
ΗΥ- 3 4 5 Λε ι τουργ ικά Συστήµατα
Χειµερινό Εξάµηνο 2025

Άσκηση 3

Φροντιστήριο: 13/11/2025
Παράδοση: 27/11/2025

Εισαγωγή

Ο πυρήνας του λειτουργικού συστήµατος Linux περιέχει έναν χρονοπρογραµµατιστή
(Scheduler) ο οποίος αποφασίζει ποια θα είναι η επόµενη διεργασία η οποία θα εκτελεστεί
στον επεξεργαστή του υπολογιστή (CPU). Ο χρονοπρογραµµατιστής παίρνει αποφάσεις
σύµφωνα µε την πολιτική χρονοπρογραµµατισµού (Scheduling Policy) η οποία βοηθάει στην
αποδοτική χρήση του επεξεργαστή.

Μια πολιτική χρονοπρογραµµατισµού διεργασιών είναι η ακόλουθη: κάθε διεργασία
δηλώνει στον χρονοπρογραµµατιστή ποιό είναι το deadline της (µέχρι ποιά χρονική στιγµή θα
πρέπει να έχει εκτελεστεί) αλλά και πόσο χρόνο χρειάζεται για να εκτελεστεί (estimated
runtime). Για την άσκηση αυτή, υποθέστε ότι το deadline µετριέται σε δευτερόλεπτα
(seconds), ενώ το estimated runtime µετριέται σε milliseconds. Ο χρονοπρογραµµατιστής
τρέχει την διεργασία που έχει το µικρότερο (Current Time – D) / (Remaining execution time).
Αν µία διεργασία έχει (Current Time - D) <1, τότε αυτή τερµατίζεται (killed).
 Σε κάποια χρονική στιγµή, υπάρχει περίπτωση να πρέπει να εκτελεστούν πολλαπλές
διεργασίες. Σε τέτοιες περιπτώσεις ο χρονοπρογραµµατιστής δίνει προτεραιότητα ανάλογα
µε τα δύο αυτά πεδία της κάθε διεργασίας. Περισσότερες πληροφορίες για το πως θα
υπολογίζεται η προτεραιότητα κάθε διεργασίας θα σας δοθούν στην επόµενη άσκηση (4η).
 Σε αυτήν την άσκηση θα πρέπει να υλοποιήσετε δύο καινούργια system calls, τα
οποία θα χρησιµοποιήσετε και στην επόµενη άσκηση του µαθήµατος. Πιο συγκεκριµένα, θα
χρειαστεί να προσθέσετε στον πυρήνα (kernel) του λειτουργικού συστήµατος Linux τα δύο
νέα system calls: “set_proc_info” και “get_proc_info”. Έπειτα θα τα δοκιµάσετε,
χρησιµοποιώντας τον προσοµοιωτή (emulator) QEMU, κάνοντας compile τον Linux kernel µε
τις αλλαγές σας και τρέχοντας το Linux µε τον καινούργιο πυρήνα. Τέλος, καλείστε να γράψετε
και να τρέξετε ένα user-level demo πρόγραµµα που θα χρησιµοποιεί τα καινούργια system
calls. Το πρόγραµµα αυτό θα εκτελεστεί στο Linux λειτουργικό σύστηµα που θα φορτώσετε µε
τον QEMU. Στόχος της άσκησης είναι να εξοικειωθείτε µε τον source code του Linux kernel, µε
τον τρόπο που ορίζονται και υλοποιούνται τα system calls στο Linux, µε την µεταγλώττιση του
kernel και µε τη χρήση ενός προσοµοιωτή.

Υλοποίηση

Καλείστε να προσθέσετε την παρακάτω λειτουργικότητα στον Linux kernel:

● Μέσα στον Linux kernel, κάθε διεργασία αναπαριστάται ως ένα task_struct.
Αυτό το struct περιέχει όλη την απαραίτητη πληροφορία για µια διεργασία (π.χ.
process id, parent process, κλπ). Σε αυτό το struct πρέπει να προσθέσετε δύο νέα
πεδία:

int deadline /* το deadline της διεργασίας, σε seconds από τώρα */
int est_runtime /* ο αναµενόµενος χρόνος εκτέλεσης, σε milliseconds*/

Οι τιµές των πεδίων αυτών θα αλλάζουν από το system call set_proc_info ενώ
θα µπορούν να επιστραφούν σε ένα πρόγραµµα µέσω του system call
get_proc_info.

● set_proc_info(int deadline, int est_runtime)
Το system call αυτό, αλλάζει τις τιµές των αντίστοιχων πεδίων στο task_struct της
συγκεκριµένης διεργασίας που έκανε το system call. Πρέπει να ελέγχετε ότι οι τιµές
των ορισµάτων που δίνονται είναι έγκυρες καθώς επίσης και ότι το est_runtime
µπορεί να εκπληρωθεί µέσα στο deadline. Το system call πρέπει να επιστρέφει 0 εάν
οι πληροφορίες της διεργασίας έχουν αποθηκευτεί επιτυχώς, ενώ θα επιστρέφει
EINVAL στην περίπτωση σφάλµατος.

● get_proc_info(struct d_params * params)
Το system call αυτό επιστρέφει µέσω του pointer params τις τιµές που έχουν οριστεί
σχετικά µε την διεργασία που έκανε το system call. Η µνήµη για το struct αυτό θα
δεσµεύεται από το user-level πρόγραµµα που κάλεσε το system call και όχι από τον
πυρήνα. Ο πυρήνας απλά θα αλλάζει τις τιµές του struct σύµφωνα µε τις αντίστοιχες
τιµές που θα βρίσκει στο αντίστοιχο task_struct της διεργασίας και θα επιστρέφει την
πληροφορία (by reference) στο user-level πρόγραµµα. Εάν η εκτέλεση του system
call είναι επιτυχής, τότε επιστρέφει την τιµή 0. Αν το όρισµα params είναι NULL, το
system call πρέπει να επιστρέφει την τιµή EINVAL.

Σηµειώσεις:

● Για την άσκηση αυτή θα χρησιµοποιήσετε τον Linux kernel 2.6.38.1

● To EINVAL καθώς και άλλα error values βρίσκονται στο αρχείο:

linux-2.6.38.1/include/asm-generic/errno-base.h

● Τo task_struct structure ορίζεται στο
αρχείο: linux-2.6.38.1/include/linux/sched.h

● Για να πάρετε το task_struct της τρέχουσας διεργασίας που έκανε το system call
µπορείτε κοιτάξτε στο αρχείο:

arch/x86/include/asm/current.h

● O Linux kernel αποθηκεύει τις αναλυτικές πληροφορίες για όλες τις τρέχουσες
διεργασίες σε µία λίστα από task_struct objects. Για να προσπελάσετε όλες τις
διεργασίες του συστήµατος που βρίσκονται σε αυτή την λίστα, µπορείτε να

χρησιµοποιήσετε το macro for_each_process.

● Σε κάθε κλήση των set_proc_info, get_proc_info
πρέπει να τυπώνονται σε επίπεδο πυρήνα το όνοµα σας, το Α .Μ. σας και το

 όνοµα του system call. Για να το πετύχετε αυτό, χρησιµ οποιήστε την
 συνάρτηση printk. Με τον ίδιο τρόπο µπορείτε να τυπώνετε
ό,τι άλλα µηνύµατα θέλετε από τον kernel (π.χ. ένας απλός τρόπος να κάνετε
debugging το system call που φτιάχνετε). Μπορείτε να δείτε τα µηνύµατα αυτά
όταν έχετε φορτώσει το Linux µε το συγκεκριµένο kernel, τρέχοντας το dmesg ή
εκτελώντας την εντολή “cat /var/log/messages”.

● Θα πρέπει να ορίσετε το struct d_params σε ένα αρχείο που θα
δηµιουργήσετε εσείς στον φάκελο linux-2.6.38.1/include/linux . Το struct αυτό θα
περιέχει 2 πεδία που θα αποθηκεύουν τις παραµέτρους µιας διεργασίας.

Demo programs:

Πρέπει να φτιάξετε και να παραδώσετε τουλάχιστον ένα δοκιµαστικό πρόγραµµα το
οποίο θα κάνει χρήση των system calls και θα επιδεικνύει τη σωστή τους υλοποίηση. Για
παράδειγµα, το πρόγραµµα σας µπορεί αρχικά να καλεί το set_proc_info,µετά το
get_proc_info, για να τυπώσει όλες τις παραµέτρους που όρισε το προηγούµενο
system call. Το πρόγραµµα αυτό θα πρέπει να καλύπτει διάφορες πιθανές κλήσεις των
system calls και να παρουσιάζει όλες τις πιθανές περιπτώσεις εκτέλεσης (π.χ. σωστή και
λανθασµένη δήλωση ορισµάτων).

Εκτέλεση Linux στο QEMU

Οι emulators είναι διαδεδοµένοι για πολλούς λόγους. Μας επιτρέπουν να
εγκαταστήσουµε και να τρέξουµε ένα λειτουργικό σύστηµα σαν απλοί χρήστες σε έναν
υπολογιστή που έχει κάποιο άλλο λειτουργικό σύστηµα, χωρίς να χρειαστεί να αλλάξουµε
κάτι σε αυτό. Αυτόν τον υπολογιστή µπορεί να τον χρησιµοποιούν αρκετοί χρήστες, και κάθε
ένας µπορεί να τρέχει διαφορετικό λειτουργικό σύστηµα µε έναν emulator χωρίς να
επηρεάζονται οι υπόλοιποι χρήστες. Ιδιαίτερα όταν θέλουµε να δοκιµάσουµε κάποιες
αλλαγές στον kernel ενός λειτουργικού συστήµατος, όπως θα κάνουµε σε αυτήν την άσκηση,
ο emulator είναι αρκετά χρήσιµος για έναν ακόµα λόγο. Αν λόγω κάποιου
προγραµµατιστικού λάθους στον kernel το σύστηµα καταρρεύσει (π.χ. kernel panic)
µπορούµε εύκολα και γρήγορα να ξεκινήσουµε ξανά το λειτουργικό σύστηµα µε κάποια
αλλαγή (debugging) χωρίς να επηρεαστεί το βασικό λειτουργικό σύστηµα του υπολογιστή
(host operating system).

Ο QEMU υπάρχει ήδη εγκατεστηµένος στα µηχανήµατα του τµήµατος (man qemu για
περισσότερες πληροφορίες). Ο QEMU emulator µπορεί να δηµιουργήσει και να διαβάσει
έναν εικονικό δίσκο (virtual disk image) και σε αυτόν µπορούµε να εγκαταστήσουµε ένα
οποιοδήποτε λειτουργικό σύστηµα (π.χ. από ένα εικονικό cd rom). Για τους σκοπούς της
άσκησης έχουµε εγκαταστήσει για σας ένα απλό Linux OS (ttylinux distribution) για
αρχιτεκτονική 32-bit x86 (i386) σε ένα virtual disk image που θα πρέπει να χρησιµοποιήσετε
για την άσκηση σας.

Εσείς θα πρέπει αρχικά να αντιγράψετε αυτό το disk image (63 MB) από την περιοχή
του µαθήµατος (~hy345/qemu-linux/hy345-linux.img) σε έναν κατάλογο στο /spare του
µηχανήµατος που χρησιµοποιείτε (π.χ. /spare/[username]), ώστε να µην έχετε πρόβληµα
χώρου (π.χ. quota exceeded) µε την περιοχή σας.

$ cp ~hy345/qemu-linux/hy345-linux.img /spare/[username]/

Προσέξτε να έχετε τα κατάλληλα permissions στον κατάλογο αυτό ώστε να έχετε
µόνο εσείς πρόσβαση:

$ chmod 700 /spare/[username]

Το παραπάνω disk image έχει εγκατεστηµένο το Linux OS που θα χρησιµοποιήσετε.
Περιέχει το root filesystem (/) στο οποίο υπάρχουν τα βασικά προγράµµατα και tools του
συστήµατος. Οπότε, χρησιµοποιώντας το image αυτό µπορείτε να δοκιµάσετε να ξεκινήσετε
αυτό το Linux OS µε τον QEMU emulator, απλά µε την παρακάτω εντολή:

$ qemu-system-i386 -hda hy345-linux.img

Η παράµετρος -hda hy345-linux.img κάνει τον QEMU να χρησιµοποιεί το
αρχείο hy345-linux.img σαν virtual disk image, το οποίο θα φαίνεται σαν το device /dev/hda
στο emulated OS (guest operating system). Τρέχοντας την παραπάνω εντολή θα δείτε να
ξεκινάει το Linux OS που προσοµοιώνουµε. Όταν σας ζητήσει να κάνετε login
χρησιµοποιήστε το account µε username "user" και password "csd-hy345". Επίσης µπορείτε
να κάνετε login και µε το account του "root" µε password "hy345". Για να βγείτε από τον
QEMU και να κλείσετε το Guest OS χρησιµοποιήστε την εντολή poweroff.

Μεταγλώττιση του Linux kernel

Το επόµενο βήµα είναι να αλλάξετε τον Linux kernel, να τον µεταγλωττίσετε (compile),
και να φτιάξετε ένα καινούργιο kernel image µε το οποίο θα µπορείτε να ξεκινήσετε το guest
Linux OS µε τον QEMU, αντί για το original kernel image που υπάρχει στο disk image που
σας δίνουµε. Θα µπορούσατε να αλλάξετε και να µεταγλωττίσετε τον kernel µέσα από το
guest OS. Για ευκολία όµως θα δουλέψετε στο host OS, δηλαδή κατευθείαν στο µηχάνηµα
του τµήµατος που χρησιµοποιείτε για την άσκηση. Αρχικά θα χρειαστείτε τον source code
του Linux kernel 2.6.38.1 για να κάνετε τις απαιτούµενες αλλαγές και να τον κάνετε compile.
Οπότε, θα πρέπει να αντιγράψετε τον source code από την περιοχή του µαθήµατος στον
κατάλογο που χρησιµοποιείται στο /spare/[username] του µηχανήµατος.

$ cp ~hy345/qemu-linux/linux-2.6.38.1-patched.tar.bz2 /spare/
[username]/

Αφού αντιγράψετε και κάνετε decompress τον source code του Linux kernel 2.6.38.1,
µπορείτε να κάνετε ότι αλλαγές απαιτούνται για την υλοποίηση των καινούργιων system
calls. Έπειτα υπάρχουν δύο απλά βήµατα που πρέπει να ακολουθήσετε για να κάνετε
compile τον αλλαγµένο kernel και να φτιάξετε ένα καινούργιο kernel image: configure και
make. Υπάρχουν διάφοροι τρόποι για να κάνει κάποιος configure τον Linux kernel (π.χ.
make menuconfig, make config, κτλ). Τελικά το configuration του kernel γράφεται στο αρχείο
.config µέσα στον κατάλογο linux-2.6.38.1. Επειδή υπάρχουν πολλές επιλογές για το
configuration του Linux kernel, σας δίνουµε εµείς έτοιµο ένα configuration που είναι συµβατό
µε το Linux OS που έχουµε εγκαταστήσει στο disk image. Θα αντιγράψετε από την περιοχή
του µαθήµατος το configuration file ώστε να το χρησιµοποιήσετε για τον kernel που θα
φτιάξετε.

Το µόνο που πρέπει να αλλάξετε στο .config αρχείο είναι η παράµετρος
CONFIG_LOCALVERSION. Εκεί πρέπει να προσθέσετε µια κατάληξη για το όνοµα (version)
του καινούργιου kernel που θα φτιάξετε, έτσι ώστε να είστε σίγουροι ότι χρησιµοποιείτε τον
δικό σας kernel όταν θα τον φορτώσετε µε τον QEMU (και όχι τον original kernel). Επίσης, αν
επαναλάβετε την διαδικασία περισσότερες φορές, θα µπορείτε να ξεχωρίζετε τα διαφορετικά
revisions του kernel που έχετε δοκιµάσει, αλλάζοντας το kernel version πριν από κάθε
µεταγλώττιση. Οπότε στο CONFIG_LOCALVERSION θα πρέπει να βάλετε το username
σας, και αν θέλετε και ένα revision number. Το version του kernel θα µπορείτε να το δείτε
όταν ξεκινάει το OS, ή αφού έχετε κάνει login µε την εντολή:

$ uname -a

Ο gcc που υπάρχει στα µηχανήµατα της σχολής είναι έκδοσης 10.2.1. Όµως µε αυτό
το version, δεν θα καταφέρουµε να κάνουµε compile επιτυχώς τον Linux kernel. Γι΄αυτό,
έχουµε προσθέσει ένα gcc compiler παλαιότερης έκδοσης στην περιοχή του µαθήµατος, τον
οποίο θα πρέπει να χρησιµοποιήσετε σε αυτή την άσκηση. Οπότε, πριν κάνετε compile τον
kernel θα εκτελέσετε τις εντολές:

$ export PATH="/home/misc/courses/hy345/gcc-4.9.2-standalone/bin/:
$PATH"
$ export
PATH="/home/misc/courses/hy345/gcc-4.9.2-standalone/libexec/gcc/
x86_64-unknown-linux-gnu/4.9.2/:$PATH"

Έτσι, λέτε στο σύστηµα να κοιτάξει στο συγκεκριµένο path για να βρει τον compiler,
εποµένως θα βρει πρώτα την έκδοση που είναι εγκατεστηµένη στη περιοχή του µαθήµατος.
Για να βεβαιωθείτε ότι χρησιµοποιείτε το σωστό gcc (4.9.2), αρκεί να τρέξετε:

$ which gcc ή $ gcc --version

Τέλος, για να γίνει compile o kernel µε τις δικές σας αλλαγές, θα τρέξετε:

$ make ARCH=i386 bzImage

Το καινούργιο kernel image (bzImage) που θα δηµιουργηθεί από τη µεταγλώττιση, θα
είναι το αρχείο linux2.6.38.1/arch/x86/boot/bzImage. Αφού τον καινούργιο kernel δεν θα
τον χρησιµοποιήσετε στο host OS, δεν χρειάζεται να κάνετε make install.

Συνοπτικά τα βήµατα που πρέπει να ακολουθήσετε είναι:

Ρύθµιση παραµέτρων QEMU

Το επόµενο βήµα είναι να χρησιµοποιήσετε το καινούργιο kernel image, το οποίο
βρίσκεται στο αρχείο linux2.6.38.1/arch/x86/boot/bzImage για να ξεκινήσετε το Linux
χρησιµοποιώντας το QEMU. Θα χρησιµοποιήσετε ξανά το virtual disk image που σας
δώσαµε, αλλά θα δώσετε επίσης στο QEMU το kernel image που θα τρέξει.

$ qemu-system-i386 -hda hy345-linux.img -append "root=/dev/hda"
-kernel linux-2.6.38.1/arch/x86/boot/bzImage

Με το -kernel linux-2.6.38.1/arch/x86/boot/bzImage το QEMU θα
ξεκινήσει µε το καινούργιο kernel image. Με το -append "root=/dev/hda" το QEMU θα
κάνει mount

$ cp ~hy345/qemu-linux/linux-2.6.38.1-patched.tar.bz2 /spare/
[username]/
$ cd /spare/[username]
$ tar -jxvf linux-2.6.38.1-patched.tar.bz2
$ cd linux-2.6.38.1

Edit kernel source code to implement the new system calls

$ cp ~hy345/qemu-linux/.config . # Mind the dot at the end!

Edit .config, find CONFIG_LOCALVERSION="-hy345", and append to the kernel's
version name your username and a revision number

$ export PATH="/home/misc/courses/hy345/gcc-4.9.2-standalone/bin/:
$PATH"
$ export
PATH="/home/misc/courses/hy345/gcc-4.9.2-standalone/libexec/gcc/
x86_64-unknown-linux-gnu/4.9.2/:$PATH"
$ make ARCH=i386 bzImage

τo root filesystem από το /dev/hda, που είναι το disk image που φορτώνετε όπως και πριν.
Αφού κάνετε login, µε την εντολή uname -a βλέπετε την έκδοση του kernel που τρέχει
το σύστηµα.

Remote working

Αν δουλεύετε remotely σε κάποιο µηχάνηµα του τµήµατος, για να ξεκινήσετε το
QEMU στο remote µηχάνηµα θα πρέπει να συνδεθείτε µε X11 forwarding από τον δικό σας
υπολογιστή. Το X11 forwarding µπορεί να ενεργοποιηθεί όταν συνδέεστε στο µηχάνηµα:

$ ssh [username]@[host].csd.uoc.gr -Y

Δοκιµάστε να τρέξετε την εντολή xterm και θα πρέπει να σας ανοίξει το ένα
παράθυρο xterm. Εφόσον λειτουργεί το xterm, µπορείτε να χρησιµοποιήσετε το QEMU.
Εναλλακτικά, µπορείτε απλά να τρέχετε το QEMU χωρίς γραφικό περιβάλλον (πολύ λιγότερο
lag) µε την βιβλιοθήκη ncurses:

$ qemu-system-i386 -hda hy345-linux.img –display curses

Εναλλακτικά µπορείτε να αντιγράψετε το kernel image (αφού έχετε αλλάξει και έχετε
κάνει compile τον Linux kernel σε κάποιο µηχάνηµα του τµήµατος) και το disk image, και
έπειτα να τρέξετε το QEMU (αφού το εγκαταστήσετε) τοπικά στον υπολογιστή σας. Εάν
χρησιµοποιείτε putty πρέπει να ενεργοποιήσετε την επιλογή “Enable X11 forwarding” στην
καρτέλα Connection και µετά SSH.

Μεταφορά αρχείων από το Guest OS στο Host OS

Για να µεταφέρετε αρχεία από το guest OS (που τρέχετε µε το QEMU) στο host OS
(που κάνετε την βασική σας υλοποίηση) και αντίστροφα, µπορείτε να χρησιµοποιήσετε το
πρόγραµµα scp. Μέσα από το guest OS µπορείτε να προσπελάσετε το host OS µε την
(virtual) IP address 10.0.2.2. Για παράδειγµα, για να µεταφέρετε το αρχείο test1.c από το
guest OS στο host OS στην περιοχή σας σε έναν κατάλογο hy345 µπορείτε να εκτελέσετε
µέσα από το QEMU (δηλαδή από το Guest OS) την εντολή:

$ scp test1.c [username]@10.0.2.2:~/hy345

To [username] είναι το username που έχετε στα µηχανήµατα του τµήµατος. Θα
χρειαστεί να δώσετε το password που έχετε στα µηχανήµατα του τµήµατος για να
ολοκληρωθεί η αντιγραφή µε το scp. Αντίστοιχα, για να αντιγράψετε από το host OS (π.χ.
ένα µηχάνηµα του τµήµατος) το αρχείο test1.c από τον κατάλογο hy345 που είναι στην
περιοχή σας στο Linux OS που τρέχει στο QEMU, θα τρέξετε µέσα από το QEMU την
εντολή:

$ scp [username]@10.0.2.2:~/hy345/test1.c .

Προσοχή στην τελεία µετά το test1.c. Δεν είναι τυπογραφικό λάθος.

Προσθήκη νέου system call

Γενικές πληροφορίες για τα βήµατα που πρέπει να ακολουθήσετε και τα αρχεία που
πρέπει να αλλάξετε ή να δηµιουργήσετε για να προσθέσετε ένα system call στο Linux kernel
2.6 µπορείτε να βρείτε εδώ. Ο παρακάτω οδηγός περιγράφει συνοπτικά πως είναι δοµηµένο
ένα system call στο Linux kernel και πως µπορείτε να προσθέσετε ένα νέο. Υπάρχουν τρία
βασικά βήµατα για να υλοποιήσετε ένα καινούργιο system call στον Linux kernel:

1. Να προσθέσετε ένα καινούργιο system call number στον πυρήνα που να αντιστοιχεί
στο δικό σας system call.

2. Να προσθέσετε ένα entry στο system call table του kernel µε το system call number
του δικού σας system call. Αυτό το entry θα καθορίσει ποια συνάρτηση του πυρήνα
θα εκτελεστεί όταν συµβεί ένα trap µε το δικό σας system call number (όταν δηλαδή
καλεστεί το system call από user level και ο έλεγχος µεταβεί στον kernel για την
εκτέλεση του συγκεκριµένου system call).

3. Πρέπει να προσθέσετε κώδικα στον kernel που να υλοποιεί την λειτουργικότητα που
θα προσφέρει το system call. Πρέπει επίσης να προσθέσετε τα κατάλληλα header
files, για να ορίσετε καινούργιους τύπους και structs που χρησιµοποιεί το system call
για να µεταφέρει πληροφορία µεταξύ kernel και user space. Ακόµα, θα πρέπει να
αντιγράφετε arguments και αποτελέσµατα µεταξύ kernel space και user space
χρησιµοποιώντας τις αντίστοιχες συναρτήσεις που υπάρχουν στον kernel.

Παράδειγµα:

Έστω ότι θέλουµε να προσθέσουµε ένα system call µε όνοµα dummy_sys το οποίο
παίρνει ένα όρισµα από το user-level πρόγραµµα που το κάλεσε και συγκεκριµένα έναν
ακέραιο αριθµό. Το dummy_sys system call θα τυπώνει απλά αυτόν τον αριθµό που δόθηκε
σαν όρισµα και θα επιστρέφει το διπλάσιο του στο user-level πρόγραµµα. Θα
ακολουθήσουµε τα παρακάτω βήµατα:

1. Ανοίγουµε το αρχείο linux-2.6.38.1/arch/x86/include/asm/unistd_32.h µε κάποιον
editor, βρίσκουµε τα system call numbers για τα system calls που υπάρχουν ήδη
στον kernel, και µετά το τελευταίο system call number (π.χ. 340 στον δικό µας kernel)
προσθέτουµε µία γραµµή µε τον επόµενο αριθµό.

Επίσης αυξάνουµε το NR_syscalls κατά ένα (π.χ. από 341 σε 342 στον δικό µας

#define NR_dummy_sys 341

kernel). Έτσι ορίσαµε τον αριθµό 341 για το system call dummy_sys. Αυτός ο
αριθµός θα χρησιµοποιηθεί µετά από ένα trap ώστε να βρεί ο kernel στο system call
table την κατάλληλη συνάρτηση (system call function pointer) που υλοποιεί το system
call.

2. Ανοίγουµε το αρχείο linux-2.6.38.1/arch/x86/kernel/syscall_table_32.S και εκεί
προσθέτουµε στην τελευταία γραµµή το όνοµα της συνάρτησης που υλοποιεί το
καινούργιο system call.

3. Στο τρίτο βήµα θα ορίσουµε το system call dummy_sys. Στο τέλος του αρχείου
linux-2.6.38.1/include/asm-generic/syscalls.h προσθέτουµε το function prototype
του system call.

4. Αν έχετε να προσθέσετε type definitions πρέπει να φτιάξετε και ένα header file στον
φάκελο linux- 2.6.38.1/include/linux/ το οποίο θα κάνετε include όπου χρειάζεται.
Για το παράδειγµα αυτό κάτι τέτοιο δεν είναι αναγκαίο.

5. Έπειτα, φτιάχνουµε ένα καινούργιο αρχείο στον φάκελο linux-2.6.38.1/kernel/ το
οποίο θα περιέχει την υλοποίηση του system call. Στο παράδειγµα αυτό το αρχείο θα
είναι το linux-2.6.38.1/kernel/dummy_sys.c και θα περιέχει τον κώδικα:

6. Αν έχετε arguments που περνάνε by reference από user space σε kernel space θα
πρέπει να τα αντιγράψετε αφού καλέσετε το access_ok(). Η αντιγραφή µπορεί
να γίνει καλώντας την συνάρτηση copy_from_user(). Αντίστοιχη διαδικασία θα
πρέπει να κάνετε για να αντιγράψετε τα δεδοµένα πίσω στο user space
χρησιµοποιώντας τις συναρτήσεις access_ok() και copy_to_user().

7. Τέλος, θα πρέπει να αλλάξετε το αρχείο linux2.6.38.1/kernel/Makefile για να
συµπεριλάβει και να κάνει compile το καινούργιο source code αρχείο προσθέτοντας
µια γραµµή στο κατάλληλο σηµείο:

.long sys_dummy_sys /* 341 */

asmlinkage long sys_dummy_sys(int arg0);

#include <linux/kernel.h>

asmlinkage long sys_dummy_sys(int arg0) {
printk("Called dummy_sys with argument: %d\n", arg0);
return ((long)arg0 * 2);

}

obj-y += dummy_sys.o

Παρατηρήσεις:

● Είναι σηµαντικό να δείτε πως έχουν υλοποιηθεί κάποια παρόµοια system calls που
υπάρχουν ήδη στον Linux kernel (π.χ. gettimeofday, times, getpid)

● Μπορείτε να µάθετε και να ακολουθήσετε το coding style του Linux Kernel κατά την
υλοποίηση των system calls: https://www.kernel.org/doc/Documentation/process/
coding-style.rst

● Το Elixir Cross Reference θα σας βοηθήσει να περιηγηθείτε στον source code του
Linux kernel. Η αναζήτηση του (Search Identifier) πιθανώς να σας φανεί χρήσιµη για
να εντοπίσετε συναρτήσεις και δοµές στα διάφορα αρχεία του source code. Προσέξτε
να έχετε επιλέξει την σωστή έκδοση του kernel που χρησιµοποιούµε στην άσκηση.
https://elixir.bootlin.com/

● Για να τροποποιήσετε αρχεία µέσα από το Guest OS µπορείτε να χρησιµοποιήσετε
τον editor Vi, ο οποίος λειτουργεί παρόµοια µε τον editor Vim. Περισσότερες
πληροφορίες για την χρήση του vi µπορείτε να βρείτε στο: http://linuxfocus.org/
~guido/vi/viref.html

Δοκιµή system calls

Στο τελευταίο βήµα της άσκησης θα πρέπει να δοκιµάσετε τα καινούργια system
calls. Αφού έχετε κάνει compile µε επιτυχία τον kernel µε τα system calls που φτιάξατε, και
έχετε ξεκινήσει τον QEMU µε τον καινούργιο Linux kernel, θα πρέπει να γράψετε κάποια
δοκιµαστικά προγράµµατα που να χρησιµοποιούν τα set_proc_info και
 get_proc_info στο guest Linux OS.

Μην ξεχνάτε ότι οι δηλώσεις των system calls που θα κάνετε βρίσκονται στον πυρήνα
και δεν είναι ορατές σε user-level προγράµµατα. Συνήθως, ένα system call καλείται µέσω
κάποιας συνάρτησης που τρέχει σε user level και υπάρχει υλοποιηµένη σε κάποια
βιβλιοθήκη (π.χ. libc). Στην συνέχεια, αυτή η user-level συνάρτηση καλεί το macro
syscall() µε το σωστό system call number του, για να µεταβιβάσει τον έλεγχο στον
πυρήνα (trap). Εκεί θα τρέξει ο κώδικας του system call. Αν δεν έχει υλοποιηθεί αυτή η
συνάρτηση σε κάποια user-level library (όπως στην δική σας περίπτωση), ένα πρόγραµµα
µπορεί να καλέσει το system call που θέλει χρησιµοποιώντας το macro syscall() αλλά
και τον αριθµό του system call που θέλει να καλέσει. Για παράδειγµα, το παρακάτω κοµµάτι
κώδικα καλεί το system call µε αριθµό 341 και του δίνει σαν όρισµα την τιµή 42.

#include <stdio.h>
#include <unistd.h>
#include <errno.h>

#define NR_dummy_sys 341

Για την άσκηση αυτή πρέπει να φροντίσετε τα system calls να µοιάζουν µε function
calls. Μπορείτε να το καταφέρετε αυτό είτε δηλώνοντας macros είτε φτιάχνοντας τα
κατάλληλα wrapper functions τα οποία θα δέχονται τα ίδια ορίσµατα µε τα system calls. Για
παράδειγµα:

Έτσι, στο δοκιµαστικό σας πρόγραµµα θα µπορείτε απλά να γράψετε
dummy_sys(42) και να κληθεί το σωστό system call µε τα σωστά arguments.

Σηµείωση:

Αν έχετε header files µε ορισµούς για νέους τύπους και structs, πρέπει να γίνουν κι αυτά
include στα demo προγράµµατα που θα γράψετε. Για να γίνει αυτό θα πρέπει να τα
µεταφέρετε στο Guest OS και ίσως χρειαστεί να δώσετε το path µε τα header files αυτά κατά
τη διάρκεια της µεταγλώττισης. Συγκεκριµένα, θα χρειαστεί να ορίσετε το struct
d_params ώστε να είναι ορατό σε user level. Για τον λόγο αυτό, µπορείτε να προσθέσετε
τον ορισµό για το struct αυτό µαζί µε τα macros ή wrapper functions των system calls. Όλοι
οι ορισµοί αυτοί µπορούν να τοποθετηθούν στο αρχείο /usr/include/unistd.h που υπάρχει στο
Guest OS και το οποίο θα κάνετε include σε όλα σας τα δοκιµαστικά προγράµµατα.

int main(void) {
printf("Trap to kernel level\n");
syscall(NR_dummy_sys, 42);
printf("Back to user level\n");
return 0;

}

#define NR_dummy_sys 341

/* Use either a macro */
#define dummy_sys(arg1) syscall(NR_dummy_sys, arg1)

/* Or a wrapper function */
long dummy_sys(int arg1) {

return syscall(NR_dummy_sys, arg1);
}

Παράδοση

Αφού κάνετε την άσκηση θα πρέπει να παραδώσετε τα παρακάτω:

1. Το καινούργιο kernel image που προέκυψε από τη µεταγλώττιση, δηλαδή το αρχείο
linux-2.6.38.1/arch/x86/boot/bzImage.

2. Όλα τα αρχεία που χρειάστηκε να τροποποιήσετε ή να δηµιουργήσετε στον source
code του Linux kernel για να υλοποιήσετε τα system calls. Αυτό σηµαίνει ότι θα
παραδώσετε όλα τα αρχεία .c, .h, Makefile, κλπ στα οποία κάνατε οποιαδήποτε
αλλαγή ή δηµιουργήσατε εσείς. Προσοχή, µην παραδώσετε αρχεία που δεν
χρειάστηκε να τα τροποποιήσετε για την υλοποίησή σας (π.χ. όλο το υπόλοιπο
source tree του kernel).

3. Τον κώδικα από όλα τα test προγράµµατα που γράψατε και τρέξατε µέσα στο guest
Linux OS για να δοκιµάσετε τα system calls που υλοποιήσατε. Επίσης, ότι header
files χρησιµοποιήσατε για type και function definitions αλλά και ότι Mekefile
χρειάζονται για την µεταγλώττιση των προγραµµάτων αυτών. Δεν χρειάζεται να
παραδώσετε τα executable αρχεία.

4. Ένα README file στο οποίο να περιγράφετε συνοπτικά (αλλά περιεκτικά και
ξεκάθαρα) όλα τα βήµατα που ακολουθήσατε για την προσθήκη και υλοποίηση των
νεων system calls. Επίσης, πρέπει να σχολιάσετε τι παρατηρήσατε από τα test
προγράµµατα που τρέξατε. Αν έχετε κάνει κάτι διαφορετικό ή παραπάνω από όσα
αναφέρουµε στην εκφώνηση της άσκησης σε οποιοδήποτε βήµα µπορείτε επίσης να
το αναφέρετε στο README.

5. Μπορείτε να φτιάξετε έναν φάκελο µε τα τροποποιηµένα source code αρχεία του
kernel (αν θέλετε θα είναι καλό να κρατήσετε την δοµή καταλόγων που υπάρχει στον
linux kernel), έναν φάκελο µε τα test προγράµµατα και header files από το guest OS,
και τέλος να τους µεταφέρετε σε ένα φάκελο µαζί το bzImage και το README file για
να παραδώσετε την άσκηση µε τον γνωστό τρόπο.

Προσοχή:

1. ΔΕΝ χρειάζεται να παραδώσετε το disk image (hy345-linux.img) ακόµα και αν αυτό
έχει τροποποιηθεί, Όντως, το disk image µπορεί να αλλάξει όσο χρησιµοποιείτε το
guest OS αλλά δεν χρειάζεται να το παραδώσετε.

2. ΔΕΝ χρειάζεται να παραδώσετε κάποιο αρχείο µε ολόκληρο τον source code του
Linux kernel. Πρέπει να σηµειώσετε και να παραδώσετε µόνο τα αρχεία που
τροποποιήσατε ή δηµιουργήσατε. To kernel image (bzImage), τα source και header
files καθώς και τα test προγράµµατα που θα παραδώσετε θα πρέπει να είναι αρκετά
ώστε η άσκησή σας να µπορεί να τρέξει µε το αρχικό disk image και το QEMU έτσι
ώστε να φαίνεται η σωστή υλοποίηση της άσκησης.

Παρατηρήσεις

1. Η άσκηση είναι ατοµική. Τυχόν αντιγραφές µπορούν να ανιχνευθούν εύκολα από
κατάλληλο λογισµικό και θα µηδενιστούν. Συµπεριλάβετε το όνοµα σας και το
λογαριασµό σας (account) σε όλα τα αρχεία.

2. Η χρήση κώδικα ο οποίος έχει παραχθεί από AI απαγορεύεται ρητά.

3. Γράψτε ένα αρχείο README, το πολύ 30 γραµµών, µε επεξηγήσεις για τον τρόπο
υλοποίησης των system calls.

4. Κατασκευάστε ένα αρχείο Makefile, έτσι ώστε πληκτρολογώντας make all να γίνεται η
µεταγλώττιση (compilation) των προγραµµάτων που χρησιµοποιούν τα system calls
και να παράγονται τα εκτελέσιµα αρχεία. Επίσης πληκτρολογώντας make clean να
καθαρίζονται όλα τα περιττά αρχεία, και να αποµένουν µόνο τα αρχεία που
χρειάζονται για τη µεταγλώττιση.

5. Τοποθετήστε σε ένα zip φάκελο όλα τα αρχεία προς παράδοση για την άσκηση 3.
Παραδώστε τo zip αρχείο µέσω E-Learn.

6. Σε πολλές περιπτώσεις τα ονόµατα των αρχείων είναι ενδεικτικά. Μπορείτε να
χρησιµοποιήσετε όποια ονόµατα σας βολεύουν.

	ΗΥ-345 Λειτουργικά Συστήματα Χειμερινό Εξάμηνο 2025
	Εισαγωγή
	Υλοποίηση
	Demo programs:

	Εκτέλεση Linux στο QEMU
	$ chmod 700 /spare/[username]
	$ qemu-system-i386 -hda hy345-linux.img

	Μεταγλώττιση του Linux kernel
	$ uname -a
	$ export

	Ρύθμιση παραμέτρων QEMU
	Remote working
	$ ssh [username]@[host].csd.uoc.gr -Y
	$ qemu-system-i386 -hda hy345-linux.img –display curses

	Μεταφορά αρχείων από το Guest OS στο Host OS
	Προσθήκη νέου system call
	Παράδειγμα:
	Παρατηρήσεις:

	Δοκιμή system calls
	Παράδοση
	Προσοχή:

	Παρατηρήσεις

