Network Layer

Katerina Lionta klionta@csd.uoc.gr

Data Plane

Data Plane

● How a router forwards the packets that arrives in its incoming links to outcoming links

IPv4 Address (1/2)

- 32-bits, decimal representation **a**.**b**.**c**.**d**/**x**
- 4 Octets, **a**=**b**=**c**=**d**=8 bits
- Each network has a range of IPs that can assign to its devices
	- Called prefix of the network, /**x**
	- The prefix indicates how many bits are fixed
	- To find the number of the available IPs given a prefix
		- \blacksquare 2^(32-x)-2
	- e.g Given the prefix 10.0.8.0/24, how many IPs are available?
		- \blacksquare 2⁽³²⁻²⁴⁾-2=2⁸-2=254 IPs

IPv4 Address (1/2)

- There are IPs that we cannot assign to devices
	- The **network IP** which is the first IP of the network
		- identifies the network
	- The **broadcast IP** which is the last IP of the network
		- sends the messages to every device in the network
	- \circ e.g Given the prefix 10.0.8.0/24
		- Network IP: 10.0.8.0
		- Broadcast IP: 10.0.8.255

○ That's the reason that we subtract 2 when we compute the number of available IPs

Forwarding Table (1/2)

- Each router has a forwarding table
- The table is completed by routing algorithms of the control plane ○ OSPF, BGP
- The entries of the table contain the prefixes with the corresponding output interface

Forwarding Table (2/2)

- The router extracts the **destination IP** of each incoming packet
- Then try to match this IP with on of the prefixes in its forwarding table
	- ΅When the router finds the matching subnet sends the packet to the corresponding output interface
- The forwarding table follows the rule of **longest prefix matching**:
	- if the destination IP matches with multiple subnets the router selects the longer

Forwarding Table Example (1/3)

- How the router forwards the following IPs?
	- 11001000 00010111 00010001 10011010
	- 11001000 00010111 00011000 10101010

Forwarding Table Example (2/3)

- How the router forwards the following IPs?
	- **11001000 00010111 00010**001 10011010 **-> interface 0**

Forwarding Table Example (3/3)

- How the router forwards the following IPs?
	- **11001000 00010111 00011000** 10101010 **-> interface 1**

Subnetting

- Many organizations divide their networks to smaller to:
	- facilitate the management
	- enhance the security by reducing the broadcast domains

Subnetting Example (1/2)

- A network with an IP Prefix 223.1.17.0/24
	- Separate the network in two subnets
- Solution:

- \bullet /24= 2⁽³²⁻²⁴⁾-2= 254 IPs
- two subnets- $>254/2=127$ IPs each subnet

Subnetting Example (2/2)

subnet 1, first 127 IPs:

Prefix 1: 223.1.17.0/25, network IP=223.1.17.0, broadcast IP=223.1.17.127

subnet 2, next 127 IPs:

Prefix 2: 223.1.17.128/25,network IP=223.1.17.128, broadcast IP =223.1.17.255 13

Network Address Translation (NAT) (1/2)

- The border router of the network separates the the internal network (LAN) from the Internet (WAN)
- **● NAT router**: is a border router that assigns the same source IP to the packets that are sent from internal network to the Internet
- **●** Benefits:
	- **○** Privacy
	- **○** IP saving

Network Address Translation (NAT) (2/2)

NAT Example

NAT Example Solution

Control Plane

Control Plane

● How a packet is routed among the routers

Routing Algorithms: Dijkstra (1/2)

- Centralized routing algorithm
- Each router in the network knows the entire topology
	- Link state algorithm
- Compute the minimum distance from one router to every other router in the network
	- find the minimum cost paths from one node to any other node

Routing Algorithms: Dijkstra (2/2)

- Find the minimum distance from A to every router
- D: Distance
- p: previous node

5

n

B

Routing Algorithms: Distance Vector (1/2)

- Decentralized Algorithm
- The routers know only their neighbors
- Repetitive algorithm
- The information of the cost of each link is distributed in the network via messages
- Based on Bellman-Ford equation:
	- \circ d_x(y)=min_v{c(x,v)+d_v(y)}

Routing Algorithms: Distance Vector (2/2)

Autonomous Systems (ASes)

- A group of routers which operate under the same management
- Each AS has a unique number identifier
	- Autonomous System Number (ASN)
- The routers of each AS shares a common prefix
- Each organization (Facebook, Google, Amazon etc) has one or more ASes in different locations

AS Routing Algorithms

- Intra-autonomous system routing
	- OSPF
	- Based on Dijkstra routing algorithm
	- Determines how the traffic flows **inside the AS**
- Inter-autonomous system routing
	- BGP
	- Based on distance vector algorithm
	- Determines how the traffic flows among **different ASes**

Border Gateway Protocol (BGP) (1/2)

- \bullet Each router in the network can:
	- Determines the best paths to different networks
	- Receives information for paths from its neighbors for different networks
- A protocol that determines the best paths to reach other ASes
- **Internal router**: a router that is connected with routers of the AS that belongs to
- **Gateway router**: a router that is connected with routers from other ASes
- The routers that run BGP are connected with TCP connections
	- **eBGP**: A TCP connection between two routers from different ASes
	- **iBGP**: A TCP connection between two routers from the same AS

BOrder Gateway Protocol (BGP) (2/2)

- **BGP attributes:**
	- **AS-PATH**: The ASes that the AS must traverse to reach the desired prefix
	- **○ NEXT-HOP**: The IP of the border router in the next AS in the Path
	- The AS-PATH that each router in AS1 knows to reach the router D in AS3 is:
		- \circ AS3 AS1
	- The NEXT-HOP is the IP of the router I (in green)

Thank You !