
CS335a - Computer Networks
Project - Phase Β

TA: Mario-Alexios Savaglio [savaglio@csd.uoc.gr]

Γενική περιγραϕή
Στο οικοσύστηµα του Internet of Things (IoT) υπάρχει µια ευρεία γκάµα από δικτυακές
συσκευές. Πολλές από αυτές έχουν ελάχιστο µέγεθος και λειτουργούν µε µπαταρίες.
Για αυτόν τον λόγο, οι υπολογιστικοί τους πόροι είναι αρκετά περιορισµένη. Στις
περισσότερες περιπτώσεις, η υλοποίηση ολόκληρου του TCP πρωτοκόλλου είναι
αδύνατη και η µεταϕορά της πληροϕορίας γίνεται µε UDP. Υπάρχουν όµως εϕαρµογές
που απαιτούν αξιόπιστη επικοινωνία και µεταϕορά δεδοµένων.

Ο σκοπός του project είναι η υλοποίηση µιας βιβλιοθήκης η οποία θα παρέχει µια
απλή έκδοση του TCP. Παρόλα αυτά, θα είναι ικανή να παρέχει αξιόπιστη επικοινωνία
µεταξύ συσκευών µε περιορισµένους υπολογιστικούς πόρους χρησιµοποιώντας το
διαθέσιµο UDP πρωτόκολλο µεταϕοράς.

1. Δομή του project - Προθεσμίες

To project αποτελείται από 2 ϕάσεις.

Στην πρώτη ϕάση ζητείται να υλοποιήσετε την δοµή των microTCP πακέτων, το 3-
way handshake (χειραψία) και το finalize (τερµατισµό) της microTCP σύνδεσης.
Επίσης, θα υλοποιήσετε ένα εργαλείο µεταϕοράς αρχείων µε TCP το οποίο θα
χρησιµοποιήσετε στο τέλος για την σύγκριση της απόδοσης της υλοποίησή σας, τόσο
σε σχέση µε την πλήρη υλοποίηση του TCP, όσο και µε υλοποιήσεις άλλων οµάδων.

Στην δεύτερη ϕάση θα πρέπει να υλοποιήσετε την βασική λειτουργία του TCP η
οποία περιλαµβάνει τους µηχανισµούς για acknowledgements, retransmissions, error
checking, TCP windowing, Congestion control και Slow start.

Απαγορεύεται να αλλάξετε τα συµβόλαια των συναρτήσεων που σας έχουν δοθεί και
το structure των headers που σας δίνονται. Η αλλαγή τους θα σηµαίνει και τον
µηδενισµό του project. Παρόλα αυτά είναι επιθυµητές οι αλλαγές/προσθήκες στα
υπόλοιπα structs.

2. Ζητούμενα Β’ Φάσης

2.1 Συναρτήσεις μεταϕοράς δεδομένων

Σε αυτή την ϕάση, θα πρέπει να υλοποιήσετε τις συναρτήσεις microtcp_send() και
microtcp_recv() οι οποίες παρέχουν παρόµοια λειτουργικότητα µε τις αντίστοιχες
send() και recv() του TCP.

• ssize_t
microtcp_send(microtcp_sock_t * socket ,

const void * buffer ,
size_t length , int flags);

Η συνάρτηση αυτή είναι υπεύθυνη για την αξιόπιστη αποστολή δεδοµένων. Οι
παράµετροι είναι οι εξής:

– socket: Ο pointer του socket που διαχειρίζεται την microTCP σύνδεση.
Είναι pointer καθώς θα χρειαστεί να ανανεώσετε διάϕορα πεδία που
περιγράϕουν την κατάσταση της σύνδεσης.

– buffer: Τα δεδοµένα που θέλει ο χρήστης να στείλει.

– length: Ο αριθµός των bytes που θέλει να στείλει ο χρήστης.

– flags: Flags που τυχόν επιθυµεί ο χρήστης να περάσει στο socket.

Η συνάρτηση θα πρέπει να επιστρέϕει τον αριθμό των bytes που
επιτυχημένα και επιβεβαιωμένα έστειλε στον παραλήπτη. Σε περίπτωση
οποιουδήποτε λάθους θα πρέπει να επιστρέϕει -1.

• ssize_t
microtcp_recv(microtcp_sock_t * socket ,

void * buffer ,
size_t length , int flags);

Η συνάρτηση αυτή είναι υπεύθυνη για την αξιόπιστη λήψη δεδοµένων. Οι
παράµετροι είναι οι εξής:

– socket: Ο pointer του socket που διαχειρίζεται την microTCP σύνδεση.
Είναι pointer καθώς θα χρειαστεί να ανανεώσετε διάϕορα πεδία που
περιγράϕουν την κατάσταση της σύνδεσης.

– buffer: Θέση µνήµης στην οποία τα δεδοµένα από το δίκτυο θα
αποθηκευτούν. Είναι ευθύνη του χρήστη, να παρέχει αρκετό χώρο.

– length: Ο αριθµός των bytes που θέλει να λάβει ο χρήστης.

– flags: Flags που τυχόν επιθυµεί ο χρήστης να περάσει στο socket.

Η συνάρτηση θα πρέπει να επιστρέϕει τον αριθμό των bytes που
επιτυχημένα λήϕθηκαν. Σε περίπτωση οποιουδήποτε λάθους θα πρέπει να
επιστρέϕει -1. Επιπλέον, καθώς η microtcp_recv() είναι µια κλήση που µπορεί
να µπλοκάρει, υπάρχει η πιθανότητα να λάβει ένα µήνυµα τερµατισµού της
σύνδεσης (FIN, ACK). Σε αυτή την περίπτωση, θα πρέπει να επιστρέϕει -1 και
να θέτει την κατάσταση της microTCP σύνδεσης ως CLOSING_BY_PEER. Την
πληροϕορία αυτή την εκµεταλλεύεται η microtcp_shutdown() για να συνεχίσει
κατάλληλα τον τερµατισµό της σύνδεσης.

3. TCP Λειτουργίες

Το microTCP θα πρέπει να παρέχει την λειτουργικότητα του TCP χρησιµοποιώντας
κάποιους από τους βασικούς του µηχανισµούς.

3.1 Error checking

Αξιοποιώντας το πεδίο checksum του microtcp_header_t header θα πρέπει να
γίνεται ο έλεγχος αν το πακέτο λήϕθηκε σωστά. Σε περίπτωση που το checksum δεν
είναι σωστό, το πακέτο πρέπει να θεωρείται κατεστραµµένο και µπορείτε να
θεωρήσετε ότι δεν λήϕθηκε ποτέ, ενεργοποιώντας τους κατάλληλους µηχανισµούς.

3.2 Λήψη πακέτων με την σωστή σειρά

Στόχος του microTCP είναι η σωστή και ασϕαλής µεταϕορά δεδοµένων. Για αυτό τον
λόγο θα πρέπει να εξασϕαλίζεται η λήψη των πακέτων µε σωστή σειρά. Κάθε πακέτο
περιέχει ένα sequence number. Χρησιµοποιώντας αυτό τον αριθµό κατάλληλα,
µπορείτε να αποϕασίσετε αν ένα πακέτο λήϕθηκε ή όχι µε την σωστή σειρά.

Η σωστή σειρά πακέτων θα πρέπει να ελέγχεται καθ’ όλη την διάρκεια της σύνδεσης,
δηλαδή από το 3-way handshake έως και τον τερµατισµό της σύνδεσης και για όλα τα
πακέτα που ανταλλάσσονται.

3.3 Retransmissions

Για κάθε πακέτο που αποστέλλεται θα πρέπει να ληϕθεί το αντίστοιχο ACK. Σε πε-
ρίπτωση που το ACK δεν ληϕθεί σε MICROTCP_ACK_TIMEOUT_US microseconds
(us) (ορίζεται στο microtcp.h), ο αποστολέας πρέπει να ξαναστείλει το πακέτο.

Το πρόβληµα όµως είναι πως η recvfrom() που χρησιµοποιείται εσωτερικά είναι µια
συνάρτηση που µπλοκάρει µέχρι να λάβει κάποιο πακέτο. Μπορείτε παρόλα αυτά να
της θέσετε ένα timeout χρησιµοποιώντας την setsockopt() και το όρισµα
SO_RCVTIMEO. Με αυτό τον τρόπο, αν η recvfrom() δεν λάβει κάποιο πακέτο µέσα
στον χρόνο που ορίσατε, επιστρέϕει έναν αρνητικό αριθµό. Τον timeout χρόνο
µπορείτε να τον ορίσετε µε τον παρακάτω τρόπο:

struct timeval timeout;
timeout. tv_sec = 0;
timeout. tv_usec =
MICROTCP_ACK_TIMEOUT_US; if (
setsockopt(receive_socket , SOL_SOCKET
,

SO_RCVTIMEO , & timeout ,

sizeof(struct timeval)) < 0) {
perror(" setsockopt");

}

Retransmission θα πρέπει να γίνει επίσης στην περίπτωση που ο αποστολέας λάβει 3
συνεχόµενα duplicate ACK. Τι ακριβώς είναι το duplicate ACK περιγράϕεται
παρακάτω.

3.4 Duplicate Acknowledgements και Fast Retransmit

Τα duplicate ACKs είναι ένας ιδιαίτερα σηµαντικός µηχανισµός του TCP µε την
βοήθεια του οποίου ο αποστολέας µαθαίνει άµεσα την κατάσταση του πακέτου που
έστειλε.

Αν το πακέτο λήϕθηκε µε λάθη, ο παραλήπτης στέλνει πίσω ένα ACK που είναι το ίδιο
µε το ACK του τελευταίου πακέτου που λήϕθηκε σωστά. Ο αποστολέας είναι σε θέση
εύκολα να καταλάβει ότι το συγκεκριµένο ACK αϕορά προηγούµενο πακέτο, οπότε
αναγνωρίζει πως το πακέτο δεν έϕτασε σωστά και ενεργοποιεί τον retransmission
µηχανισµό. Επίσης duplicate ACK στέλνεται στην περίπτωση που ο παραλήπτης
λάβει ένα πακέτο µε λάθος sequence number.

Χωρίς το duplicate ACK, ο αποστολέας θα έπρεπε να περιµένει µέχρι να κάνει timeout
προτού κάνει retransmission. Κάτι τέτοιο όµως θα µείωνε δραµατικά την απόδοση,
επειδή το timeout συµβαίνει σχετικά µετά από ένα µεγάλο διάστηµα. Λαµβάνοντας
λοιπόν ο receiver 3 duplicate ACKs, ξεκινάει αµέσως το retransmission. ο µηχανισµός
αυτός είναι γνωστός ως Fast Retransmit, καθώς αντιδράει άµεσα σε µια πιθανή
απώλεια δεδοµένων.

Ένα ερώτηµα που προκύπτει είναι ποιο πακέτο θα πρέπει να ξαναστείλει ο
αποστολέας. Το duplicate ACK περιέχει όµως τον αριθµό των bytes που έχουν ληϕθεί
σωστά από τον παραλήπτη. Εποµένως είναι εύκολο να βρεθεί ποια δεδοµένα θα
πρέπει να ξανασταλθούν.

3.5 Flow Control

To TCP εϕαρµόζει end-to-end έλεγχο ροής για να αποϕύγει απώλεια πακέτων. Για
παράδειγµα αν ένας host στέλνει σε ένα κινητό πακέτα πολύ γρήγορα, το κινητό µε τις
περιορισµένες υπολογιστικές δυνατότητες τα επεξεργάζεται πιο αργά. Τελικά οι
buffers του κινητού θα γεµίσουν και πακέτα µπορεί να χαθούν. Σκοπός του flow
control είναι να περιοριστεί η ταχύτητα αποστολής ανάλογα µε τις δυνατότητες του
παραλήπτη.

To TCP το επιτυγχάνει χρησιµοποιώντας τον αλγόριθµο του sliding window. Αρχικά
κατά το 3-way handshake ανταλλάσσεται το αρχικό window size. Για την

περίπτωση του microTCP, αυτό ορίζεται µε την σταθερά MICROTCP_WIN_SIZE. Μόλις
εγκαθιδρυθεί η σύνδεση και οι δύο πλευρές δεσµεύουν µνήµη για τον receive buffer τους.
Το µέγεθος του buffer θα πρέπει να είναι µεγαλύτερο ή ίσο του window. Για την υλοποίησή
µας το µέγεθος είναι ίσο µε MICROTCP_RECVBUF_LEN.

Το window αναϕέρεται στον αριθµό των bytes που είναι σε θέση να δεχθεί ο
παραλήπτης. Όσο λαµβάνει πακέτα ο διαθέσιµος χώρος µικραίνει, άρα και το window.
Όταν τα δεδοµένα, προωθηθούν προς τον χρήστη ο διαθέσιµος χώρος αυξάνεται
ξανά, άρα το window µεγαλώνει. Η κατάσταση του window αποθηκεύεται στο
microtcp_sock_t. Το curr_win_size αναϕέρεται στην τρέχουσα τιµή του
window, ενώ το init_win_size στην αρχική τιµή που συµϕωνήθηκε κατά το
handshake.

Ο αλγόριθµος δουλεύει ως εξής:

• Κατά την αποστολή του πρώτου πακέτου ο αποστολέας στέλνει ένα πακέτο
µεγέθους X bytes. To X δεν µπορεί να ξεπεράσει σε µέγεθος το Maximum
Segment Size (MSS). Αν και υπάρχουν µηχανισµοί για τον αυτόµατο εντοπισµό
του MSS, το microTCP χρησιµοποιεί σταθερό MSS του οποίου το µέγεθος
ορίζεται από την σταθερά MICROTCP_MSS.

• Ο παραλήπτης δέχεται το πακέτο και το αποθηκεύει στον receive buffer. Καθώς
στέλνει πίσω το ACK, ενηµερώνει κατάλληλα τον αποστολέα για το πόσα bytes
είναι πρόθυµος να δεχθεί µε το επόµενο πακέτο, τοποθετώντας την τιµή window
– X στο αντίστοιχο πεδίο του header.

• Ο αποστολέας µπορεί να στείλει το πολύ όσα bytes αναϕέρονται στο πεδίο
window του ACK header.

• Προωθώντας bytes στον χρήστη, ο παραλήπτης αυξάνει το window του κατά
Y .

• Υπάρχει πιθανότητα το window κάποια στιγµή να γίνει 0. Σε µια τέτοια
περίπτωση ο αποστολέας θα πρέπει να στέλνει επανειληµµένα ένα πακέτο
χωρίς payload έως ότου πάρει ACK µε µη-µηδενικό window. Πριν την αποστολή
αυτού του ειδικού σκοπού πακέτου, περιµένει random χρόνο µεταξύ 0 και
MICROTCP_ACK_TIMEOUT_US microseconds. Μόλις λάβει ACK µε µη-
µηδενικό window size συνεχίζει την αποστολή.

3.6 Congestion Control

Στο flow control µπορεί ο αποστολέας να συµµετέχει ενεργά αυξοµειώνοντας τον όγκο
των δεδοµένων που στέλνει, όµως ο παραλήπτης είναι αυτός που καθορίζει τελικά
τον αριθµό των bytes που θα στείλει ο αποστολέας βάση την πληρότητα των receive
buffer του. Για αυτό συνήθως θεωρείται πως το flow control υλοποιείται στον
παραλήπτη.

Αντίθετα το congestion control υλοποιείται στον αποστολέα, αντλώντας πληροϕορία
για την κατάσταση του δικτύου κυρίως από τα ACKs. Στόχος του είναι να αποϕύγει την
συµϕόρηση στο δίκτυο εµποδίζοντας δυναµικά την ανεξέλεγκτη αποστολή δεδοµένων,
κρατώντας όµως την απόδοση σε υψηλά επίπεδα. Το congestion control περιλαµβάνει
τους αλγόριθµους slow start, congestion avoidance, fast retransmit και fast recovery.
Στο microTCP θα υλοποιήσετε τους µηχανισµούς slow start, congestion avoidance και
τον προαναϕερθέν fast retransmit.

Παρόλο που το congestion avoidance και το slow start έχουν εντελώς διαϕορε- τικό
στόχο, εντούτοις όταν µια TCP σύνδεση αντιµετωπίσει συµϕόρηση στο δίκτυο, θα
πρέπει να περιοριστεί η ταχύτητα αποστολής δεδοµένων και αργότερα να
αποκατασταθεί. Για αυτό τον λόγο συνήθως οι αλγόριθµοι congestion avoidance και
slow start υλοποιούνται µαζί.

Για την υλοποίησή τους χρειάζονται δύο µεταβλητές για κάθε σύνδεση:

• cwnd: Congestion window. O αριθµός των bytes που µπορεί να στείλει ο
αποστολέας, χωρίς να περιµένει για τα αντίστοιχα ACKs.

• ssthresh: Slow start threshold. Το όριο αυτό ορίζει αν θα χρησιµοποιηθεί ο
αλγόριθµος slow start ή congestion avoidance. Αν cwnd ≤ ssthresh τότε
χρησιµοποιείται ο slow start αλγόριθµος. Διαϕορετικά ο congestion avoidance.

Αρχικά το cwnd τίθεται ίσο µε 3×MSS χρησιµοποιώντας την σταθερά MICROTCP_INIT_CWND.

Αντίστοιχα το αρχικό ssthresh είναι ίσο µε το window του flow control και ορίζεται µε
τη σταθερά MICROTCP_INIT_SSTHRESH.

3.6.1 Slow start

Κατά την διάρκεια του slow start, για κάθε σωστό ACK που λαµβάνεται, το congestion window
αυξάνεται κατά MSS bytes. Αυτό σηµαίνει ότι για κάθε RTT (x πακέτα στάλθηκαν - x ACKs
λήϕθηκαν) το congestion window διπλασιάζεται.

3.6.2 Congestion avoidance

Κατά την διάρκεια του congestion avoidance, για κάθε RTT (x πακέτα στάλθηκαν - x
ACKs λήϕθηκαν) το congestion window αυξάνεται κατά MSS bytes. To congestion
window θα αυξάνεται µέχρι να αρχίσουν πακέτα να χάνονται. Αν ληϕθούν 3 duplicate
ACKs τότε θα πρέπει να γίνουν οι παρακάτω αλλαγές:

ssthresh = cwnd/2;
cwnd = cwnd/2 + 1;

Στην περίπτωση που περιµένοντας για ACK συµβεί timeout, τότε:

ssthresh = cwnd/2;
cwnd = min(MICROTCP_MSS , ssthresh);

και ενεργοποιείται ο slow start αλγόριθµος.

4. Λεπτομέρειες υλοποίησης

Αρχικά θα πρέπει να κατεβάσετε τον ανανεωµένο κώδικα από το Github repository
https://github.com/surligas/microTCP. Συστήνεται ιδιαίτερα να δείτε τις αλλαγές στο
microtcp_sock_t καθώς και σε άλλα σηµεία του κώδικα.

Παρακάτω ακολουθεί ένα roadmap για την πιο εύκολη και σταδιακή υλοποίηση της
ϕάσης αυτής.

Roadmap:

1. Κάντε τις απαραίτητες αλλαγές στο 3-way handshake. Οι δύο host θα πρέπει να
ανταλλάσσουν το αρχικό flow control window µέσω του πεδίου window του
header.

2. Τροποποιήστε την microtcp_shutdown() κατάλληλα, ώστε να παίρνει υπόψη αν
το FIN λήϕθηκε ήδη από µια προηγούµενη κλήση της microtcp_recv().

3. Ξεκινήστε να υλοποιείτε τις microtcp_recv() και microtcp_send(). Σε αυτό το
σηµείο οι συναρτήσεις αυτές απλά θα στέλνουν και θα λαµβάνουν δεδοµένα,
πραγµατοποιώντας µόνο τυπικούς ελέγχους.

4. Προσθέστε στις microtcp_recv() και microtcp_send() το error checking και τον
έλεγχο των sequence και ack numbers για την διασϕάλιση της λήψης πακέτων
µε σωστή σειρά. Σε οποιαδήποτε περίπτωση λάθους θα πρέπει να στέλνεται
ένα duplicate ACK.

5. Προσθέστε στην microtcp_send() των έλεγχο για το duplicate ACK. Αν το ACK
που λήϕθηκε ήταν duplicate ACK, η microtcp_send() θα πρέπει να στέλνει ξανά
το τελευταίο πακέτο. Αν καθώς περιµένει για ACK γίνει κάποιο timeout,
ξαναστέλνει το τελευταίο πακέτο.

6. Υλοποιήστε στις microtcp_recv() και microtcp_send() τον flow control
µηχανισµό.

7. Υλοποιήστε στην microtcp_send() τον congestion control µηχανισµό.

8. Προσαρµόστε το bandwidth_test εργαλείο στη ανάγκες του microTCP. Πλέον ο
κώδικας για την TCP υλοποίηση σας δίνεται έτοιµος και µεταϕέρει το αρχείο
σωστά στην άλλη πλευρά. ΠΡΟΣΟΧΗ: Τα µεγέθη των buffers που επιθυµεί να
στείλει ο client θα πρέπει να παραµείνουν ίδια. Επίσης θα πρέπει να εκτυπώνετε
το αποτέλεσµα µε ακριβώς τον ίδιο τρόπο στην οθόνη.

https://github.com/surligas/microTCP

9. ΚΑΛΕΣ ΔΙΑΚΟΠΕΣ !

4.1 Διαδικασία αποστολής πακέτων

Κάθε UDP πακέτο που αποστέλλεται µε την microtcp_send() θα πρέπει να έχει µέγεθος
µικρότερο ή ίσο µε το MSS. Αυτό γίνεται για να αποϕευχθεί το IP fragmentation.
Εποµένως ο buffer του χρήστη, θα πρέπει να κατακερµατιστεί σε πολλαπλά chunks των
MSS bytes. Επιπρόσθετα, πριν την αποστολή των πακέτων θα πρέπει να ελέγχεται και ο
επιτρεπτός αριθµός bytes που µπορούν να σταλούν βάσει των flow και congestion control
µηχανισµών. Γενικά ο αποστολέας µπορεί να στείλει το πολύ min(window, cwnd) bytes
κάθε ϕορά.

ssize_t
microtcp_send(microtcp_sock_t * socket ,

const void * buffer ,
size_t length , int
flags)

{
.
.
.
remaining = length;
while(data_sent <
length){
bytes_to_send = min(flow_ctrl_win , cwnd ,
remaining); chunks = bytes_to_send / MICROTCP_MSS;
for(i = 0; i < chunks;

i++){ sendto ();
}
/* Check if there is a semi - filled chunk
*/ if(bytes_to_send % MICROTCP_MSS){

chunks++;
sendto (
);

}

/* Get the ACKs */
for(i = 0; i < chunks;

i++){ recvfrom (...);
}

/* Retransmissions */
/* Update window */
/* Update congestion control */

remaining -= bytes_to_send;

data_sent += bytes_to_send;
.
.
.

}

5. Τρόπος βαθμολογίας

5.1 Προϕορικός Βαθμός

Παρά το γεγονός ότι το project είναι οµαδικό, κάθε µέλος της οµάδας θα πρέπει να
είναι σε θέση να απαντήσει σε βασικές ερωτήσεις που αϕορούν κοµβικά σηµεία της
υλοποίησης. Οι απαντήσεις του κάθε µέλους θα συνεισϕέρουν κατά 30% επί της
βαθµολογίας του project. Εποµένως κάθε µέλος µπορεί να πάρει διαϕορετικό βαθµό
ανάλογα τις απαντήσεις.

5.2 Βαθμός συστήματος

Το microTCP θα αξιολογηθεί χρησιµοποιώντας το bandwidth_test εργαλείο. Η
βαθµολογία θα εξαρτηθεί από τους εξής παράγοντες:

1. Σωστή µορϕή πακέτου.

2. Ορθή χρήση της πληροϕορίας που εµπεριέχεται στον header.

3. Αξιόπιστη επικοινωνία σε ένα δίκτυο το οποίο χρησιµοποιούν τρίτοι έντονα.

4. Σωστή υλοποίηση των µηχανισµών flow και congestion control.

6. Παραδοτέα

Κατά την παράδοση του project θα πρέπει να συµπεριλάβετε τον ϕάκελο microtcp. Αν
δεν χρησιµοποιήσετε το CMake build system θα πρέπει να παραδώσετε και ένα
Makefile που κάνει build τον κώδικά σας.

Επίσης θα πρέπει να παραδώσετε και µια αναϕορά. Στην αναϕορά εκτός από µια
σύντοµη περιγραϕή της υλοποίησή σας θα πρέπει να συµπεριλάβετε και την απόδοση
του συστήµατος σας. Αυτό µπορεί να γίνει χρησιµοποιώντας το bandwidth_test εργαλείο
το οποίο θα το τρέξετε σε 2 διαϕορετικά µηχανήµατα της σχολής. Για την µέτρηση
συστήνεται να χρησιµοποιήσετε ένα σχετικά µεγάλο αρχείο (> 500 ΜΒ).

Σαν µέτρο απόδοσης µπορείτε να χρησιµοποιήσετε τον λόγο της απόδοσης του TCP
και της δικής σας υλοποίησης. Δηλαδή:

Τρόπος παράδοσης: παραδίδετε ένα .zip αρχείο που θα περιέχει όλα τα αρχεία κώδικα καθώς και

την αναφορά σας. Η παράδοση θα γίνει μέσω του elearn του μαθήματος.

