
18/2/26, 22:26Exercise 3: Memory Accesses (U.Crete, CS-225)

Page 1 of 9https://www.csd.uoc.gr/~hy225/26a/ex03_mem.html

ΗΥ-225: Οργάνωση Υπολογιστών
Άνοιξη 2026

Τμ. Επ. Υπολογιστών
© Πανεπιστήμιο Κρήτης

Σειρά Ασκήσεων 3:
Προσπελάσεις Μνήμης στον RISC-V

Από 2η για μέσον 4ης εβδομάδας του Εξαμήνου

Βιβλίο: Υπόλοιπη §2.3: σελίδες 109-115.

3.1 Προσπελάσεις Μνήμης: Εντολές load και store

Ο RISC-V, όπως και οι άλλοι επεξεργαστές τύπου RISC, δεν έχει εντολές που
να κάνουν αριθμητικές πράξεις πάνω σε τελεστέους που βρίσκονται στη μνήμη
--όλες οι αριθμητικές πράξεις του γίνονται πάνω σε καταχωρητές ή σταθερές
ποσότητες (immediate constants). Ο μόνος τρόπος να επεξεργαστούμε τα
περιεχόμενα της μνήμης είναι πρώτα να αντιγράψουμε μία διπλή λέξη (double -
64 bits), ή μία λέξη (word - 32 bits), ή μία μισή λέξη (half - 16 bits), ή ένα Byte (8
bits) από τη μνήμη σ' ένα καταχωρητή της CPU, να την επεξεργαστούμε σε
καταχωρητές, και τέλος να αντιγράψουμε το αποτέλεσμα από έναν
καταχωρητή στη μνήμη. Οι λόγοι είναι (α) γιά απλότητα του hardware, και (β)
γιατί συνήθως δεν πετυχαίνουμε ψηλότερη ταχύτητα, ακόμα και όταν μια
μόνη εντολή κάνει και την αντιγραφή και την επεξεργασία, διότι, όπως θα
δούμε, όταν χρησιμοποιείται ομοχειρία (pipelining), συνήθως ο περιοριστικός
παράγοντας (bottleneck) είναι αλλού.

Αντιγραφή μιας 32-μπιτης λέξης από τη μνήμη σ' ένα καταχωρητή ("φόρτωμα
στον καταχωρητή") γίνεται με την εντολή "lw rd, offset(rs1)" (load word),
όπου rd είναι ο καταχωρητής προορισμού (destination register), και rs1 είναι
ένας καταχωρητής πηγής (source/index/base register) που περιέχει μια διεύθυνση
μνήμης (pointer) στην οποία προστίθεται ο σταθερός αριθμός offset
(απόσταση/απόκλιση), και το αποτέλεσμα της πρόσθεσης είναι η τελική
διεύθυνση μνήμης απ' όπου γίνεται η ανάγνωση και αντιγραφή στον rd. Συχνά,
συμβολίζουμε τη μνήμη σαν έναν πίνακα (array) M[], και γράφουμε M[A] γιά
να συμβολίσουμε το περιεχόμενο της θέσης μνήμης με διεύθυνση A. Έτσι, η
παραπάνω εντολή lw rd, offset(rs1) προκαλεί ανάγνωση από τη διεύθυνση
μνήμης (offset + rs1), δηλαδή διαβάζει το M[offset + rs1], και το γράφει στον
καταχωρητή rd. Ο σταθερός αριθμός offset χρησιμοποιείται σαν
προσημασμένος από το υλικό του RISC-V, επομένως η "κίνηση" που αυτός
επιβάλει σε σχέση με το πού "δείχνει" ο καταχωρητής rs1 μπορεί να είναι προς
τα "εμπρός" ή προς τα "πίσω".

Αντίστροφα, αντιγραφή μιας 32-μπιτης λέξης από έναν καταχωρητή στη
μνήμη ("αποθήκευση του καταχωρητή") γίνεται με την εντολή "sw rs2,
offset(rs1)" (store word), η οποία γράφει στη θέση μνήμης με διεύθυνση
(offset + rs1), δηλαδή προκαλεί την αντιγραφή M[offset + rs1] ← rs2. Εδώ, ο rs2
είναι καταχωρητής πηγής (source register)· προσέξτε ότι σε αυτή την περίπτωση,
ο τελεστέος πηγής (source operand) γράφεται αριστερά και ο τελεστέος
προορισμού δεξιά μέσα στην εντολή Assembly, αντίθετα δηλαδή από τις

https://www.csd.uoc.gr/~hy225/index.html

18/2/26, 22:26Exercise 3: Memory Accesses (U.Crete, CS-225)

Page 2 of 9https://www.csd.uoc.gr/~hy225/26a/ex03_mem.html

εντολές αριθμητικών πράξεων και από την εντολή load.

Υπάρχουν και οι παρόμοιες εντολές lb" (load byte) και lh" (load half) που
διαβάζουν αντίστοιχα 1 ή 2 Bytes από τη μνήμη, τα μετατρέπουν σε 32 bits
θεωρώντας τα προσημασμένα (signed), και τα γράφουν στον καταχωρητή rd.
Επίσης οι εντολές lbu" (load byte unsigned) και lhu" (load half unsigned) κάνουν
την ίδια δουλειά εκτός ότι στη μετατροπή σε 32 bits θεωρούν τα 8 ή 16 bits που
διάβασαν από τη μνήμη σαν μη προσημασμένα. Αντίστοιχα οι εντολές sb"
(store byte) και sh" (store half) γράφουν στη μνήμη τα 8 ή 16 δεξιά (λιγότερο
σημαντικά - least significant) bits του καταχωρητή rs2.

Στον 64-μπιτο RISC-V (όπως στο βιβλίο), οι καταχωρητές είναι 64-μπιτοι, οπότε
η lw διαβάζει πάλι 32 bits από τη μνήμη, όπως και πριν, αλλά τα μετατρέπει σε
64 bits θεωρώντας τα προσημασμένα (signed) γιά να τα γράψει στο 64-μπιτο
καταχωρητή rd, ενώ η lwu (load word unsigned) κάνει το ίδιο αλλά στη
μετατροπή θεωρεί τα 32 bits που διάβασε σαν unsigned. Αντίστοιχα, η εντολή
sw γράφει τα 32 δεξιά (least significant) bits του καταχωρητή rs2 στη μνήμη.
Επίσης στον 64-μπιτο RISC-V υπάρχει η ld (load double) που διαβάζει 64 bits (8
bytes) από τη μνήμη, και η sd (store double) που γράφει 64 bits (8 bytes) στη
μνήμη. Στους σημερινούς 64-μπιτους υπολογιστές, οι compilers της C θεωρούν
τις μεταβλητές τύπου pointer πάντα σαν 64-μπιτες ποσότητες (προφανώς), ενώ
τις μεταβλητές τύπου int σαν 32-μπιτους ακεραίους και τις μεταβλητές τύπου
long long int σαν 64-μπιτους ακεραίους· τον τύπο long int, τα μεν Windows
τον θεωρούν 32 bits, το δε Linux τον θεωρεί 64 bits.

Οι συνήθεις τρόποι χρήσης του παραπάνω τρόπου "διευθυνσιοδότησης"
(addressing mode), δηλαδή "καταχωρητής + σταθερά", θα γίνουν κατανοητοί
καθώς το μάθημα θα προχωρά. Ας σημειώσουμε όμως εδώ, γιά μελλοντική
αναφορά, ότι η πιό συνηθισμένη χρήση είναι με τον καταχωρητή να περιέχει
έναν pointer, και τη σταθερή ποσότητα να είναι μιά "απόκλιση" (offset) από εκεί
που δείχνει ο pointer. Αυτό χρησιμοποιείται εξαιρετικά συχνά: (α) όταν ο
pointer δείχνει σε μιά δομή δεδομένων και η απόκλιση ορίζει ποιό από τα πεδία
αυτής της δομής θέλουμε να προσπελάσουμε (π.χ. p->next)· (β) όταν ο
καταχωρητής είναι ο stack pointer (sp = x2) και η απόκλιση ορίζει ποιάν από τις
τοπικές μεταβλητές της διαδικασίας ζητάμε· και (γ) όταν ο καταχωρητής είναι
ο global pointer (gp = x3) και η απόκλιση ορίζει μία από τις καθολικές βαθμωτές
μεταβλητές. Μιά άλλη χρήση του τρόπου διευθυνσιοδότησης "σταθερά +
καταχωρητής" θα μπορούσε να ήταν με τη σταθερά να είναι η διεύθυνση
βάσης ενός (στατικά allocated) πίνακα (array) και ο καταχωρητής να είναι το
index του στοιχείου του πίνακα πολλαπλασιασμένο (ήδη) επί το μέγεθος του
στοιχείου του πίνακα, οπότε προσπελάζουμε το στοιχείο με εκείνο το index.
Όμως στην πράξη, στον RISC-V, αυτό είναι σχεδόν αδύνατο διότι θα έπρεπε ο
πίνακας να ξεκινά στα πρώτα 2 KBytes του χώρου διευθύνσεων, ώστε η
διεύθυνση βάση του να χωρά στα μόλις 12 bits που έχει η (προσημασμένη)
σταθερά. Ευτυχώς, η χρήση αυτή δεν είναι απαραίτητη, διότι συνήθως οι
compilers αλλάζουν την αριθμητική με array indexes σε αριθμητική με array
element pointers μέσα στους βρόχους που επεξεργάζονται στοιχεία πινάκων.

3.2 Μηχανές Byte-Addressable, Little-Endian (και Big-Endian)

Οι διευθύνσεις μνήμης στον RISC-V, όπως και πρακτικά σε όλους τους

18/2/26, 22:26Exercise 3: Memory Accesses (U.Crete, CS-225)

Page 3 of 9https://www.csd.uoc.gr/~hy225/26a/ex03_mem.html

μοντέρνους επεξεργαστές, αναφέρονται σε Bytes στη μνήμη, δηλαδή ο RISC-V
είναι "Byte Addressable", ούτως ώστε το κάθε στοιχείο ενός πίνακα (array) 8-
μπιτων χαρακτήρων (char) να μπορεί να έχει τη δική του διεύθυνση, ξεχωριστή
από εκείνην των διπλανών του στοιχείων. Έτσι, μια 32-μπιτη λέξη (π.χ. ένας
ακέραιος int της C) καταλαμβάνει 4 "θέσεις μνήμης" (4 bytes). Κατά συνέπεια,
ένας πίνακας (array) μεγέθους 100 ακεραίων "πιάνει" 400 (συνεχόμενες)
διευθύνσεις (θέσεις) στη μνήμη. Σ' ένα τέτοιο πίνακα, η διεύθυνση του κάθε
ακέραιου διαφέρει από αυτήν του διπλανού του κατά 4. Εαν A0 είναι η
διεύθυνση του "πρώτου" (υπ' αριθμόν μηδέν) στοιχείου, a[0], ενός πίνακα
ακεραίων της C, τότε το στοιχείο a[i] του πίνακα αυτού θα βρίσκεται στη
διεύθυνση (A0 + 4*i). Αν ο πίνακας αυτός ήταν πίνακας χαρακτήρων (char)
του ενός Byte καθένας, τότε το στοιχείο a[i] θα ήταν στη διεύθυνση (A0 + i).

Για ποσότητες αποτελούμενες από δύο ή περισσότερα Bytes η καθεμία, τα
Bytes που τις αποτελούν έχουν διευθύνσεις που είναι συνεχόμενοι αριθμοί.
Διεύθυνση της ποσότητας συνολικά είναι πάντα η διεύθυνση του "πρώτου"
από τα Bytes που την αποτελούν, δηλαδή εκείνου από τα Bytes της που έχει την
μικρότερη διεύθυνση ανάμεσα σε όλα τα Bytes της ποσότητας. Έτσι π.χ. η
half-word στη διεύθυνση H αποτελείται από τα Bytes στις διευθύνσεις H και
H+1· η word στη διεύθυνση W αποτελείται από τα Bytes στις διευθύνσεις W,
W+1, W+2, και W+3· και η double-word στη διεύθυνση D αποτελείται από τα
Bytes στις διευθύνσεις D, D+1, D+2, D+3, D+4, D+5, D+6, και D+7.

Όταν αποθηκεύεται στη μνήμη ενός υπολογιστή μια ποσότητα αποτελούμενη
από πολλαπλά bytes (π.χ. ένας ακέραιος), πρέπει να καθοριστεί με ποια σειρά
αριθμούνται (διευθυνσιοδοτούνται) τα επιμέρους Bytes μέσα στην ποσότητα
αυτή. Δυστυχώς στο παρελθόν δεν είχε υπάρξει συμφωνία μεταξύ των
κατασκευαστών επεξεργαστών για τη σειρά αυτή, με συνέπεια να υπάρχουν
δύο διαφορετικοί τύποι επεξεργαστών – οι επονομαζόμενοι "Little-Endian" και
οι επονομαζόμενοι "Big-Endian". Σήμερα πάντως, μοιάζει να επικρατούν οι
Little-Endian, και γι' αυτό ο RISC-V είναι Little-Endian:

Ας ξεκινήσουμε με μια σύμβαση που αφορά τον τρόπο σχεδιασμού στο χαρτί
των ποσοτήτων που αποτελούνται από πολλαπλά bytes: Μέσα σ' έναν ακέραιο
αριθμό, τα bits εκείνα που πολλαπλασιάζονται επί τις μεγαλύτερες δυνάμεις
του 2 για να μας δώσουν την αριθμητική τιμή του ακεραίου λέγονται
"περισσότερο σημαντικά" (MS - most significant) bits, και αυτά που
πολλαπλασιάζονται επί τις μικρότερες δυνάμεις του 2 λέγονται "λιγότερο
σημαντικά" (LS - least significant) bits. Το Byte που περιέχει τα MS bits λέγεται
MS Byte, και εκείνο που περιέχει τα LS bits λέγεται LS Byte. Όποτε
σχεδιάζουμε έναν ακέραιο στο χαρτί, οριζόντια, θα βάζουμε πάντα τα MS bits

18/2/26, 22:26Exercise 3: Memory Accesses (U.Crete, CS-225)

Page 4 of 9https://www.csd.uoc.gr/~hy225/26a/ex03_mem.html

και Byte αριστερά, και τα LS bits και Byte δεξιά, δηλαδή όπως και στους
δεκαδικούς αριθμούς (φυσικά, η σύμβαση αυτή αφορά μόνο τους ανθρώπους
–μέσα στον υπολογιστή δεν έχει νόημα να μιλάμε για "αριστερά transistors" και
"δεξιά transistors"...). Ακολουθώντας τη σύμβαση αυτή, το σχήμα δείχνει ένα
παράδειγμα τεσσάρων (4) λέξεων μνήμης (16 Bytes) ενός 32-μπιτου υπολογιστή
σε μία μηχανή "Big-Endian" και σε μία μηχανή "little-Endian". Η πρώτη λέξη
περιέχει τον ακέραιο αριθμό 2003 (δεκαδικό) = 7D3 (δεκαεξαδικό), ενώ στις
επόμενες 3 λέξεις υπάρχει ένας πίνακας χαρακτήρων (array of char) μεγέθους
10 στοιχείων, και περισσεύουν και δύο ελεύθερα bytes· ο πίνακας χαρακτήρων
περιέχει το (null-terminated) string "katevenis" (κάθε Byte θα περιέχει το δυαδικό
κώδικα ASCII ενός χαρακτήρα –π.χ. το πρώτο byte θα περιέχει 01101011, που
είναι ο κώδικας του 'k'– αλλά εμείς, για ευκολία, δείχνουμε το συμβολιζόμενο
χαρακτήρα).

Big-Endian: Σε αυτούς τους υπολογιστές, το MS Byte του κάθε ακεραίου
έχει τη μικρότερη διεύθυνση, και οι διευθύνσεις των Bytes εντός του
ακεραίου αυξάνουν (προχωρούν) καθώς προχωράμε "δεξιά", προς το LS
Byte του. Αυτοί οι υπολογιστές λέγονται "Big-Endian" διότι η αρίθμηση
των bytes ξεκινά από το "Big end", δηλαδή το MS Byte. Η λογική των Big-
endians είναι ότι τα character strings διαβάζονται κανονικά από τους
ανθρώπους που στις γλώσσες τους γράφουν από τα αριστερά προς τα
δεξιά.
Little-Endian: Στους επικρατέστερους σήμερα υπολογιστές, και στον
RISC-V, το LS Byte του κάθε ακεραίου έχει τη μικρότερη διεύθυνση, και
οι διευθύνσεις των Bytes εντός του ακεραίου αυξάνουν (προχωρούν)
καθώς προχωράμε "αριστερά", προς το MS Byte του. Αυτοί οι
υπολογιστές λέγονται "little-Endian" διότι η αρίθμηση των bytes ξεκινά
από το "Little end", δηλαδή το LS Byte. Η λογική των Little-endians είναι
ότι τα Bytes αριθμώνται προς την ίδια κατεύθυνση προς την οποία
αριθμώνται και τα bits ενός ακεραίου, δηλαδή προς την κατεύθυνση που
αυξάνουν οι δυνάμεις του 2 - συντελεστές των bits του ακεραίου.

Παρατηρήστε ότι η διεύθυνση μιας λέξης (π.χ. του ακεραίου 2003 στη θέση 12)
είναι η ίδια και στις δύο μηχανές, αφού, όπως είπαμε παραπάνω, είναι πάντα η
διεύθυνση εκείνου από τα 4 bytes του που έχει τη μικρότερη ("πρώτη") από τις
4 διευθύνσεις. Επίσης παρατηρήστε ότι οι χαρακτήρες ενός string
αποθηκεύονται σε διαδοχικά bytes της μνήμης κατά αύξουσες διευθύνσεις,
όπως ακριβώς επιβάλει ο απλός κανόνας που είπαμε και παραπάνω. Το σχήμα
αντιστοιχεί στη δήλωση (σε C) "char buf[10];", όπου ο πίνακας buf[] έχει
τοποθετηθεί (π.χ. από τον compiler) στις θέσεις μνήμης με διεύθυνση 16 έως και
25· τότε, το στοιχείο i του πίνακα, buf[i], βρίσκεται στη διεύθυνση 16+i,
επειδή 16 είναι η διεύθυνση εκκίνησης του πίνακα (η διεύθυνση του πρώτου
του στοιχείου, buf[0]), και το μέγεθος του κάθε στοιχείου του πίνακα είναι 1
(Byte). Έτσι, ο χαρακτήρας 'k' βρίσκεται στη θέση buf[0] δηλαδή στη
διεύθυνση 16, ο χαρακτήρας 'a' βρίσκεται στη θέση buf[1] δηλαδή στη
διεύθυνση 17, κ.ο.κ.

Το "endian-ness" του υπολογιστή, δηλαδή το αν είναι little-endian ή big-endian,
δεν μας επηρεάζει όταν εργαζόμαστε σε ένα και μόνο μηχάνημα, και πάντα
γράφουμε και διαβάζουμε την κάθε ποσότητα με τον ίδιο τύπο –πράγμα που
είναι και το σωστό να κάνει κανείς– δηλαδή όπου στη μνήμη γράφουμε string
διαβάζουμε πάντα string, και όπου γράφουμε integer διαβάζουμε πάντα integer.

18/2/26, 22:26Exercise 3: Memory Accesses (U.Crete, CS-225)

Page 5 of 9https://www.csd.uoc.gr/~hy225/26a/ex03_mem.html

Το "endian-ness" μας επηρεάζει όταν αλλάζουμε τύπο μεταξύ εγγραφής και
ανάγνωσης –πράγμα ανορθόδοξο– π.χ. γράφουμε κάπου ένα string και μετά το
διαβάζουμε σαν integer, ή γράφουμε integer και διαβάζουμε string. Το
σημαντικότερο όλων όμως είναι ότι το endian-ness του υπολογιστή πρέπει να
λαμβάνεται υπ' όψη όταν μεταφέρονται δεδομένα μέσω δικτύου μεταξύ
υπολογιστών. Συνήθως, τα προγράμματα μεταφοράς δεδομένων (π.χ. ftp)
θεωρούν ότι μεταφέρουμε κείμενο (ASCII strings), και τοποθετούν τα bytes με
την αντίστοιχη σειρά. Αν όμως μεταφέρουμε άλλες μορφές δεδομένων (π.χ. 32-
μπιτους ακεραίους) μεταξύ υπολογιστών με διαφορετικό endian-ness, η σειρά
αυτή θα ήταν λάθος: όπως οι χαρακτήρες k, a, t, e μεταφέρονται σαν e, t, a, k
στο παραπάνω σχήμα από big-endian σε little-endian, έτσι και ο ακέραιος 2003
θα ερμηνεύονταν σαν 00, 00, 07, D3 (δεκαεξαδικό), και θα μεταφέρονταν σαν
D3, 07, 00, 00, δηλαδή 11010011.00000111.00000000.00000000 (δυαδικό), που
είναι ο αριθμός -754,515,968 (δεκαδικό, συμπλήρωμα ως προς 2). Για να γίνει
σωστά η μεταφορά, πρέπει να δηλωθεί στο πρόγραμμα μεταφοράς ο τύπος
των δεδομένων που μεταφέρονται (π.χ. ftp: εντολή "type").

3.3 Ευθυγράμμιση και Ταχύτητα Προσπέλασης:

Μελετήστε προσεκτικά το δεύτερο μέρος των διαφανειών 03b:
Οι διάφορες μνήμες (κρυφές και κεντρική) των υπολογιστών
κατασκευάζονται με διάφορα πλάτη –δηλαδή πλήθος bits που διαβάζονται ή
μπορούν να γραφτούν ταυτόχρονα κατά την κάθε προσπέλαση– σύμφωνα με
την αναλογία κόστους-ταχύτητας που επιδιώκει το κάθε μοντέλο: οι στενές
μνήμες έχουν χαμηλότερο κόστος αλλά και χαμηλότερη ταχύτητα, ενώ οι
φαρδιές έχουν υψηλότερο κόστος (περισσότερα σύρματα δεδομένων) αλλά
και υψηλότερη ταχύτητα (λιγότερες προσπελάσεις για δοθέντα συνολικό όγκο
δεδομένων). Το πλάτος όλων αυτών των μνημών πάντως, μετρημένο σε Bytes,
είναι πάντοτε δύναμη του 2.

Επίσης, οι μνήμες κατασκευάζονται πάντοτε με τρόπο ώστε τα Bytes που
προσπελάζονται μαζί κατά την κάθε μία προσπέλαση είναι πάντοτε
ευθυγραμμισμένα (aligned) στα "φυσικά όρια" των ποσοτήτων μεγέθους όσο
το πλάτος της μνήμης. Αυτό σημαίνει ότι οι "ομάδες" των Bytes που
προσπελάζονται μαζί αντιστοιχούν στο πώς "γεμίζεται" η μνήμη με τέτοιες
"ομάδες" ξεκινώντας από το Byte με διεύθυνση μηδέν (0), και προχωρώντας
συνεχώς κατ' αύξουσα διεύθυνση. Όπως είπαμε στην §6.1 της Ψηφιακής
Σχεδίασης, όταν μετράμε ξεκινώντας από το μηδέν (0) και ομαδοποιούμε
στοιχεία σε ομάδες μεγέθους Π, τότε το στοιχείο με διεύθυνση Ν βρίσκεται
στην ομάδα Πηλίκο(Ν/Π), και στη θέση Υπόλοιπο(Ν/Π) μέσα στην ομάδα
αυτή. Ανάμεσα σε όλα τα στοιχεία της ίδιας ομάδας, δηλαδή με το ίδιο
Πηλίκο, εκείνο με την μικρότερη διεύθυνση είναι προφανώς εκείνο με
Υπόλοιπο μηδέν στη διαίρεση (Ν/Π), δηλαδή εκείνο στη θέση μηδέν (0) της
ομάδας. Όταν οι ομάδες είναι τα Bytes εκείνα που προσπελάζονται μαζί σε μια
μνήμη, δηλαδή Π είναι το πλάτος της μνήμης, αφού διεύθυνση της ομάδας
(ποσότητας από Bytes) είναι πάντα η διεύθυνση εκείνου από τα στοιχεία
(Bytes) με τη μικρότερη διεύθυνση, προκύπτει ότι η διεύθυνση των ομάδων
αυτών στις μνήμες είναι πάντα ακέραιο πολλαπλάσιο του μεγέθους Π της
ομάδας, δηλαδή ακέραιο πολλαπλάσιο του πλάτους Π της μνήμης. Αφού το
πλάτος των μνημών είναι πάντα δύναμη του 2, Π = 2π, και αφού διαίρεση δια
δύναμη του 2 αντιστοιχεί σε επιλογή bits στο δυαδικό, προκύπτει ότι οι

https://www.csd.uoc.gr/~hy120/23f/lab06_sub.html#mulDivMod

18/2/26, 22:26Exercise 3: Memory Accesses (U.Crete, CS-225)

Page 6 of 9https://www.csd.uoc.gr/~hy225/26a/ex03_mem.html

ποσότητες μεγέθους όσο το πλάτος μιας μνήμης που είναι ευθυγραμμισμένες
(aligned) στα όρια αυτής της μνήμης, δηλαδή που προσπελάζονται όλες
ταυτόχρονα στη μνήμη, έχουν πάντα διεύθυνση ακέραιο πολλαπλάσιο του
πλάτους της μνήμης, δηλαδή έχουν διεύθυνση με τα π λιγότερο σημαντικά (LS)
bits της όλα μηδέν.

Σε τι "είδους" διευθύνσεις μνήμης πρέπει λοιπόν ο μεταφραστής (compiler) να
τοποθετεί τις διάφορες μεταβλητές του προγράμματος (και τα πεδία των
δομών δεδομένων) προκειμένου αυτές να προσπελάζονται με τον εκάστοτε
ελάχιστο δυνατό αριθμό προσπελάσεων στις διάφορες μνήμες, με διάφορα
πλάτη, στα διάφορα μοντέλα υπολογιστών όπου το μεταφραζόμενο
πρόγραμμα ενδέχεται να τρέχει στο μέλλον; Ας ξεκινήσουμε παρατηρώντας
ότι για μια ποσότητα μεγέθους Π = 2π, όταν αυτή προσπελάζεται σε μία μνήμη
του ιδίου πλάτους Π, το ελάχιστο δυνατό πλήθος προσπελάσεων είναι μία, και
αυτό επιτυγχάνεται τότε και μόνο τότε όταν η ποσότητα μεγέθους Π
ταυτίζεται με μια από τις ομάδες των Π Bytes που στη μνήμη προσπελάζονται
μαζί, άρα τότε και μόνο τότε όταν η διεύθυνση της ποσότητας είναι ακέραιο
πολλαπλάσιο του Π = 2π, δηλαδή τα π LS bits της διεύθυνσης είναι όλα μηδέν,
Όταν αυτή η συνθήκη ικανοποιείται, λέμε ότι η ποσότητα αυτή είναι
"ευθυγραμμισμένη στα φυσικά της όρια.

Στη συνέχεια παρατηρήστε ότι μια ποσότητα μεγέθους Π = 2π που
προσπελάζεται σε μια μνήμη πλάτους Π/2 απαιτεί ένα ελάχιστο δύο (2)
προσπελάσεων, και εάν η ποσότητα είναι ευθυγραμμισμένη στα φυσικά της
όρια –δηλαδή διεύθυνση ακέραιο πολλαπλάσιο του Π– τότε το ελάχιστο αυτό
πλήθος προσπελάσεων εξασφαλίζεται. Το ίδιο ελάχιστο πλήθος
προσπελάσεων, δύο, θα ίσχυε και εάν η διεύθυνση της ποσότητας ήταν
ακέραιο πολλαπλάσιο του Π/2 αλλά όχι του Π, τότε όμως δεν θα
εξασφαλίζονταν το ελάχιστο πλήθος της μίας προσπέλασης σε μνήμες πλάτους
Π. Ομοίως, σε μια μνήμη πλάτους Π/4, η ποσότητα μεγέθους Π απαιτεί το
λιγότερο τέσσερεις (4) προσπελάσεις, και αυτό το ελάχιστο εξασφαλίζεται εάν
η ποσότητα είναι ευθυγραμμισμένη στα φυσικά της όρια. Και πάλι ο ελάχιστος
αριθμός 4 θα ίσχυε και για ευθυγραμμίσεις Π/2 ή και Π/4, αλλά τότε δεν θα
εξασφαλίζονταν το ελάχιστο πλήθος της μίας προσπέλασης σε μνήμες πλάτους
Π. Και ούτω καθ' εξής για ακόμα μικρότερα πλάτη μνημών. Εάν τώρα μια
ποσότητα μεγέθους Π = 2π προσπελάζεται σε μνήμη πλάτους 2Π, τότε το
ελάχιστο απαιτούμενο πλήθος προσπελάσεων είναι μία (1), και αυτό
εξασφαλίζεται εάν η ποσότητα είναι ευθυγραμμισμένη στα φυσικά της όρια –
δηλαδή διεύθυνση ακέραιο πολλαπλάσιο του Π– και αντίστοιχα και για ακόμα
πλατύτερες μνήμες.

Συνολικά επομένως, μια ποσότητα μεγέθους Π = 2π σε διεύθυνση ακέραιο
πολλαπλάσιο του Π –δηλαδή αυτό που λέμε ευθυγραμμισμένη στα φυσικά
της όρια– θα προσπελάζεται πάντα με το ελάχιστο δυνατό πλήθος
προσπελάσεων σε κάθε μνήμη, οιουδήποτε πλάτους δύναμης του 2. Έτσι, σε
όλους τους υπολογιστές, είναι έντονα επιθυμητή μιά τέτοια ευθυγράμμιση γιά
λόγους ταχύτητας. Στον RISC-V, η ευθυγράμμιση είναι και πάλι επιθυμητή,
πλην όμως προαιρετική, ώστε να εξυπηρετούνται και παλαιά προγράμματα
που τυχαίνει να μην την έχουν (ενώ π.χ. στον MIPS η ευθυγράμμιση στα
φυσικά όρια είναι υποχρεωτική).

18/2/26, 22:26Exercise 3: Memory Accesses (U.Crete, CS-225)

Page 7 of 9https://www.csd.uoc.gr/~hy225/26a/ex03_mem.html

Για να μπορεί ο προγραμματιστής Assembly να ζητήσει την ευθυγράμμιση που
θέλει για τις μεταβλητές ή χώρο μνήμης που κρατούν στο data segment, οι
Assemblers του RISC-V δέχονται την οδηγία (directive) ".align <num>" η οποία
σημαίνει: Προχώρα τη διεύθυνση μνήμης στην οποία θα τοποθετήσεις τον
επόμενο χώρο που ζητώ μέχρι το επόμενο ακέραιο πολλαπλάσιο του 2<num>.
Έτσι, η οδηγία ".align 2" σημαίνει Προχώρα μέχρι την επόμενη θέση στο data
segment που να είναι ακέραιο πολλαπλάσιο του 4", ενώ ".align 3" σημαίνει
αντίστοιχα [...] ακέραιο πολλαπλάσιο του 8.

Άσκηση 3.4: Πίνακας Ακεραίων

Γράψτε ένα πρόγραμμα σε Assembly του (32-μπιτου) RISC-V (γιά τον RARS)
που να διαβάζει 8 ακεραίους (int) από την κονσόλα, να τους αποθηκεύει σ'
ένα πίνακα (array) στη μνήμη, και στη συνέχεια να τυπώνει τα εξαπλάσιά τους
και με την αντίστροφη σειρά. Παραδώστε τον κώδικά σας κι ένα στιγμιότυπο
από μια επιτυχημένη εκτέλεσή του, όπως αναφέρεται στο τέλος.

Ξεκινήστε με όσα μάθατε στις ασκήσεις 2, αλλά εδώ θα χρειαστεί να
χρησιμοποιήσετε και τις νέες εντολές προσπέλασης ακεραίων στη μνήμη
"lw" και "sw".
Χρησιμοποιήστε τις οδηγίες ".data" και ".space" του Assembler του RARS
για να κρατήστε χώρο στη μνήμη δεδομένων (data segment) γιά τον
πίνακα "a[]", μεγέθους 8 ακεραίων = 32 Bytes (το όρισμα της οδηγίας
.space είναι σε Bytes). Τοποθετήστε κατάλληλα το label "a" ώστε να
μπορείτε πιο κάτω να αναφερθείτε στη διεύθυνση όπου αρχίζει ο χώρος
που κρατήσατε. (Εάν θέλετε να έχετε και καλά ευθυγραμμισμένους
ακεραίαους, χρησιμοποιήστε και την οδηγία .align του RARS – δείτε την
καρτέλα Help→RISCV→Directives του RARS).
Στην αρχή του προγράμματός σας, τοποθετήστε τη διεύθυνση όπου
αρχίζει ο πίνακας a[] σε έναν καταχωρητή, π.χ. στον x5. Τη διεύθυνση
αυτή την ξέρει ο Assembler, αλλά εσείς πιθανότατα όχι (εκτός αν την
είχατε δώσει σαν argument στην οδηγία .data). Επίσης, δεν ξέρετε αν η
διεύθυνση αυτή χωρά στα 12 bits του offset ή όχι (μάλλον όχι...). Σε όλα
αυτά έρχεται να σας βοηθήσει η ψεύδοεντολή (pseudoinstruction) "la rd,
label" του Assembler του RARS: αυτή λέει στον Assembler να γεννήσει
μια ή δύο πραγματικές εντολές που τοποθετούν την πραγματική
διεύθυνση του label στον καταχωρητή rd (μία εντολή αν η διεύθυνση
χωρά σε 12 bits, δύο εντολές αλλιώς). Παράδειγμα χρήσης της
ψευδοεντολής "la" θα βρείτε στην § 2.2, εκεί που ετοιμάζαμε τα ορίσματα
για τις εκτυπώσεις των strings.
Στη συνέχεια, τυπώστε ένα prompt που να ζητά 8 ακεραίους σε 8
γραμμές.
Μετά, μπείτε σ' ένα βρόχο που θα επαναληφθεί 8 φορές, και που κάθε
φορά θα διαβάζει έναν αριθμό (μέσω καλέσματος περιβάλλοντος) και θα
τον αποθηκεύει στην επόμενη θέση του a[]. Επισημάνσεις: (i) Οι εντολές
beq, bne γιά τη δημιουργία βρόχου δέχονται μόνο καταχωρητές σαν
τελεστέους, και όχι σταθερές ποσότητες (immediates). (ii) Η μοναδική
διευθυνσιοδότηση (addressing mode) του RISC-V είναι "σταθερή
ποσότητα (immediate offset) + καταχωρητής" –μην χρησιμοποιήσετε τις
ψεύδοδιευθυνσιοδοτήσεις του RARS (πράσινη καρτέλα Help→RISCV).
Αφού βγείτε από τον προηγούμενο βρόχο, τυπώστε μια διαχωριστική

https://www.csd.uoc.gr/~hy225/26a/ex02_loops.html
https://www.csd.uoc.gr/~hy225/26a/ex02_loops.html#LA

18/2/26, 22:26Exercise 3: Memory Accesses (U.Crete, CS-225)

Page 8 of 9https://www.csd.uoc.gr/~hy225/26a/ex03_mem.html

γραμμή, και μπείτε σ'έναν άλλο βρόχο, που θα επαναληφθεί και αυτός 8
φορές, και που θα επισκεφθεί τα στοιχεία του πίνακα "a[]" αλλά κατ'
αντίστροφη σειρά. Για κάθε στοιχείο, θα το διαβάζει από τη μνήμη, θα
βρίσκει το πολλαπλάσιό του που ζητείται (χωρίς να πειράξει την τιμή στη
μνήμη), και θα τυπώνει αυτό το πολλαπλάσιο, στην ίδια γραμμή αλλά όχι
"κολλητά" με το προηγούμενό του. Υπολογίστε το πολλαπλάσιο που
ζητείται μέσω κατάλληλων εντολών πρόσθεσης (add) με τον εαυτό του ή
με προηγούμενα αποτελέσματα, αντί μέσω εντολής πολλαπλασιασμού (ή
ολισθήσεων).
Τέλος, ξαναγυρίστε στην αρχή (όπως και στην άσκηση 2), ώστε η ίδια
δουλειά να επαναλαμβάνεται επ' αόριστο.

Άσκηση 3.5: Υπολογιστές Little-Endian και Big-Endian

i. Χρησιμοποιήστε τον RARS γιά να βρείτε τον δυαδικό (δεκαεξαδικό)
κώδικα εσωτερικής αναπαράστασης (κώδικα ASCII) των χαρακτήρων
του Λατινικού αλφαβήτου, a, b, ..., z, A, ..., Z, και των αριθμητικών
χαρακτήρων, 0, 1, ..., 9. Για να το πετύχετε, ορίστε σταθερές τύπου string
όπως στην παράγραφο 2.2, και στη συνέχεια μπείτε στον RARS και
μελετήστε τα περιεχόμενα της μνήμης δεδομένων στην καρτέλα Data
Segment. Υπάρχουν επιλογές (κουμπιά) γιά να τα βλέπετε είτε σε
δεκαεξαδικό, είτε σε δεκαδικό, είτε σαν χαρακτήρες ASCII. Γράψτε τις
διαπιστώσεις σας σε μορφή σχολίων μέσα στον κώδικά σας αυτής της
άσκησης, με 3 στήλες: χαρακτήρας, κώδικας ASCII στο δεκαεξαδικό,
κώδικας ASCII στο δυαδικό. Πείτε ποιάν ομοιομορφία παρατηρείτε, και
βάσει αυτής βάλτε αποσιωπητικά: δεν είναι ανάγκη να απαριθμήσετε
λεπτομερώς όλα τα γράμματα.

ii. Έστω ότι αποθηκεύουμε το null-terminated string "xyz" σε μια λέξη ενός
32-μπιτου υπολογιστή, και στη συνέχεια διαβάζουμε αυτή τη λέξη σαν να
είναι (32-μπιτος) ακέραιος. Υπολογίστε με αριθμητικές πράξεις ποιόν
ακέραιο θα διαβάσουμε (α) σε μια μηχανή little-endian, και (β) σε μια
μηχανή big-endian. Δώστε την απάντησή σας, μαζί με τις αριθμητικές
πράξεις που κάνατε (στο δεκαδικό), πάλι σε μορφή σχολίων μέσα στον
κώδικά σας.

iii. Επαληθεύστε την απάντησή σας με το πρόγραμμά σας στον RARS:
Ζητήστε από τον Assembler να βάλει το string στη μνήμη δεδομένων, και
μέσα από το πρόγραμμά σας αντιγράψτε εκείνη τη λέξη (ολόκληρη! - με
μία εντολή lw) σ' έναν καταχωρητή και ζητήστε να τυπωθεί (μ' ένα
κάλεσμα συστήματος) σαν ακέραιος. (Πιστεύω ότι ο RARS θα
συμπεριφέρεται σαν little-endian, όπως και ο RISC-V, εκτός και έχει
κληρονομήσει τη συμπεριφορά του QtSpim που έλεγε ότι
συμπεριφέρονταν το ίδιο με τον υπολογιστή όπου έτρεχε...).

Άσκηση 3.6: Byte-Addressability και Ευθυγραμμίσεις

Στο σχήμα δεξιά φαίνονται 16 Bytes στη μνήμη ενός RISC-V (θυμηθείτε: Little-
Endian!), με τη διεύθυνση του κάθε Byte γραμμένη αριστερά στο δεκαδικό, και
το περιεχόμενο του κάθε Byte γραμμένο μέσα του στο δεκαεξαδικό.

(α) Έστω ότι ο επεξεργαστής αυτός είναι RV32 (δηλαδή 32-μπιτος RISC-V),
και ότι σε αυτόν εκτελούνται οι εξής 5 εντολές:

https://www.csd.uoc.gr/~hy225/26a/ex02_loops.html#io_example

18/2/26, 22:26Exercise 3: Memory Accesses (U.Crete, CS-225)

Page 9 of 9https://www.csd.uoc.gr/~hy225/26a/ex03_mem.html

F7404
7F403
70402
07401
E5400
D6399
3C398
9B397
4A396
EF395
BE394
AD393
DE392
AD391
BE390
EF389

 lb x5, 395(x0) lbu x5, 395(x0)
 lh x5, 395(x0) lhu x5, 395(x0)
 lw x5, 393(x0) [η διεύθυνση αλλάζει λίγο εδώ]

Μετά από κάθε μιαν από αυτές, γράψτε το περιεχόμενο του
καταχωρητή x5 στο δεκαεξαδικό· το περιεχόμενο του
καταχωρητή που θα δώσετε πρέπει να είναι πλήρες, δηλαδή
να έχει τόσα δεκαεξαδικά ψηφία όσα αντιστοιχούν στο
σύνολο των bits του καταχωρητή. Εξηγήστε εν συντομία. Αν
θέλετε (προαιρετικά), μπορείτε εκ των υστέρων να
επιβεβαιώσετε αυτό που βρήκατε μέσω του RARS (σε κάποιες
παρόμοιες διευθύνσεις του data segment –όχι τις ίδιες, αφού
τόσο μικρές διευθύνσεις πέφτουν στην "απαγορευμένη"
σελίδα και όχι στο data segment)· όμως, εάν το ψάξετε όντως
στον RARS, να έχετε απαντήσει ήδη από πριν, μόνοι σας την
ερώτηση, ώστε να ξέρετε ήδη εσείς τι περιμένετε να δείτε και
γιατί.

(β) Έστω τώρα ότι ο επεξεργαστής είναι RV64 (δηλαδή 64-
μπιτος RISC-V), και ότι σε αυτόν εκτελούνται οι 3 παρακάτω
εντολές (προσέξτε ότι η διεύθυνση αλλάζει λίγο). Απαντήστε
ομοίως όπως στην (α).

 lw x5, 396(x0) lwu x5, 396(x0) ld x5, 396(x0)

(γ) Ποιες από τις προσπελάσεις (α) και (β) έχουν την
κατάλληλη ευθυγράμμιση ("στα φυσικά τους όρια", όπως λέμε) ώστε να
επιτρέπουν την μέγιστη δυαντή ταχύτητα πρόσβασης στις μνήμες όλων των
διαφόρων πλατών (δυνάμεις του 2, πάντα), και γιατί;

(δ) Για καθεμιά από τις εντολές (α) και (β), πείτε πόσες προσπελάσεις μνήμης
θα χρειαστούν, και ποια ακριβώς Bytes (από ποιες διευθύνσεις) θα διαβάζει η
κάθε προσπέλαση, (δ1) σε μνήμη πλάτους 16 bits, (δ2) σε μνήμη πλάτους 32
bits, και (δ3) σε μνήμη πλάτους 64 bits. Ποιες από αυτές πετυχάινουν το
ελάχιστο δυνατό πλήθος προσπελάσεων για τον εκάστοτε τελεστέο και την
εκάστοτε μνήμη, και ποιές όχι; Συσχετίστε με την απάντηση (γ).

Τρόπος Παράδοσης: Παραδώστε μέσω του elearn, με τον τρόπο που θα μας
εξηγήσουν "συντόμως" οι αρμόδιοι, τα εξής:
(1) τον πηγαίο κώδικά σας της άσκησης 3.4, "ex03_4.asm"
(2) τον πηγαίο κώδικά σας της άσκησης 3.5, "ex03_5.asm"
(3) ένα στιγμιότυπο (screen-dump) του τρεξίματος της άσκησης 3.4, "ex03_4.jpg"
(4) ένα στιγμιότυπο (screen-dump) του τρεξίματος της άσκησης 3.5, "ex03_5.jpg"
(5) τις απαντήσεις σας της άσκησης 3.6, "ex03_6.pdf", σε μορφή κειμένου PDF·
μπορεί να είναι κείμενο μηχανογραφημένο ή/και "σκαναρισμένο" χειρόγραφο,
αλλά μόνον σε μορφή PDF.

Θα εξεταστείτε και προφορικά για την Άσκηση 3, από βοηθούς του
μαθήματος, με διαδικασία γιά την οποία θα ενημερωθείτε μέσω ηλτά (email)
στη λίστα του μαθήματος.

© copyright Univ. of Crete, Greece. Last updated: 18 Feb. 2026 by M. Katevenis.

https://www.csd.uoc.gr/~hy225/26a/copyright.html
https://users.ics.forth.gr/~kateveni/

