estimated execution time E. The "Least Tolerance
First" algorithm dynamically prioritizes processes based on the time remaining until the deadline
and how much execution time remains in the process.

According to the Least Tolerance First algorithm, each process is characterized by a
tolerance value T, which determines which process will be executed first. The value T is defined
as , where D is the deadline of the process, Current Time is the 𝑇 = 𝐷 − 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑇𝑖𝑚𝑒

𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒

current system time, and Remaining Execution Time is the computational time remaining for the
process to execute. The Least Tolerance First algorithm always chooses to execute the process
with the smallest T value.

In each scheduling decision, the scheduler calculates the value T for all processes that
have declared a deadline and execution time and selects the process with the smallest value T
to be executed. A small T value means that the process is more critical because its deadline is
approaching, so it must be executed immediately.

The Least Tolerance First algorithm is also responsible for the execution time of each
process. When the algorithm has allowed a process to run for the time it has declared, then the

algorithm must terminate (kill) the process and print an appropriate message. If a process fails
to execute for the entire execution time it initially declared and the deadline it declared has
passed, then the scheduler must terminate it and print an appropriate message. Finally, the
algorithm is preemptive. This means that if there is a process that has a higher priority
according to the Least Tolerance First policy, then the scheduler will interrupt the current
process and replace it with the one with the higher priority.

Execution Example
Let us consider two different processes, P1 and P2. Process P1 specifies an execution time of 5s
and a deadline of 10s. Process P2 specifies an execution time of 4s and a deadline of 11s. We
assume that both processes start their execution simultaneously at time 0s. Therefore, the
scheduler must now decide which process to execute.

1.​ At time t=0
○​ Process P1 has Τ = 10 − 0

5 = 2

○​ Process P2 has ​Τ = 11 − 0
4 = 2. 75

2.​ The scheduler decides that process P1 has higher priority, so it will select it for execution.​

3.​ At time t=1

○​ Process P1 has Τ = 10 − 1
4 = 2. 25

○​ Process P2 has Τ = 11 − 1
4 = 2. 5

4.​ The scheduler decides that process P1 still has higher priority, so it will continue to

execute it.​

5.​ At time t=2
○​ Process P1 has Τ = 10 − 2

3 = 2. 666

○​ Process P2 has ​Τ = 11 − 2
4 = 2. 3

6.​ The scheduler decides that process P2 now has higher priority, so it must take time on

the processor. Therefore, it interrupts process P1 and replaces it with P2.

The execution of the processes continues according to the rules of the Least Tolerance First
algorithm until there are no more processes that can be executed (either because they have
completed their execution time or because their deadline has passed).

Modifications to the Linux kernel
For this assignment, you will use the code from Assignment 3 as a basis. In addition, you

will use the QEMU emulator and the virtual disk image you used in Assignment 3. Instructions
on compiling the Linux kernel and using the virtual disk image can be found in the previous
assignment.

For this assignment, you need to modify the operating system kernel and implement the
new scheduling policy. For this policy to work properly, you will use the system calls you
implemented in the previous assignment. The main function of the Linux Scheduler and the
entry point is the void __sched schedule(void) function in the kernel/sched.c file.

The steps to follow are:

1.​ The scheduler identifies the processes that use the LTF policy by checking which of
them have set a deadline D and execution time E.

○​ These processes have priority over the others running on the system. If there is
no "privileged" process, the scheduler does not need to change its behavior and
therefore uses the default scheduling algorithm.

2.​ For each of the "privileged" processes, it calculates how much time they have already
been running on the processor.

3.​ For each process, it calculates the remaining execution time R. This time depends on
the time the process has already been running and the total time it has requested to run.

4.​ If the process has exceeded its deadline, the scheduler terminates it. If a process has
already completed the execution time it requested, the scheduler terminates it.

5.​ For each of the processes, it calculates the value T. The process with the lowest value T
is selected by the algorithm to be executed.

○​ In this case, the scheduler will interrupt the lowest priority process already
running on the processor in order to execute the selected process.

In the LTF algorithm, a process with a T value less than 1 has less time until the deadline than
the execution time remaining. This means that it cannot meet its deadline. In this assignment,
you can handle such cases in one of the following ways:

1.​ The scheduler terminates the process immediately because it cannot meet its deadline.
2.​ The scheduler ignores the specific process and selects another one that may have a

higher T value.
3.​ The scheduler normally selects the specific process, knowing that it will not meet its

deadline and that it may delay another one.

Implementation
The goal of this assignment is to implement the requested scheduling algorithm. The
implementation you choose is up to you, and there is no single correct implementation. Here are
some useful structures and functions that may help you.

File Entity Description

include/linux/sched.h

struct task_struct

Process descriptor. Each process is
represented as such a struct. It offers all the
information about one particular task (i.e.
process) such as pid, state, parent process,
children, opened files, etc.

struct rq

Runqueue. It is the main data structure in
process scheduling. It manages active
processes by holding the tasks that are in a
runnable state at any given moment of time.

struct sched_entity
CFS works with more general entities than
tasks. This struct contains attributes for
accounting run time of processes.

struct sched_class

The current Linux scheduler has been
designed with an extensible hierarchy of
modules in mind. These modules encapsulate
scheduling policy details. Scheduling classes
are implemented through the sched_class
structure, which contains hooks to the
functions that implement the policy.

kernel/sched.c

schedule(void)
Main function of the Linux scheduler.
Responsible for implementing the process
scheduling functionality.

void context_switch(...)
Performs the actual context switch operation
by switching from the old task_struct to the
new one.

pick_next_task(...)
Selects task_struct of the next process that will
run on the processor. Iterates over the list of
processes in the runnable state.

In addition, you can examine the kernel/sched_rt.c and kernel/sched_fair.c

files, which implement the Real-Time Scheduling Class and the Completely Fair Scheduler,
respectively. Their implementations can help you understand how the Linux scheduler works
and how process management is done. Finally, the include/linux/time.h file contains
various structs for measuring time, as well as various functions for converting between units of
measurement.

Remarks
●​ Make sure that your implementation does not starve the other processes in the system.

You can achieve this either by setting appropriate parameters via system calls or by
switching between policies selected in the scheduler.​

●​ For this assignment, you will use the Linux kernel 2.6.38.1. You can use the Elixir
platform to browse the Linux Kernel code​

●​ To get the task_struct of the current process that made the system call, you can look in
the file arch/x86/include/asm/current.h

●​ The Linux kernel stores detailed information about all current processes in a list of
task_struct objects. To access all system processes in the list, you can use the
for_each_process macro.

●​ Use the printk function to check that your implementation is working correctly. To view
these messages, you can use the dmesg utility tool or simply run the command "cat
/var/log/messages".

Demo Programs
You must create and submit at least one demo program that uses the system calls from

the previous assignment and demonstrates the correct implementation of the new scheduling
algorithm. Here are some examples of cases you can test.

1.​ Build a simple program that calls set_proc_info (from the previous assignment) and sets
the scheduling parameters. Check that your implementation handles these parameters
correctly and can correctly calculate the value T as defined by the LTF algorithm.

2.​ Build a simple program that sets its parameters and make sure that your implementation
of the algorithm is called correctly when it detects such a process.

3.​ Create multiple processes that define different parameters for each one and make sure
that your implementation works correctly and correctly selects which process to execute
first according to their priority.

○​ Your processes must require the use of the processor (spinning) and not be in
sleep state. You can achieve this by using a loop and arithmetic operations.

4.​ Set a specific execution time for a process and let it run for at least that long. Check that
when the process runs for the requested time, the scheduler terminates it.

5.​ For each test program you create, use the appropriate prints that show the parameters
set by each process and when it starts spinning. These prints will help you understand if
your implementation is making the right decisions.

https://elixir.bootlin.com/linux/v2.6.38.1/source

Submission
After completing the assignment, you must submit the following:​

1.​ The new kernel image resulting from the compilation: ​
linux-2.6.38.1/arch/x86/boot/bzImage.

2.​ All the files you needed to modify or create in the Linux kernel source code to implement
the system calls. This means that you will submit all the .c, .h, Makefile, etc. files that you
modified or created. Please note that you should not submit files that you did not need to
modify for your implementation (e.g., the rest of the kernel source tree).

3.​ The code from all the test programs you wrote and ran in the guest Linux OS to test the
system calls you implemented. Also, any header files you used for type and function
definitions, as well as any Makefiles needed to compile these programs. You do not
need to submit the executable files.

4.​ A README file in which you briefly (but comprehensively and clearly) describe all the
steps you followed to add and implement the new system calls. You should also
comment on what you observed from the test programs you ran. If you did anything
different or more than what is mentioned in the assignment description at any step, you
can also mention it in the README. Due to the complexity of this assignment, it is
recommended that you mention in the README any implementation attempts you
made, even if they did not lead anywhere or did not work properly.

5.​ You can create a directory with the modified kernel files (if you want, it would be good to
keep the file structure within the kernel) as well as a directory with the test programs and
header files from the guest OS.​

Please note:

1.​ You do NOT need to submit the disk image (hy345-linux.img) even if it has been
modified. The disk image may indeed change while you are using the guest OS, but you
do not need to submit it.

2.​ You do NOT need to submit a file containing the entire Linux kernel source code. You
should only note and submit the files that you have modified or created. The kernel
image (bzImage), source and header files, and test programs you submit should be
sufficient for your assignment to run with the original disk image and QEMU so that the
correct implementation of the assignment can be seen.

Resources
You can use the following resources to better understand how the Linux Scheduler works, as
well as its various components and functions.

[1] Completely Fair Scheduler
[2] Kernel Scheduler Documentation
[3] Columbia University - Linux Scheduler
[4] Linux Processes and Scheduling
[5] Linux Data Structures
[6] Process Management and Process Descriptor
[7] A study on Linux Kernel Scheduler version 2.6.32
[8] A complete guide to Linux process scheduling
[9] Kernel Scheduling Classes Documentation
[10] Completely Fair Scheduler Internals

https://en.wikipedia.org/wiki/Completely_Fair_Scheduler
https://www.kernel.org/doc/Documentation/scheduler/
https://www.cs.columbia.edu/~smb/classes/s06-4118/l13.pdf
https://tldp.org/LDP/tlk/kernel/processes.html
https://tldp.org/LDP/tlk/ds/ds.html
https://www.pearsonhighered.com/assets/samplechapter/0/6/7/2/0672327201.pdf
https://kernelnewbies.org/Linux_2_6_32
https://trepo.tuni.fi/bitstream/handle/10024/96864/GRADU-1428493916.pdf
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/scheduler
https://developer.ibm.com/tutorials/l-completely-fair-scheduler/

	HY-345: Operating Systems​Winter Semester 2025​Assignment 4
	Implementation of the “Least Tolerance First” Scheduling Policy in the Linux Operating System​
	Introduction
	Least Tolerance First
	Execution Example
	Modifications to the Linux kernel
	Implementation
	Remarks
	Demo Programs
	Submission
	
	Resources

