Network Layer

Katerina Lionta klionta@csd.uoc.gr

Data Plane

Data Plane

• How a router forwards the packets that arrives in its incoming links to outcoming links

IPv4 Address (1/2)

- 32-bits, decimal representation **a.b.c.d/x**
- 4 Octets, **a=b=c=d=**8 bits
- Each network has a range of IPs that can assign to its devices
 - Called prefix of the network, /**x**
 - The prefix indicates how many bits are fixed
 - To find the number of the available IPs given a prefix
 - 2^(32-x)-2
 - e.g Given the prefix 10.0.8.0/24, how many IPs are available?
 - 2⁽³²⁻²⁴⁾-2=2⁸-2=254 IPs

IPv4 Address (1/2)

- There are IPs that we cannot assign to devices
 - The **network IP** which is the first IP of the network
 - identifies the network
 - The **broadcast IP** which is the last IP of the network
 - sends the messages to every device in the network
 - e.g Given the prefix 10.0.8.0/24
 - Network IP: 10.0.8.0
 - Broadcast IP: 10.0.8.255

• That's the reason that we subtract 2 when we compute the number of available IPs

Forwarding Table (1/2)

- Each router has a forwarding table
- The table is completed by routing algorithms of the control plane
 OSPF, BGP
- The entries of the table contain the prefixes with the corresponding output interface

Forwarding Table (2/2)

- The router extracts the **destination IP** of each incoming packet
- Then try to match this IP with on of the prefixes in its forwarding table
 - When the router finds the matching subnet sends the packet to the corresponding output interface
- The forwarding table follows the rule of **longest prefix matching**:
 - if the destination IP matches with multiple subnets the router selects the longer

Forwarding Table Example (1/3)

- How the router forwards the following IPs?
 - 11001000 00010111 00010001 10011010
 - 11001000 00010111 00011000 10101010

Subnet	Out Interface		
11001000 00010111 00010*** *******	0		
11001000 00010111 00011000 *******	1		
11001000 00010111 00011*** *******	2		
Otherwise	3		

Forwarding Table Example (2/3)

- How the router forwards the following IPs?
 - **11001000 00010111 00010**001 10011010 -> interface 0

Subnet	Out Interface		
11001000 00010111 00010*** *******	0		
11001000 00010111 00011000 *******	1		
11001000 00010111 00011*** *******	2		
Otherwise	3		

Forwarding Table Example (3/3)

- How the router forwards the following IPs?
 - 11001000 00010111 00011000 10101010 -> interface 1

Subnet	Out Interface		
11001000 00010111 00010*** *******	0		
11001000 00010111 00011000 ********	1		
11001000 00010111 00011*** *******	2		
Otherwise	3		

Subnetting

- Many organizations divide their networks to smaller to:
 - facilitate the management
 - enhance the security by reducing the broadcast domains

Subnetting Example (1/2)

- A network with an IP Prefix 223.1.17.0/24
 - \circ Separate the network in two subnets
- Solution:

Decimal IP	223	1	17	0
Binary IP	11011111	0000001	0010001	0000000

- /24= 2⁽³²⁻²⁴⁾-2= 254 IPs
- two subnets->254/2=127 IPs each subnet

Subnetting Example (2/2)

• subnet 1 , first 127 IPs:

from	11011111	0000001	0010001	0 0000001=1
to	11011111	0000001	0010001	0 1111110=126

Prefix 1: 223.1.17.0/25, network IP=223.1.17.0, broadcast IP=223.1.17.127

• subnet 2, next 127 IPs:

from	11011111	0000001	0010001	1 0000001=129
to	11011111	0000001	0010001	<mark>1</mark> 1111110=254

Prefix 2: 223.1.17.128/25, network IP=223.1.17.128, broadcast IP =223.1.17.255

Network Address Translation (NAT) (1/2)

- The border router of the network separates the the internal network (LAN) from the Internet (WAN)
- **NAT router**: is a border router that assigns the same source IP to the packets that are sent from internal network to the Internet
- Benefits:
 - Privacy
 - IP saving

Network Address Translation (NAT) (2/2)

NAT Example

NAT Example Solution

Control Plane

Control Plane

• How a packet is routed among the routers

Routing Algorithms: Dijkstra (1/2)

- Centralized routing algorithm
- Each router in the network knows the entire topology
 - Link state algorithm
- Compute the minimum distance from one router to every other router in the network
 - find the minimum cost paths from one node to any other node

Routing Algorithms: Dijkstra (2/2)

- Find the minimum distance from A to ever router
- D: Distance
- p: previous node

Nodes	D(A), p(A)	D(B), p(B)	D(C), P(C)	D(D), p(D)
A	-	5, A	∞	8, A
AB	-	-	7, B	8, A
ABC	-	-	-	8, A
ABCD	-	-	-	-

В

D

Routing Algorithms: Distance Vector (1/2)

- Decentralized Algorithm
- The routers know only their neighbors
- Repetitive algorithm
- The information of the cost of each link is distributed in the network via messages
- Based on Bellman-Ford equation:
 - $\circ \quad d_x(y)=min_v\{c(x,v)+d_v(y)\}$

Routing Algorithms: Distance Vector (2/2)

Autonomous Systems (ASes)

- A group of routers which operate under the same management
- Each AS has a unique number identifier
 - Autonomous System Number (ASN)
- The routers of each AS shares a common prefix
- Each organization (Facebook, Google, Amazon etc) has one or more ASes in different locations

AS Routing Algorithms

- Intra-autonomous system routing
 - OSPF
 - Based on Dijkstra routing algorithm
 - Determines how the traffic flows **inside the AS**
- Inter-autonomous system routing
 - BGP
 - Based on distance vector algorithm
 - Determines how the traffic flows among **different ASes**

Border Gateway Protocol (BGP) (1/2)

- Each router in the network can:
 - Determines the best paths to different networks
 - Receives information for paths from its neighbors for different networks
- A protocol that determines the best paths to reach other ASes
- Internal router: a router that is connected with routers of the AS that belongs to
- **Gateway router**: a router that is connected with routers from other ASes
- The routers that run BGP are connected with TCP connections
 - **eBGP**: A TCP connection between two routers from different ASes
 - **iBGP**: A TCP connection between two routers from the same AS

BOrder Gateway Protocol (BGP) (2/2)

- BGP attributes:
 - **AS-PATH**: The ASes that the AS must traverse to reach the desired prefix
 - **NEXT-HOP**: The IP of the border router in the next AS in the Path
 - The AS-PATH that each router in AS1 knows to reach the router D in AS3 is:
 - AS3 AS1
 - The NEXT-HOP is the IP of the router I (in green)

Thank You !