
Verilog®-XL Reference

Product Version 8.2
November 2008

 1990-2009 Cadence Design Systems, Inc. All rights reserved.
Printed in the United States of America.

Cadence Design Systems, Inc. (Cadence), 2655 Seely Ave., San Jose, CA 95134, USA.

Trademarks: Trademarks and service marks of Cadence Design Systems, Inc. contained in this document
are attributed to Cadence with the appropriate symbol. For queries regarding Cadence’s trademarks,
contact the corporate legal department at the address shown above or call 800.862.4522.

Open SystemC, Open SystemC Initiative, OSCI, SystemC, and SystemC Initiative are trademarks or
registered trademarks of Open SystemC Initiative, Inc. in the United States and other countries and are
used with permission.

All other trademarks are the property of their respective holders.

Restricted Permission: This publication is protected by copyright law and international treaties and
contains trade secrets and proprietary information owned by Cadence. Unauthorized reproduction or
distribution of this publication, or any portion of it, may result in civil and criminal penalties. Except as
specified in this permission statement, this publication may not be copied, reproduced, modified, published,
uploaded, posted, transmitted, or distributed in any way, without prior written permission from Cadence.
Unless otherwise agreed to by Cadence in writing, this statement grants Cadence customers permission to
print one (1) hard copy of this publication subject to the following conditions:

1. The publication may be used only in accordance with a written agreement between Cadence and its
customer.

2. The publication may not be modified in any way.
3. Any authorized copy of the publication or portion thereof must include all original copyright,

trademark, and other proprietary notices and this permission statement.
4. The information contained in this document cannot be used in the development of like products or

software, whether for internal or external use, and shall not be used for the benefit of any other party,
whether or not for consideration.

Patents: Cadence Product Verilog -XL, described in this document, is protected by U.S. Patents 5,095,454,
5,418,931, 5,606,698, 6,487,704, 7,039,887, 7,055,116, 5,838,949, 6,263,301, 6,163,763, 6,301,578.

Disclaimer: Information in this publication is subject to change without notice and does not represent a
commitment on the part of Cadence. Except as may be explicitly set forth in such agreement, Cadence does
not make, and expressly disclaims, any representations or warranties as to the completeness, accuracy or
usefulness of the information contained in this document. Cadence does not warrant that use of such
information will not infringe any third party rights, nor does Cadence assume any liability for damages or
costs of any kind that may result from use of such information.

Restricted Rights: Use, duplication, or disclosure by the Government is subject to restrictions as set forth
in FAR52.227-14 and DFAR252.227-7013 et seq. or its successor.

Verilog-XL Reference

Contents
1
Introduction . 19

Overview . 19
The Verilog Hardware Description Language . 19
The Verilog-XL Logic Simulator . 21

Major Features of Verilog-XL . 21
Verilog-XL Licenses . 22

2
Lexical Conventions . 23

Overview . 23
Operators . 23
White Space and Comments . 24
Numbers . 24
Strings . 26

String Variable Declaration . 26
String Manipulation . 26
Special Characters in Strings . 27

Identifiers, Keywords, and System Names . 28
Escaped Identifiers . 28
Keywords . 29

Text Substitutions . 29

3
Data Types. 31

Overview . 31
Value Set . 31
Registers and Nets . 32

Nets . 32
Registers . 32
November 2008 3 Product Version 8.2

Verilog-XL Reference
Signed Objects . 33
Net and Register Declaration Syntax . 35
Declaration Examples . 37

Vectors . 37
Specifying Vectors . 38
Vector Net Accessibility . 38

Strengths . 38
Charge Strength . 39
Drive Strength . 39

Implicit Declarations . 39
Net Initialization . 40
Net Types . 40

wire and tri Nets . 40
Wired Nets . 41
trireg Net . 41
tri0 and tri1 Nets . 45
Supply Nets . 45

Memories . 46
Integers and Times . 47
Real Numbers . 48

Real Number Declaration Syntax . 48
Specifying Real Numbers . 48
Operators and Real Numbers . 49
Conversion . 49

Parameters . 50

4
Expressions . 51

Overview . 51
Operators . 52

Binary Operator Precedence . 53
Numeric Conventions in Expressions . 54
Arithmetic Operators . 54
Arithmetic Expressions with Registers and Integers . 55
Relational Operators . 56
November 2008 4 Product Version 8.2

Verilog-XL Reference
Equality Operators . 56
Logical Operators . 57
Bit-Wise Operators . 58
Reduction Operators . 59
Syntax Restrictions . 60
Shift Operators . 60
Arithmetic Shift Operators for Signed Objects . 60
Conditional Operator . 61
Concatenations . 62

Operands . 62
Net and Register Bit Addressing . 63
Memory Addressing . 64
Strings . 64
String Operations . 65
String Value Padding and Potential Problems . 65
Null String Handling . 66

Minimum, Typical, Maximum Delay Expressions . 66
Expression Bit Lengths . 67

An Example of an Expression Bit Length Problem . 67
Verilog Rules for Expression Bit Lengths . 68

5
Assignments. 71

Overview . 71
Continuous Assignments . 72

The Continuous Assignment Statement . 73
The Net Declaration Assignment . 73
Delays . 74
Strength . 77
Calling Functions in a Continuous Assignment . 78

Procedural Assignments . 79
Accelerated Continuous Assignments . 80

Restrictions on Accelerated Continuous Assignments . 80
Controlling the Acceleration of Continuous Assignments . 86
The Effects of Accelerated Continuous Assignments . 87
November 2008 5 Product Version 8.2

Verilog-XL Reference
Procedural Continuous Assignments . 93
The assign and deassign Procedural Statements . 94
The force and release Procedural Statements . 95

6
Gate and Switch Level Modeling. 97

Overview . 98
Gate and Switch Declaration Syntax . 98

The Gate Type Specification . 100
The Drive Strength Specification . 100
The Delay Specification . 101
The Primitive Instance Identifier . 101
The Range Specification . 101
Primitive Instance Connection List . 102
Rules for Using an Array of Instances . 102

and, nand, nor, or, xor, and xnor Gates . 105
buf and not Gates . 106
bufif1, bufif0, notif1, and notif0 Gates . 107
MOS Switches . 108
Bidirectional Pass Switches . 110
cmos Switches . 112
pullup and pulldown Sources . 113
Implicit Net Declarations . 113
Logic Strength Modeling . 114
Strengths and Values of Combined Signals . 116

Combined Signals of Unambiguous Strength . 116
Ambiguous Strengths: Sources and Combinations . 117
Ambiguous Strength Signals and Unambiguous Signals . 123
Wired Logic Net Types . 127

Strength Resolution for Continuous Assignments . 129
Mnemonic Format . 130
Strength Reduction by Non-Resistive Devices . 131
Strength Reduction by Resistive Devices . 131
Strengths of Net Types . 131

tri0 and tri1 Net Strengths . 131
November 2008 6 Product Version 8.2

Verilog-XL Reference
trireg Strength . 132
supply0 and supply1 Net Strengths . 132

Gate and Net Delays . 132
min/typ/max Delays . 136
trireg Net Charge Decay . 137

Gate and Net Name Removal . 140

7
User-Defined Primitives (UDPs) . 143

Overview . 143
UDP Syntax . 144
UDP Definition . 145

UDP Terminals . 146
UDP Declarations . 146
Sequential UDP initial Statement . 146
UDP State Table . 146

Summary of UDP Symbols . 148
Combinational UDPs . 148
Level-Sensitive Sequential UDPs . 150
Edge-Sensitive UDPs . 150
Sequential UDP Initialization . 151
Mixing Level-Sensitive and Edge-Sensitive Descriptions . 154
Level-Sensitive Dominance . 155
UDP Instances . 156
Compilation . 157
Reducing Pessimism . 158
Processing of Simultaneous Input Changes . 159
Memory Usage and Performance Considerations . 160
UDP Examples . 161

8
Behavioral Modeling. 163

Overview . 163
Structured Procedures . 164

always Statement . 165
November 2008 7 Product Version 8.2

Verilog-XL Reference
initial Statement . 165
Procedural Assignments . 166

Blocking Procedural Assignments . 167
Non-Blocking Procedural Assignments . 167
Processing Blocking and Non-Blocking Procedural Assignments 173

Conditional Statements . 174
Multi-Way Decision Statements . 175

if-else-if Statements . 175
case Statements . 176
Using case Statements with Inconsequential Conditions . 178

Looping Statements . 179
forever Loop . 180
repeat Loop . 180
while Loop . 181
for Loop . 181

Procedural Timing Controls . 182
Delay Control . 183
Zero-Delay Control . 183
Event Control . 184
Named Events . 184
Event OR Construct . 185
Level-Sensitive Event Control . 186
Intra-Assignment Timing Controls . 186

Block Statements . 189
Sequential Blocks . 190
Parallel Blocks . 191
Block Names . 192
Start and Finish Times . 192

Behavior Model Examples . 194

9
Tasks and Functions . 197

Overview . 197
Distinctions Between Tasks and Functions . 197
Tasks and Task Enabling . 198
November 2008 8 Product Version 8.2

Verilog-XL Reference
Defining a Task . 198
Task Enabling and Argument Passing . 199
Task Example . 200
Effect of Enabling an Already Active Task . 201

Functions and Function Calling . 201
Defining a Function . 201
Returning a Value from a Function . 202
Calling a Function . 202
Function Rules . 203
Function Example . 203

10
Disabling of Named Blocks and Tasks . 205

Overview . 205
Syntax . 205
disable Statement Examples . 206

11
Hierarchical Structures. 209

Overview . 209
Modules . 210

Top-Level Modules . 211
Module Instantiation . 211
Module Definition and Instance Example . 211

Overriding Module Parameter Values . 213
Using the defparam Statement . 214
Using Module Instance Parameter Value Assignment . 215
Parameter Dependence . 216

Macro Modules . 216
Constructs Allowed in Macro Modules . 216
Specifying Macro Modules . 217
Instances of Macro Modules . 217
Using Parameters with Macro Modules . 217
Effect on Decompilation and Tracing . 218

Ports . 219
November 2008 9 Product Version 8.2

Verilog-XL Reference
Port Definition . 219
Port Declarations . 220
Connecting Module Ports by Ordered List . 220
Connecting Module Ports by Name . 221
Real Numbers in Port Connections . 223
Port Collapsing . 223
Port Connection Rules . 224
Port Connections in Macro Modules . 227

Hierarchical Names . 228
Data Structures . 231
Macro Modules and Hierarchical Names . 231
Upwards Name Referencing . 232

Automatic Naming . 233
Scope Rules . 234

12
Using Specify Blocks and Path Delays. 237

Understanding Specify Blocks . 237
Specparam Declarations . 238

Understanding Path Delays . 239
Driving Wired Logic Outputs . 242
Simulating Distributed Delays as Inertial and Transport Delays 244
Simulating Path Delays . 244

Describing Module Paths . 247
Establishing Parallel or Full Connections . 248
Specifying Transition Delays on Module Paths . 251
Calculating Delay Values for X Transitions . 253
Specifying Module Path Polarity . 254
Using Path Delays in Behavioral Descriptions . 255
Simulating Path Outputs that Drive Other Path Outputs . 256
Understanding Strength Changes on Path Inputs . 257
Specifying Global Pulse Control on Module Paths . 257
Specifying Local Pulse Control for Module Paths . 259
Pulse Filtering for Module Path Delays . 260
Pulse Filtering and Cancelled Schedules . 262
November 2008 10 Product Version 8.2

Verilog-XL Reference
Pulse Filtering and Cancelled Schedule Dilemmas . 266
Using State-Dependent Path Delays (SDPDs) . 269

Evaluating SDPD Expressions . 270
Using Edge Keywords in SDPDs . 273
Making SDPDs Function as Unconditional Delays . 274
Working with Distributed Delays and SDPDs . 274

Working with Multiple Path Delays . 275
Effects of Unknowns on SDPDs . 276
Effects of Unknowns on Edge-Sensitive Delays . 277
Possible Effects of Internal Logic . 277

Enhancing Path Delay Accuracy . 279
Invoking the accu_path Algorithm . 279
Comparing the Default and accu_path Delay Selection Algorithms 281
Limits of the accu_path Algorithm . 285

13
Timing Checks . 289

Overview . 289
Using Timing Checks . 289

Understanding Timing Violation Messages . 290
Using Edge-Control Specifiers . 291
Using Notifiers for Timing Violations . 292
Enabling Timing Checks with Conditioned Events . 293

Using the Timing Check System Tasks . 295
$hold . 295
$nochange . 297
$period . 298
$recovery . 299
$recrem . 301
$removal . 304
$setup . 305
$setuphold . 307
$skew . 310
$width . 311

Using Negative Timing Check Limits in $setuphold and $recrem 313
November 2008 11 Product Version 8.2

Verilog-XL Reference
Effects of Delayed Signals on Timing Checks . 314
Calculation of Delayed Signals and Limit Modification . 316
Explicitly Defining Delayed Signals . 318
Non-Convergence in Timing Checks . 319
Explicitly Defining Delayed Signals . 326
Effects of Delayed Signals on Path Delays . 327
Restrictions . 328
Exception Handling . 330

14
System Tasks and Functions. 331

Filename Parameters . 332
Display and Write Tasks . 333

Escape Sequences for Special Characters . 334
Format Specifications . 334
Size of Displayed Data . 336
Unknown and High-Impedance Values . 337
Strength Format . 338
Hierarchical Name Format . 340
String Format . 340

Strobed Monitoring . 340
Continuous Monitoring . 341
Monitoring Interconnect Delay Signal Values . 342
File Output . 343
Default Base . 345
Signed Expressions . 346
Simulation Time . 346
Stop and Finish . 347
Random Number Generation . 347
Tracing . 348
Saving and Restarting Simulations . 352

Incremental Save and Restart . 354
Command-Line Restart . 355
Limitations for Saving and Restarting . 355

Command History . 355
November 2008 12 Product Version 8.2

Verilog-XL Reference
Command Input Files . 356
Log File . 356
Key File . 357
Setting the Interactive Scope . 358
Showing the Hierarchy . 358
Showing Variable Status . 358
Showing Net Expansion Status . 359
Showing Module Port Status . 360
Showing Number of Drivers . 360
Displaying the Delay Mode . 362
Storing Interactive Commands . 362
Interactive Source Listing—Decompilation . 363

$list . 363
$listcounts . 363
$list_forces . 364

Disabling and Enabling Warnings . 365
$disable_warnings . 366
$enable_warnings . 367

Loading Memories from Text Files . 368
Setting a Net to a Logic Value . 369
Fast Processing of Stimulus Patterns . 370
Incremental Pattern File Tasks . 372

$incpattern_write . 372
$incpattern_read . 373
$compare . 375
$strobe_compare . 376
Examples of Response Checking . 378

Functions and Tasks for Reals . 380
Functions and Tasks for Timescales . 380
Protecting Data in Memory . 381
Value Change Dump File Tasks . 382
Running the Behavior Profiler . 383

$startprofile . 383
$reportprofile . 383
$listcounts . 384
$stopprofile . 384
November 2008 13 Product Version 8.2

Verilog-XL Reference
Resetting Verilog-XL—Starting Simulation Over Again . 384
$reset . 385
$reset_count . 390
$reset_value . 391

SDF Annotation . 392
$sdf_annotate . 393
Controlling $sdf_annotate Output . 395
$sdf_annotate Examples . 395
Annotating Path Delay or Timing Check Vector Bits in Specify Blocks 399

Using the $dlc System Task . 403
Using the $system System Task . 404
Using the $simvision System Task . 404

15
Programmable Logic Arrays . 407

Overview . 407
Syntax . 407
Array Types . 408
Array Logic Types . 408
Logic Array Personality Declaration and Loading . 409
Logic Array Personality Formats . 409
PLA Examples . 411

Synchronous Example . 411
And-Or Array Example . 412
PAL16R8 Example . 413
PAL16R4 Example . 418

16
Interconnect Delays . 423

Overview . 423
Module Import Port Delays (MIPDs) . 425

How MIPDs Work . 425
Specifying MIPDs . 430
Restrictions on Ports for MIPDs . 431
Monitoring Nets Internal to MIPDs . 432
November 2008 14 Product Version 8.2

Verilog-XL Reference
Displaying Status Information for Nets Internal to MIPDs . 432
An Application of MIPDs . 433

Single-Source/MultiSource Interconnect Transport Delays (S/MITDs) 434
Controlling MIPD and S/MITD Creation . 435
S/MITDs and Pulse Handling . 438
Resolving Ambiguous S/MITD Events . 438
PLI Tasks for S/MITDs . 440

17
Timescales . 441

Overview . 441
The ‘timescale Compiler Directive . 442

Usage Rules . 442
Syntax . 442
Effects of Timescales on Simulation Performance . 444

Timescale System Functions . 444
$time . 445
$realtime . 446
$scale . 446

The Timescale System Tasks . 447
$printtimescale . 448
$timeformat . 448
Timescales Examples . 451

18
Delay Mode Selection . 455

Overview . 455
Delay Modes . 456

Unit Delay Mode . 456
Zero Delay Mode . 456
Distributed Delay Mode . 457
Path Delay Mode . 457
Default Delay Mode . 458

Reasons to Select a Delay Mode . 458
Setting a Delay Mode . 458
November 2008 15 Product Version 8.2

Verilog-XL Reference
Compiler Directives . 458
Command-Line Plus Options . 459

Precedence in Selection . 459
Timescales and Simulation Time Units . 460
Overriding Delay Values . 461

PLI 1.0 or VPI Access Routines and Delays . 461
Parameter Attribute Mechanism . 462

Delay Mode Example . 463
Decompiling with Delay Modes . 464
$showmodes . 464
acc_fetch_delay_mode Access Routine . 464
Macro Module Expansion and Delay Modes . 464
Summary of Delay Mode Rules . 465

19
The Behavior Profiler . 467

How the Behavior Profiler Works . 467
Behavior Profiler System Tasks . 469

$startprofile . 469
$reportprofile . 470
$stopprofile . 471
$listcounts . 471

Behavior Profiler Data Report . 473
Profile Ranking by Statement . 473
Profile Ranking by Module Instance . 476
Profile Ranking by Statement Class . 477
Profile Ranking by Statement Type . 478

Recommended Modeling Practices . 485
Invoke the Behavior Profiler After You Initialize Your Design 485
Put Statements on Separate Lines . 485

How Verilog-XL Affects Profiler Results . 485
Using a Variable to Drive Mulitple Module Instances . 485
Expanded Vector Nets . 485
Accelerated Events . 486

Behavior Profiler Example . 486
November 2008 16 Product Version 8.2

Verilog-XL Reference
20
The Value Change Dump File. 495

Overview . 495
Creating the Value Change Dump File . 495

Specifying the Dump File Name ($dumpfile) . 496
Specifying Variables for Dumping ($dumpvars) . 497
Stopping and Resuming the Dump ($dumpoff/$dumpon) . 498
Generating a Checkpoint ($dumpall) . 498
Limiting the Size of the Dump File ($dumplimit) . 499
Reading the Dump File During Simulation ($dumpflush) . 499
Sample Source Description Containing VCD Tasks . 500

Format of the Value Change Dump File . 500
Contents of the Dump File . 500
Structure of the Dump File . 501
Formats of Dumped Variable Values . 501
Using Keyword Commands . 502
Description of Keyword Commands . 503
Syntax of the VCD File . 508
Value Change Dump File Format Example . 509

Using the $dumpports System Task . 512
$dumpports Syntax . 512
$dumpports Output . 513
$dumpports Restrictions . 517
$dumpports_close . 517

A
Formal Syntax Definition. 519

Summary of Syntax Descriptions . 519
Source Text . 520
Declarations . 523
Primitive Instances . 525
Module Instantiations . 525
Behavioral Statements . 526
Specify Section . 528
November 2008 17 Product Version 8.2

Verilog-XL Reference
Expressions . 531
General Syntax Definition . 532
Switch-Level Modeling . 533

B
Verilog-XL Keywords . 535

Keywords from Compiler Directives . 535
Keywords from Specify Blocks . 537
Keywords from Neither Compiler Directives nor Specify Blocks 537

C
Verilog-XL and Standards’ Compliance. 541

Supported Standards . 541
Known Exceptions . 541

VPI Routines . 541
Wire with same name as a Port . 542

Index. 543
November 2008 18 Product Version 8.2

Verilog-XL Reference
1
Introduction

This chapter describes the following information:

■ Overview on page 19

■ The Verilog Hardware Description Language on page 19

■ The Verilog-XL Logic Simulator on page 21

Overview

This reference manual describes the features of the Verilog-XL digital logic simulator and the
Verilog Hardware Description Language you use to model a design for simulation by
Verilog-XL.

The Verilog Hardware Description Language

The Verilog Hardware Description Language (HDL) describes a hardware design or part of a
design. Verilog models are descriptions of designs in the Verilog HDL. The Verilog HDL is
both a behavioral and a structural language. Models in the Verilog HDL can describe both the
function of a design and the components and the connections to the components in a design.

Verilog models can be developed for different levels of abstraction. These levels of abstraction
and their corresponding model types are described in Table on page 19.

Table 1-1 Verilog models and their level of abstraction

algorithmic a model that implements a design algorithm in high-level language
constructs

RTL a model that describes the flow of data between registers and how a
design processes that data

gate-level a model that describes the logic gates and the connections between
logic gates in a design
November 2008 19 Product Version 8.2

Verilog-XL Reference
Introduction
The basic building block of the Verilog-XL HDL is the module. The module format facilitates
top-down and bottom-up design. A module contains a model of a design or part of a design.
Modules can incorporate other modules to establish a model hierarchy that describes how
parts of a design are incorporated in an entire design. The constructs of the Verilog HDL,
such as its declarations and statements, are enclosed in modules.

The Verilog HDL behavioral language is structured and procedural like the C programming
language. The behavioral language constructs are for algorithmic and RTL models. The
behavioral language provides the following capabilities:

■ structured procedures for sequential or concurrent execution

■ explicit control of the time of procedure activation specified by both delay expressions
and by value changes called event expressions

■ explicitly named events to trigger the enabling and disabling of actions in other
procedures

■ procedural constructs for conditional, if-else, case, and looping operations

■ procedures called tasks that can have parameters and non-zero time duration

■ procedures called functions that allow the definition of new operators

■ arithmetic, logical, bit-wise, and reduction operators for expressions

The Verilog HDL structural language constructs are for gate-level and switch-level models.
The structural language provides the following capabilities:

■ a complete set of combinational primitives

■ primitives for bidirectional pass and resistive devices

■ the ability to model dynamic MOS models with charge sharing and charge decay

Verilog structural language models can accurately model signal contention. In the Verilog
HDL, structural modeling accuracy is enhanced by primitive delay and output strength
specification. Signal values can have different strengths and a full range of ambiguous values
to reduce the pessimism of unknown conditions.

switch-level a model that describes the transistors and storage nodes in a device
and the connections between them

Table 1-1 Verilog models and their level of abstraction
November 2008 20 Product Version 8.2

Verilog-XL Reference
Introduction
The Verilog-XL Logic Simulator

The Verilog-XL digital logic simulator is a software tool that allows you to perform the following
tasks in the design process without building a hardware prototype:

■ determine the feasibility of new design ideas

■ try more than one approach to a design problem

■ verify functionality

■ identify design errors

To use Verilog-XL, you develop models that describe your design and its environment in the
Verilog HDL and then supply Verilog-XL with the file names that contain these models. You
also need a Verilog-XL license. This section describes the major features of Verilog-XL and
the Verilog-XL license.

Major Features of Verilog-XL

Verilog-XL provides you with the following simulation capabilities:

■ setting break points during simulation that stops the simulation and allows you to enter
an interactive mode to examine and debug your design

■ displaying information about the current state of the design and to specifying the format
of that information

■ applying stimulus during simulation

■ patching circuits during simulation

■ tracing the execution flow of the statements in your model

■ traversing the model hierarchy to various regions of your design to examine the state of
the simulation in that region

■ stepping through the statements of a design and executing them one at a time

■ displaying the active statements in a design

■ displaying and disabling the operations you entered in interactive mode

■ reading data from a file and writing data to that file

■ saving the current state of a simulation in a file and restoring that simulation at another
time
November 2008 21 Product Version 8.2

Verilog-XL Reference
Introduction
■ investigating the performance ramifications of architectural decision—stochastic
modeling

■ simulating with SimVision, the Verilog-XL graphical user interface

Verilog-XL Licenses

To use the Verilog-XL logic simulator you need a license. The SoftShare application handles
all licenses for Verilog-XL and provides a variety of license management tools and options.

When you invoke Verilog-XL, SoftShare searches for a license file and checks out a license
for you if one is available. You can queue a request for a license if one is not currently
available. When you queue license requests, you can automatically run a number of
simulations as licenses become available. Requests in the queue are first-in-first-out with all
requests at the same priority level. There is no time-out on queues, meaning that you cannot
wait for a license for a fixed time. To remove a request from the queue, you must provide an
interrupt signal.

The following license features can be queued:

■ VERILOG-XL (Verilog-XL)

■ VXL-LMC-HW-IF (Verilog-XL LMC Hardware Interface). This feature is checked out
during compilation whenever there is a LMSI (LMC Hardware Interface) system task,
$lm_*(), present in the design.

To enable the queuing, use the following command-line plus options:

■ +licq_vxl (queue only the VERILOG-XL license)

■ +licq_lmchwif (queue only the VXL-LMC-HW-IF license)

■ +licq_all (queue all of the above licenses)
November 2008 22 Product Version 8.2

Verilog-XL Reference
2
Lexical Conventions

This chapter describes the following:

■ Overview on page 23

■ Operators on page 23

■ White Space and Comments on page 24

■ Numbers on page 24

■ Strings on page 26

■ Identifiers, Keywords, and System Names on page 28

■ Text Substitutions on page 29

Overview

Verilog language source text files are a stream of lexical tokens. A token consists of one or
more characters, and each single character is in exactly one token. The layout of tokens in a
source file is free format — that is, spaces and newlines are not syntactically significant.
However, spaces and newlines are very important for giving a visible structure and format to
source descriptions. A good style of format, and consistency in that style, are an essential
part of program readability.

This manual uses a syntax formalism based on the Backus-Naur Form (BNF) to define the
Verilog language syntax. Appendix A, “Formal Syntax Definition” contains the complete set
of syntax definitions in this format, plus a description of the BNF conventions used in the
syntax definitions.

Operators

Operators are single, double, or triple character sequences and are used in expressions.
Chapter 4, “Expressions,” discusses the use of operators in expressions.
November 2008 23 Product Version 8.2

Verilog-XL Reference
Lexical Conventions
Unary operators appear to the left of their operand. Binary operators appear between their
operands. A ternary operator has two operator characters that separate three operands. The
Verilog language has one ternary operator the—conditional operator. See “Conditional
Operator” on page 61 for an explanation of the conditional operator.

White Space and Comments

White space can contain the characters for blanks, tabs, newlines, and formfeeds. The Verilog
language ignores these characters except when they serve to separate other tokens.
However, blanks and tabs are significant in strings.

The Verilog language has two forms to introduce comments. A one-line comment starts with
the two characters // and ends with a newline. A block comment starts with /* and ends with
*/. Block comments cannot be nested, but a one-line comment can be nested within a block
comment.

Numbers

You can specify constant numbers in decimal, hexadecimal, octal, or binary format. The
Verilog language defines two forms to express numbers. The first form is a simple decimal
number specified as a sequence of the digits 0 to 9 which can optionally start with a plus or
minus. The second takes the following form:

<size><base_format><number>

The <size> element contains decimal digits that specify the size of the constant in terms of
its exact number of bits. For example, the <size> specification for two hexadecimal digits is
8, because one hexadecimal digit requires four bits. The <size> specification is optional.
The <base_format> contains a letter specifying the number’s base, preceded by the
single quote character (’). Legal base specifications are one of d, h, o, or b, for the bases
decimal, hexadecimal, octal, and binary respectively. (Note that these base identifiers can be
upper or lowercase.)

The <number> element contains digits that are legal for the specified <base_format>.
The <number> element must physically follow the <base_format>, but can be separated
from it by spaces. No spaces can separate the single quote and the base specifier character.

Alphabetic letters used to express the <base_format> or the hexadecimal digits a to f can
be in upper- or lowercase.

The following example shows unsized constant numbers.

659 // is a decimal number
’h 837FF // is a hexadecimal number
November 2008 24 Product Version 8.2

Verilog-XL Reference
Lexical Conventions
’o7460 // is an octal number
4af // is illegal (hexadecimal format requires ’h)

The following example shows sized constant numbers

4’b1001 // is a 4-bit binary number
5 ’D 3 // is a 5-bit decimal number
3’b01x // is a 3-bit number with the least significant bit unknown
12’hx // is a 12-bit unknown number
16’hz // is a 16-bit high-impedance number

In the Verilog language a plus or minus preceding the size constant is a sign for the constant
number—the size constant does not take a sign. A plus or minus between the
<base_format> and the <number> is illegal syntax. In the following example, the first
expression is a syntax error. The second expression legally defines an 8-bit number with a
value of minus 6.

8 ’d -6 // this is illegal syntax
-8 ’d 6 // this defines the two’s complement of 6,

// held in 8 bits—equivalent to -(8’d 6)

The number of bits that make up an un-sized number (which is a simple decimal number or
a number without the <size> specification) is the host machine word size—for most
machines this is 32 bits.

In the Verilog language, an x expresses the unknown value in hexadecimal, octal, and binary
constants. A z expresses the high-impedance value. See “Value Set” on page 31 for a
discussion of the Verilog value set. An x sets four bits to unknown in the hexadecimal base,
three bits in the octal base, and one bit in the binary base.

Similarly, a z sets four, three, and one bit, respectively, to the high-impedance value. If the
most significant specified digit of a constant number is an x or a z, then Verilog-XL
automatically extends the x or z to fill the higher order bits of the constant. This makes it easy
to specify complete vectors of the unknown and the high-impedance values. The following
example illustrates this value extension:

reg [11:0] a;
initial
begin
 a = ’h x; // yields xxx
 a = ’h 3x; // yields 03x
 a = ’h 0x; // yields 00x
end

The question mark (?) character is a Verilog HDL alternative for the z character. It sets four
bits to the high-impedance value in hexadecimal numbers, three in octal, and one in binary.
Use the question mark to enhance readability in cases where the high-impedance value is a
don’t-care condition. See the discussion of casez and casex in “case Statements” on
page 176 and the discussion on personality files in “Logic Array Personality Formats” on
page 409.
November 2008 25 Product Version 8.2

Verilog-XL Reference
Lexical Conventions
The underline character is legal anywhere in a number except as the first character. Use this
feature to break up long numbers for readability purposes. The following example illustrates
this.

27_195_000
16’b0011_0101_0001_1111
32 ’h 12ab_f001

Underline characters are also legal in numbers in text files read by the $readmemb and
$readmemh system tasks.

Note: A sized negative number is not sign-extended when assigned to a register data type.

Strings

A string is a sequence of characters enclosed by double quotes and all contained on a single
line. Verilog treats strings used as operands in expressions and assignments as a sequence
of eight-bit ASCII values, with one eight-bit ASCII value representing one character. The
following shows examples of strings:

"this is a string"
"print out a message\n"
"bell!\007"

String Variable Declaration

To declare a variable to store a string, declare a register large enough to hold the maximum
number of characters the variable will hold. Note that no extra bits are required to hold a
termination character; Verilog does not store a string termination character.

For example, to store the string “Hello world!” requires a register 8*12, or 96 bits wide,
as follows:

reg [8*12:1] stringvar;
initial
begin

stringvar = “Hello world!”;
end

String Manipulation

Verilog permits strings to be manipulated using the standard Verilog HDL operators. Keep in
mind that the value being manipulated by an operator is a sequence of 8-bit ASCII values,
with no special termination character.
November 2008 26 Product Version 8.2

Verilog-XL Reference
Lexical Conventions
The code in the following example declares a string variable large enough to hold 14
characters and assigns a value to it. The code then manipulates this string value using the
concatenation operator.

module string_test;
reg [8*14:1] stringvar;

initial
begin
stringvar = “Hello world”;

$display(“%s is stored as %h”,stringvar,stringvar);
stringvar = {stringvar,”!!!”};
$display(“%s is stored as %h”,stringvar,stringvar);

end
endmodule

Note: When a variable is larger than required to hold a value being assigned, Verilog pads
the contents on the left with zeros after the assignment. This is consistent with the padding
that occurs during assignment of non-string values.

The following strings display as the result of executing Verilog-XL in the previous example:

Hello world is stored as 00000048656c6c6f20776f726c64
Hello world!!! is stored as 48656c6c6f20776f726c64212121

Special Characters in Strings

Certain characters can only be used in strings when preceded by an introductory character
called an escape character. The following table lists these characters in the right-hand
column with the escape sequence that represents the character in the left-hand column.

Specifying special characters in strings

Escape String Character Produced by Escape String

\n new line character

\t tab character

\\ slash (\) character

\” double quote (“) character

\ddd a character specified in 1-3 octal digits (0 <= d <= 7)

%% percent (%) character
November 2008 27 Product Version 8.2

Verilog-XL Reference
Lexical Conventions
Identifiers, Keywords, and System Names

An identifier is used to give an object, such as a register or a module, a name so that it can
be referenced from other places in a description. An identifier is any sequence of letters,
digits, dollar signs ($), and the underscore (_) symbol.

Important

The first character must not be a digit or $; it can be a letter or an underscore.

Upper- and lowercase letters are considered to be different (unless the uppercase option is
used when compiling). Identifiers can be up to 1024 characters long. Examples of identifiers
follow:

shiftreg_a
busa_index
error_condition
merge_ab
_bus3
n$657

Escaped Identifiers

Escaped identifiers start with the backslash character (\) and provide a means of including
any of the printable ASCII characters in an identifier (the decimal values 33 through 126, or
21 through 7E in hexadecimal). An escaped identifier ends with white space (blank, tab,
newline). Note that this also applies when using bit- or part-selects on the escaped identifier,
in which case the bit- or part- select operator must be preceded by a space.

Neither the leading backslash character nor the terminating white space is considered to be
part of the identifier.

The primary application of escaped identifiers is for translators from other hardware
description languages and CAE systems, where special characters may be allowed in
identifiers; do not use escaped identifiers under normal circumstances.
Examples of escaped identifiers follow:

\busa+index
\-clock
error-condition
\net1/\net2
\{a,b}
\a*(b+c)
\p1$i14/data [2]

Note: Remember to terminate escaped identifiers with white space, otherwise characters
that should follow the identifier are considered as part of it.
November 2008 28 Product Version 8.2

Verilog-XL Reference
Lexical Conventions
Keywords

Keywords are predefined non-escaped identifiers that are used to define the language
constructs. A Verilog HDL keyword preceded by an escape character is not interpreted as a
keyword.

All keywords are defined in lowercase only and therefore must be typed in lowercase in
source files (unless the -u uppercase option is used when compiling).

See Appendix B, “Verilog-XL Keywords,” for a complete list of Verilog-XL keywords.

Text Substitutions

You can define a text macro name, assign a value to it, and use the name repetitively
throughout your design. Verilog-XL substitutes the assigned value whenever it encounters the
text macro name. To change the value of the text macro throughout the design, you need only
modify the definition statement. Text macros are espcially useful for constant values.

You can also define and use text macros in the interactive mode. For example, you can assign
the value of often-used interactive commands to a text macro.

The syntax for text macro definitions is as follows:

<text_macro_definition>
::= ‘define <text_macro_name> <macro_text>

<text_macro_name>
::= <IDENTIFIER>

The syntax for using a text macro is as follows:

<text_macro_usage>
::= ‘<text_macro_name>

The accent grave (‘), also called “tick”, must precede the text macro name.

You can reuse names that are used as identifiers elsewhere. For example, signal_name and
‘signal_name are different.

Do not use compiler directive keywords as text macro names. For example, ‘define
define and ‘define accelerate are illegal because ‘define and ‘accelerate are
compiler directives.

The value for <macro_text> is any text specified on the same line as the
<text_macro_name>. A one-line comment (specified with the characters //) does not
become part of the text substituted. The text for <macro_text> can be blank, in which case
the text macro is defined to be empty and no text is substituted when the macro is used.
November 2008 29 Product Version 8.2

Verilog-XL Reference
Lexical Conventions
Once you define a text macro name, you can use it anywhere in a source description or in an
interactive command; there are no scope restrictions.

The folllowing example shows how to define and use two text macros called wordsize and
typ_nand. The macro wordsize has a value of 8. The macro typ_nand has a value of nand
#5.

‘define wordsize 8 // assign a value of 8 to the wordsize macro
reg [1:‘wordsize] data;
// translates to “reg [1:8] data;”

‘define typ_nand nand #5 // define a nand gate with typical delay
‘typ_nand g121 (q21, n10, n11);
// translates to “nand #5 g121 (q21, n10, n11);“

Do not split the text specified for <macro_text> across the following lexical tokens:

■ comments

■ numbers

■ strings

■ identifiers

■ keywords

■ double or triple character operators

For example, the following is illegal syntax in the Verilog language because it is split across
a string:

‘define first_half "start of string
$display(‘first_half end of string"); // illegal syntax

You can redefine text macros; the latest definition of a particular text macro read by the
compiler prevails when the macro name is encountered in the source text.
November 2008 30 Product Version 8.2

Verilog-XL Reference
3
Data Types

This chapter describes the following information:

■ Overview on page 31

■ Value Set on page 31

■ Registers and Nets on page 32

■ Vectors on page 37

■ Strengths on page 38

■ Implicit Declarations on page 39

■ Net Initialization on page 40

■ Net Types on page 40

■ Memories on page 46

■ Integers and Times on page 47

■ Real Numbers on page 48

■ Parameters on page 50

Overview

The set of Verilog HDL data types is designed to represent the data storage and transmission
elements found in digital hardware.

Value Set

The Verilog HDL value set consists of four basic values:

■ 0 – represents a logic zero, or false condition
November 2008 31 Product Version 8.2

Verilog-XL Reference
Data Types
■ 1 – represents a logic one, or true condition

■ x – represents an unknown logic value

■ z – represents a high-impedance state

The values 0 and 1 are logical complements of one another.

When the z value is present at the input of a gate, or when it is encountered in an expression,
the effect is usually the same as an x value. Notable exceptions are the MOS primitives,
which can pass the z value.

Almost all of the data types in the Verilog language store all four basic values. The exceptions
are the event data type, (which has no storage), and the trireg net data type, (which
retains its first state when all of its drivers go to the high-impedance value), and z. All bits of
vectors can be independently set to one of the four basic values.

The language includes strength information in addition to the basic value information for
scalar net variables. This is described in detail in Chapter 6, “Gate and Switch Level
Modeling,”.

Registers and Nets

There are two main groups of data types: the register data types and the net data types.
These two groups differ in the way that they are assigned and hold values. They also
represent different hardware structures.

Nets

The net data types represent physical connections between structural entities, such as
gates. A net does not store a value (except for the trireg net, discussed in “trireg Net” on
page 41). Instead, it must be driven by a driver, such as a gate or a continuous assignment.
See Chapter 6, “Gate and Switch Level Modeling,” and Chapter 5, “Assignments,” for
definitions of these constructs. If no driver is connected to a net, its value will be high-
impedance (z)—unless the net is a trireg.

Registers

A register is an abstraction of a data storage element. The keyword for the register data type
is reg. A register stores a value from one assignment to the next. An assignment statement
in a procedure acts as a trigger that changes the value in the register. The Verilog language
has powerful constructs that allow you to control when and if these assignment statements
November 2008 32 Product Version 8.2

Verilog-XL Reference
Data Types
are executed. Use these control constructs to describe hardware trigger conditions, such as
the rising edge of a clock, and decision-making logic, such as a multiplexer. Chapter 8,
Behavioral Modeling describes these control constructs.

The default initialization value for a reg data type is the unknown value, x.

Caution

Registers can be assigned negative values, but, when a register is an
operand in an expression, its value is treated as an unsigned (positive)
value. For example, a minus one in a four-bit register functions as the
number 15 if the register is an expression operand. See “Numeric
Conventions in Expressions” on page 54 for more information on
numeric conventions in expressions.

Signed Objects

You can type any object as signed (except for user system functions) using the signed
keyword in a type declaration (see “Net and Register Declaration Syntax” on page 35). The
value of signed quantities are represented with two’s complement notation. A signed value
will not cross hierarchical boundaries. If you want a signed value in other modules in a
hierarchy, you must declare them in each of the modules where signed arithmetic is
necessary. The following example shows some sample declarations.

wire signed [3:0] signed_wire; // range -8 <-> +7
reg signed [3:0] signed_reg; // range -8 <-> +7
reg signed [3:0] signed_mem [99:0] // 100 words range -8 <-> +7
function signed [3:0] signed_func; // range -8 <-> +7

You can type a based constant by prepending the letter s to the base type as shown in the
following example.

module test;

reg signed [3:0] sig_reg;
reg [3:0] unsig_reg;

initial
begin

$monitor($time,,"sig_reg=%d unsig_reg=%d (-4’d1)=%d (-4’sd1)=%d",
sig_reg, unsig_reg, -4’d1, -4’sd1);

#0 sig_reg = -4’d1;
unsig_reg = -4’d1;

#10 sig_reg = -4’sd1;
unsig_reg = -4’sd1;

end

endmodule

The output would be as follows:
November 2008 33 Product Version 8.2

Verilog-XL Reference
Data Types
0 sig_reg= -1 unsig_reg=15 (-4’d1)=15 (-4’sd1)= -1

The following rules determine the resulting type of an expression:

■ The expression type depends only on the operands. It does not depend on the left-hand
side (LHS) (if any).

■ Decimal numbers are signed.

■ If any operand is real, the result is real.

■ If all operands are signed, the result is signed, regardless of operator.

■ The following list shows objects that are unsigned regardless of the operands:

❑ The result of any expression where any operand is unsigned

❑ Based numbers

❑ Comparison results (1, 0)

❑ Bit select results

❑ Part select results

❑ Concatenate results

■ If a signed operand is to be resized to a larger signed width and the value of the sign bit
is X or Z, the resulting value will be a bit filled with an X value.

■ If any nonlogical operation has a bit with a signed value of X or Z, then the result is X for
the entire value of the expression.

Nets as signed objects only have significance in an expression, in which case the entire
expression is considered a signed value.

Expressions on ports are typed, sized, evaluated, and assigned to the object on the other side
of the port using the same rules as expressions in assignments.

Verilog-XL uses the following steps for evaluating an expression:

1. Determine the right-hand side (RHS) type, then coerce all RHS operands to this type.

2. Determine the largest operand size, including the LHS (if any), then resize all RHS
operands to this size.

3. Evaluate the RHS expression, producing a result of the type found in
step 1 and the size found in step 2.

4. If there is a LHS,
November 2008 34 Product Version 8.2

Verilog-XL Reference
Data Types
❑ Resize the result to the LHS size.

❑ Coerce the result to the LHS type.

For information about arithmetic shift operators for signed objects, see “Arithmetic Shift
Operators for Signed Objects” on page 60.

Net and Register Declaration Syntax

The following syntax is for net and register declarations.

<net_declaration>
::= <NETTYPE> <expandrange>? <delay>? <list_of_variables> ;
||= trireg <charge_strength>? <expandrange>? <delay>? <list_of_variables> ;
||= <NETTYPE> <drive_strength>? <expandrange>?<delay>?
<list_of_assignments>;

||= <NETTYPE> <drive_strength>? <signed_keyword>?
<expandrange>? <delay>? <list_of_assignments> ;

<reg_declaration>
::= reg <range>? <list_of_register_variables> ;

<list_of_variables>
::= <name_of_variable> <,<name_of_variable>>*

<name_of_variable>
::= <IDENTIFIER>

<list_of_register_variables>
::= <register_variable> <,<register_variable>>*

<register_variable>
::= <name_of_register>

<name_of_register>
::= <IDENTIFIER>

<expandrange>
::= <range>
||= scalared <range>
iff [the data type is not a trireg]

the following syntax is available:
||= vectored <range>

<range>
::= [<constant_expression> : <constant_expression>]

<list_of_assignments>
::= <assignment> <,<assignment>>*

<charge_strength>
::= (<CAPACITOR_SIZE>)
November 2008 35 Product Version 8.2

Verilog-XL Reference
Data Types
<drive_strength>
::= (<STRENGTH0> , <STRENGTH1>)
||= (<STRENGTH1> , <STRENGTH0>)

The following definitions are for net declaration syntax.

<NETTYPE> is one of the following keywords:

■ wire

■ wand

■ wor

■ supply0

■ supply1

■ tri

■ tri0

■ tri1

■ triand

■ trior

■ trireg

<IDENTIFIER> is the name of the net that is being declared.

See Chapter 2, Lexical Conventions for a discussion of identifiers.

<delay> specifies the propagation delay of the net (as explained in Chapter 6, “Gate and
Switch Level Modeling,”) or, when associated with a <list_of_assignments>, it specifies
the delay executed before the assignment (as explained in Chapter 5, “Assignments.”).

<CAPACITOR_SIZE> is one of the following keywords:

■ small

■ medium

■ large

<STRENGTH0> is one of the following keywords:

■ supply0

■ strong0
November 2008 36 Product Version 8.2

Verilog-XL Reference
Data Types
■ pull0

■ weak0

■ highz0

<STRENGTH1> is one of the following keywords:

■ supply1

■ strong1

■ pull1

■ weak1

■ highz1

Declaration Examples

The following are examples of register and net declarations:

Register and net declarations
reg a; // a scalar register
wand w; // a scalar net of type ’wand’
reg[3:0] v; // a 4-bit vector register made up of

 // (from most to least significant):
// v[3], v[2], v[1] and v[0]

tri [15:0] busa; // a tri-state 16-bit bus
reg [1:4] b; // a 4-bit vector register
reg signed [0:3] signed_reg; // 4-bit signed register with a range of -8 to +7
reg signed [0:3] signed_mem [99:0] // 100 words with a range of -8 to +7
trireg (small) storeit; // a charge storage node of strength small

If a set of nets or registers shares the same characteristics, you can declare them in the same
declaration statement. The following is an example:

wire w1, w2; // declares 2 wires
reg [4:0] x, y, z; // declares 3 5-bit registers

Vectors

A net or reg declaration without a <range> specification is one bit wide; that is, it is scalar.
Multiple bit net and reg data types are declared by specifying a <range>, and are known
as vectors.
November 2008 37 Product Version 8.2

Verilog-XL Reference
Data Types
Specifying Vectors

The <range> specification gives addresses to the individual bits in a multi-bit net or register.
The most significant bit (msb) is the left-hand value in the <range> and the least significant
bit (lsb) is the right-hand value in the <range>.

The range is specified as follows:

[<msb_expr> : <lsb_expr>]

Both <msb_expr> and <lsb_expr> are non-negative constant expressions. There are
no restrictions on the values of the indices. The msb and lsb expressions can be any value,
and <lsb_expr> can be a greater value than <msb_expr>, if desired.

Vector nets and registers obey laws of arithmetic modulo 2 to the power n, where n is the
number of bits in the vector. Vector nets and registers are treated as unsigned quantities.

Vector Net Accessibility

A vector net can be used as a single entity or as a group of n scalars, where n is the number
of bits in the vector net. The keyword vectored allows you to specify that a vector net can
be modified only as an indivisible entity. The keyword scalared explicitly allows access to
bit and parts. The Verilog-XL process of accessing bits within a vector is known as vector
expansion. Declaring a net with neither the scalared nor the vectored keyword makes a net
that Verilog-XL treats as an indivisible entity unless the simulation requires an expanded net.

Only when a net is not specified as vectored can bit selects and part selects be driven by
outputs of gates, primitives, and modules—or be on the left-hand side of continuous
assignments. You cannot declare a trireg with the vectored keyword.

The following are examples of vector net declarations:

tri1 scalared [63:0] bus64; //a bus that will be expanded
tri vectored [31:0] data; //a bus that will not be expanded

Note: The keywords scalared and vectored apply only to vector nets and do not apply
to vector registers.

Strengths

There are two types of strengths that can be specified in a net declaration. They are as
follows:

■ charge strength—used when declaring a net of type trireg
November 2008 38 Product Version 8.2

Verilog-XL Reference
Data Types
■ drive strength—used when placing a continuous assignment on a net in the same
statement that declares the net

Gate declarations can also specify a drive strength. See Chapter 6, “Gate and Switch Level
Modeling,” for more information on gates and for important information on strengths.

Charge Strength

The <charge_strength> specification can be used only with trireg nets. A trireg
net is used to model charge storage; <charge_strength> specifies the relative size of
the capacitance. The <CAPACITOR_SIZE> declaration is one of the following keywords:

■ small

■ medium

■ large

When no size is specified in a trireg declaration, its size is medium.

The following is a syntax example of a strength declaration:

trireg (small) st1 ;

A trireg net can model a charge storage node whose charge decays over time. The
simulation time of a charge decay is specified in the trireg net’s delay specification,
discussed in “trireg Net Charge Decay” on page 137.

Drive Strength

The <drive_strength> specification allows a continuous assignment to be placed on a net in
the same statement that declares that net. See Chapter 5, Assignments for more details.

Net strength properties are described in detail in Chapter 6, Gate and Switch Level Modeling.

Implicit Declarations

The syntax shown in “Net and Register Declaration Syntax” on page 35 is used to explicitly
declare variables. In the absence of an explicit declaration of a variable, statements for gate,
user-defined primitive, and module instantiations assume an implicit variable declaration.
This happens if you specify a variable that has not been explicitly declared previously in one
of the declaration statements of the instantiating module in the terminal list of an instance of
a gate, a user-defined primitive, or a module.
November 2008 39 Product Version 8.2

Verilog-XL Reference
Data Types
These implicitly declared variables are scalar nets of type wire.

Net Initialization

The default initialization value for a net is the value z. Nets with drivers assume the output
value of their drivers, which defaults to x. The trireg net is an exception to these
statements. The trireg defaults to the value x, with the strength specified in the net declaration
(small, medium, or large).

Net Types

There are several distinct types of nets. Each is described in the sections that follow.

wire and tri Nets

The wire and tri nets connect elements. The net types wire and tri are identical in their
syntax and functions; two names are provided so that the name of a net can indicate the
purpose of the net in that model. A wire net is typically used for nets that are driven by a
single gate or continuous assignment. The tri net type may be used where multiple drivers
drive a net.

Logical conflicts from multiple sources on a wire or a tri net result in unknown values
unless the net is controlled by logic strength.

The following is a truth table for wire and tri nets. Note that it assumes equal strengths for
both drivers. Please refer to “Logic Strength Modeling” on page 114 for a discussion of logic
strength modeling.

Truth table for wire and tri nets

wire/tri 0 1 x z

0 0 x x 0

1 x 1 x 1

x x x x x

z 0 1 x z
November 2008 40 Product Version 8.2

Verilog-XL Reference
Data Types
Wired Nets

Wired nets are of type wor, wand, trior, and triand, and are used to model wired logic
configurations. Wired nets resolve the conflicts that result when multiple drivers drive the
same net. The wor and trior nets create wired or configurations, such that when any of
the drivers is 1, the net is 1. The wand and triand nets create wired and configurations,
such that if any driver is 0, the net is 0.

The net types wor and trior are identical in their syntax and functionality—as are the wand
and triand. The following figure gives the truth tables for wired nets. Note that it assumes
equal strengths for both drivers. Please refer to “Logic Strength Modeling” on page 114 for a
discussion of logic strength modeling.

trireg Net

The trireg net stores a value and is used to model charge storage nodes. A trireg can
be one of two states:

■ The Driven State—When at least one driver of a trireg has a value of 1, 0, or x, that
value propagates into the trireg and is the driven value of a trireg.

Truth table for wand/triand nets

wand/triand 0 1 x z

0 0 0 0 0

1 0 1 x 1

x 0 x x x

z 0 1 x z

Truth table for wor/trior nets

wor/trior 0 1 x z

0 0 1 x 0

1 1 1 1 1

x x 1 x x

z 0 1 x z
November 2008 41 Product Version 8.2

Verilog-XL Reference
Data Types
■ Capacitive State—When all the drivers of a trireg net are at the high-impedance value
(z), the trireg net retains its last driven value; the high-impedance value does not
propagate from the driver to the trireg.

The strength of the value on the trireg net in the capacitive state is small, medium, or
large, depending on the size specified in the declaration of the trireg. The strength of a
trireg in the driven state is strong, pull, or weak depending on the strength of the
driver. You cannot declare a trireg with the vectored keyword.

The following figure shows a schematic that includes the following items: a trireg net
whose size is medium, its driver, and the simulation results.

Simulation values of a trireg and its driver

Simulation of the design in this figure reports the following results:

1. At simulation time 0, wire a and wire b have a value of 1. A value of 1 with a strong
strength propagates from the AND gate through the NMOS switches connected to each
other by wire c, into trireg d.

2. At simulation time 10, wire a changes value to 0, disconnecting wire c from the AND
gate. When wire c is no longer connected to the AND gate, its value changes to HiZ.
The value of wire b remains 1 so wire c remains connected to trireg d through
the NMOS2 switch. The HiZ value does not propagate from wire c into trireg d.
Instead, trireg d enters the capacitive state, storing its last driven value of 1 with a
medium strength.

Capacitive networks

A capacitive network is a connection between more than one trireg. In a capacitive network
where more than one trireg are in the capacitive state, logic and strength values can
propagate between triregs. The following figure shows a capacitive network in which the

nmos1 nmos2

wire c

trireg d

wire a wire b

simulation time wire a wire b wire c trireg d

1 1 strong 1 strong 1

0 1 HiZ medium 110

0

November 2008 42 Product Version 8.2

Verilog-XL Reference
Data Types
logic value of some triregs change the logic value of other triregs of equal or smaller
size.

Simulation results of a capacitive network

In Simulation results of a capacitive network figure on page 43, the size of trireg la is
large, the size of triregs me1 and me2 are medium, and the size of trireg sm is small.
Simulation reports the following sequence of events:

1. At simulation time 0, wire a and wire b have a value of 1. The wire c drives a value
of 1 into triregs la and sm, wire d drives a value of 1 into triregs me1 and me2.

2. At simulation time 10, the value of wire b changes to 0, disconnecting trireg sm and
me2 from their drivers. These triregs enter the capacitive state and store the value 1;
their last driven value.

3. At simulation time 20, wire c drives a value of 0 into trireg la.

40 0 0 0 0 0 1 0 1

trireg smtrireg la

trireg me2trireg me1

wire a

wire b

wire c

wire d

simulation
time wire a wire b wire c wire d trireg la trireg sm trireg me1 trireg me2

0 1 1 1 1 1 1 1 1

10 0 1 111 1 11

20 1 0 1 110 0 1

30 1 0 0 0 0 1 0 1

nmos1

nmos3 tranif1_2

50 0 1 0 0 0 0 x x

tranif1_1
November 2008 43 Product Version 8.2

Verilog-XL Reference
Data Types
4. At simulation time 30, wire d drives a value of 0 into trireg me1.

5. At simulation time 40, the value of wire a changes to 0, disconnecting trireg la and
me1 from their drivers. These triregs enter the capacitive state and store the value 0.

6. At simulation time 50, the value of wire b changes to 1. This change of value in wire
b connects trireg sm to trireg la; these triregs have different sizes and stored
different values. This connection causes the smaller trireg to store the larger trireg
value and trireg sm now stores a value of 0.This change of value in wire b also
connects trireg me1 to trireg me2; these triregs have the same size and stored
different values. The connection causes both trireg me1 and me2 to change value to
x.

In a capacitive network, charge strengths propagate from a larger trireg to a smaller
trireg. “Simulation results of charge sharing” on page 44 shows a capacitive network and
its simulation results.

Simulation results of charge sharing

In this figure, the size of trireg la is large and the size of trireg sm is small.
Simulation reports the following results:

tranif2

trireg sm

simulation
time

wire a

wire b wire c

tranif1

wire a wire b trireg la trireg sm

0 strong 1

wire c

strong 1 strong 111

0 1 large 1 large 1strong 110

20 00 small 1large 1strong 1

30 1 large 1large 1strong 1 0

40 00 small 1large 1strong 1

trireg la
November 2008 44 Product Version 8.2

Verilog-XL Reference
Data Types
1. At simulation time 0, the value of wire a, b, and c is 1 and wire a drives a strong
1 into trireg la and sm.

2. At simulation time 10, the value of wire b changes to 0, disconnecting trireg la and
sm from wire a. The triregs la and sm enter the capacitive state. Both triregs
share the large charge of trireg la because they remain connected through
tranif2.

3. At simulation time 20, the value of wire c changes to 0, disconnecting trireg sm from
trireg la. The trireg sm no longer shares the large charge of trireg la and now
stores a small charge.

4. At simulation time 30, the value of wire c changes to 1, connecting the two triregs.
These triregs now share the same charge.

5. At simulation time 40, the value of wire c changes again to 0, disconnecting trireg
sm from trireg la. Once again, trireg sm no longer shares the large value of
trireg la and now stores a small charge.

Ideal capacitive state and charge decay

A trireg net can retain its value indefinitely or its charge can decay over time. The
simulation time of charge decay is specified in the trireg net’s delay specification.

tri0 and tri1 Nets

The tri0 and tri1 nets model nets with resistive pulldown and resistive pullup devices
on them. When no driver drives a tri0 net, its value is 0. When no driver drives a tri1 net,
its value is 1. The strength of this value is pull. See Chapter 6, “Gate and Switch Level
Modeling,” for a description of strength modeling.

Supply Nets

The supply0 and supply1 nets model the power supplies in a circuit. The supply0 nets
are used to model Vss (ground) and supply1 nets are used to model Vdd or Vcc (power).
These nets should never be connected to the output of a gate or continuous assignment,
because the strength they possess will override the driver. They have supply0 or supply1
strengths.
November 2008 45 Product Version 8.2

Verilog-XL Reference
Data Types
Memories

The Verilog HDL models memories as an array of register variables. You can use these arrays
to model read-only memories (ROMs), random access memories (RAMs), and register files.
Each register in the array is known as an element or word and is addressed by a single array
index. There are no multiple dimension arrays in the Verilog language.

Memories are declared in register declaration statements by specifying the element address
range after the declared identifier.

The following example gives the syntax for a register declaration statement. Note that this
syntax extends the <register_variable> definition given in “Net and Register
Declaration Syntax” on page 35.

<register_variable>
::= <name_of_register> <signed_keyword>?
||= <name_of_memory>
[<constant_expression>:<constant_expression>]

<constant_expression>
::=<expression>

<name_of_memory>
::= <IDENTIFIER>

The following example illustrates a memory declaration:

reg[7:0] mema[0:255];

This example declares a memory called mema consisting of 256 eight-bit registers. The
indices are 0 through 255. The expressions that specify the indices of the array must be
constant expressions.

Note that you can declare both registers and memories within the same declaration
statement. This makes it convenient to declare both a memory and some registers that will
hold data to be read from and written to the memory in the same declaration statement, as in
the following example.

parameter // parameters are run-time constants - see Parameters
wordsize = 16,
memsize = 256;

// Declare 256 words of 16-bit memory plus two registers
reg [wordsize-1:0] // equivalent to [15:0]

mem [memsize-1:0], // equivalent to [255:0]
writereg,
readreg;

Note that a memory of n 1-bit registers is different from an n-bit vector register, as shown in
the following example:
November 2008 46 Product Version 8.2

Verilog-XL Reference
Data Types
reg [1:n] rega; // an n-bit register is not the same
reg mema [1:n]; // as a memory of 1-bit registers

An n-bit register can be assigned a value in a single assignment, but a complete memory
cannot; thus the following assignment to rega is legal and the succeeding assignment that
attempts to clear all of the memory mema is illegal:

rega = 0; // legal syntax
mema = 0; //illegal syntax

To assign a value to a memory element, you must specify an index as shown in the following
example:

mema[1] = 0; //assign 0 to the first element of mema

The index can be an expression. This option allows you to reference different memory
elements, depending on the value of other registers and nets in the circuit. For example, you
can use a program counter register to index into a RAM.

Integers and Times

In addition to modeling hardware, there are other uses for variables in an HDL model.
Although you can use the reg variables for general purposes such as counting the number
of times a particular net changes value, the integer and time register data types are
provided for convenience and to make the description more self-documenting.

The syntax for declaring integer and time variables is as follows:

<time_declaration>
::= time <list_of_register_variables> ;

<integer_declaration>
::= integer <list_of_register_variables> ;

The <list_of_register_variables> item is defined in “Net and Register
Declaration Syntax” on page 35.

Use a time variable for storing and manipulating simulation time quantities in situations
where timing checks are required and for diagnostics and debugging purposes. You use this
data type typically in conjunction with the $time system function. The size of a time variable
is 64 bits.

Use an integer as a general purpose variable for manipulating quantities that are not
regarded as hardware registers. The size of an integer variable is 32 bits.

You can use arrays of integer and time variables. They are declared in the same manner
as arrays of reg variables, as in the following example:
November 2008 47 Product Version 8.2

Verilog-XL Reference
Data Types
integer a[1:64]; // an array of 64 integers
time change_history[1:1000]; // an array of 1000 times

Assign values to the integer and time variables the same manner as reg variables. Use
procedural assignments to trigger their value changes.

Time variables behave the same as 64 bit reg variables. They are unsigned quantities, and
unsigned arithmetic is performed on them. In contrast, integer variables are signed
quantities. Arithmetic operations performed on integer variables produce 2’s complement
results.

Real Numbers

The Verilog HDL supports real number constants and variables in addition to integers and
time variables. The syntax for real numbers is the same as the syntax for register types, and
is described in “Real Number Declaration Syntax” on page 48.

Except for the following restrictions, you can use real number variables in the same places
that integers and time variables are used.

■ Not all Verilog HDL operators can be used with real number values. See the tables in
“Operators” on page 52 for lists of valid and invalid operators for real numbers.

■ Ranges are not allowed on real number variable declarations.

■ Real number variables default to an initial value of zero.

Real Number Declaration Syntax

The syntax for declaring real number variables is as follows:

Syntax for real number variable declarations
<real_declaration>

::=real<list_of_variables>;

The <list_of_variables> item is defined in “Net and Register Declaration Syntax” on
page 35.

Specifying Real Numbers

You can specify real numbers in either decimal notation (for example, 14.72) or in scientific
notation (for example, 39e8, which indicates 39 multiplied by 10 to the 8th power). Real
November 2008 48 Product Version 8.2

Verilog-XL Reference
Data Types
numbers expressed with a decimal point must have at least one digit on each side of the
decimal point.

The following are some examples of valid real numbers in the Verilog language:

1.2
0.1
2394.26331
1.2E12 (the exponent symbol can be e or E)
1.30e-2
0.1e-0
23E10
29E-2
236.123_763_e-12 (underscores are ignored)

The following are invalid real numbers in the Verilog HDL because they do not have a digit to
the left of the decimal point:

.12

.3E3

.2e-7

Operators and Real Numbers

The result of using logical or relational operators on real numbers is a single-bit scalar value.
Not all Verilog operators can be used with real number expressions. “Operators” on page 52
lists the valid operators for use with real numbers.

Real number constants and real number variables are also prohibited in the following
contexts:

■ edge descriptors (posedge, negedge) applied to real number variables

■ bit-select or part-select references of variables declared as real

■ real number index expressions of bit-select or part-select references of vectors

■ real number memories (arrays of real numbers)

Conversion

The Verilog language converts real numbers to integers by rounding a real number to the
nearest integer, rather than by truncating it. For example, the real numbers 35.7 and 35.5 both
become 36 when converted to an integer, and 35.2 becomes 35. Implicit conversion takes
place when you assign a real number to an integer.
November 2008 49 Product Version 8.2

Verilog-XL Reference
Data Types
Parameters

Verilog parameters do not belong to either the register or the net group. Parameters are not
variables, they are constants. The syntax for parameter declarations is as follows:

<parameter_declaration>
::= parameter <list_of_assignments> ;

The <list_of_assignments> is a comma-separated list of assignments, where the
right-hand side of the assignment must be a constant expression, that is, an expression
containing only constant numbers and previously defined parameters. The following shows
examples of parameter declarations:

parameter msb = 7; // defines msb as a constant value 7
parameter e = 25, f = 9; // defines two constant numbers
parameter average_delay = (r + f) / 2;
parameter byte_size = 8, byte_mask = byte_size - 1;
parameter r = 5.7; // declares r as a ’real’ parameter
parameter [15:0] p = ’hed1e; // Parameter with a bit range
parameter strparm = “Hello world” // Converts “Hello world” to

// 48656c6c6f20776f726c64

Note: In the previous example, the last parameter assignment converts the ASCII characters
(Hello world) to their hexdecimal integer notation (48656c6c6f20776f726c64) and
does not store an actual text string. For information about strings in Verilog-XL, see “Strings”
on page 26.

Even though they represent constants, you can modify Verilog parameters at compilation time
to have values that are different from those specified in the declaration assignment. This
allows you to customize module instances. You can modify the parameter with the defparam
statement, or you can modify the parameter in the module instance statement. Typical uses
of parameters are to specify delays and width of variables.

You can access bits and parts of parameters declared in this way and use them in
assignments and logic operations. The following line shows an assignment of a parameter
part-select to a register:

preg = p[11:8];

Do not attempt to write to parameters after time zero.

See Chapter 11, “Hierarchical Structures” for more details on parameter value assignment.
November 2008 50 Product Version 8.2

Verilog-XL Reference
4
Expressions

This chapter describes the following:

■ Overview on page 51

■ Operators on page 52

■ Operands on page 62

■ Minimum, Typical, Maximum Delay Expressions on page 66

Overview

An expression is a construct that combines operands with operators to produce a result that
is a function of the values of the operands and the semantic meaning of the operator.
Alternatively, an expression is any legal operand—for example, a net bit-select. Wherever a
value is needed in a Verilog HDL statement, an expression can be given. However, several
statement constructs limit an expression to a constant expression. A constant expression
consists of constant numbers and predefined parameter names only, but can use any of the
operators defined in “Operators” on page 52.

For their use in expressions, integer and time data types share the same traits as the data
type reg. Descriptions pertaining to register usage apply to integers and times as well.

An operand can be one of the following:

■ number (including real)

■ net

■ register, integer, time

■ net bit-select

■ register bit-select

■ net part-select
November 2008 51 Product Version 8.2

Verilog-XL Reference
Expressions
■ register part-select

■ memory element

■ a call to a user-defined function or system-defined function that returns any of the above

Operators

The symbols shown in Table 4-1 on page 52 are Verilog HDL operators, which are similar to
those in the C programming language. Operators that are valid for real expressions are
marked Y in the third column.

Table 4-1 Operators

Operators Type Reals

{} concatenation N

+ - * / arithmetic Y

% modulus N

> >= < <= relational Y

! logical negation Y

&& logical and Y

|| logical or Y

== logical equality Y

!= logical inequality Y

=== case equality N

!== case inequality N

~ bit-wise negation N

& bit-wise and N

| bit-wise inclusive or N

^ bit-wise exclusive or N

^~ or ~^ bit-wise equivalence N

& reduction and N

~& reduction nand N
November 2008 52 Product Version 8.2

Verilog-XL Reference
Expressions
The result of using logical or relational operators on real numbers is a single-bit scalar value.
See “Real Numbers” on page 48 for more information on use of real numbers.

Binary Operator Precedence

The precedence order of binary operators (and the ternary operator ?:) is the same as the
precedence order for the matching operators in the C programming language. Verilog has two
equality operators not present in C; they are discussed in “Equality Operators” on page 56.
The following example summarizes the precedence rules for Verilog’s binary and ternary
operators.

Precedence rules for operators
! ~ highest precedence
* / %
+ -
<< >> <<< >>>
< <= > >=
== != === !==
&
^ ^~
|
&&
||
?: (ternary operator) lowest precedence

| reduction or N

~| reduction nor N

^ reduction xor N

~^ or ^~ reduction xnor N

<< shift left N

>> shift right N

<<< arithmetic shift left N

>>> arithmetic shift right N

? : conditional Y

Table 4-1 Operators, continued

Operators Type Reals
November 2008 53 Product Version 8.2

Verilog-XL Reference
Expressions
Operators on the same line of the previous list have the same precedence. Rows are in order
of decreasing precedence, so, for example, *, /, and % all have the same precedence, which
is higher than that of the binary + and - operators.

All operators associate left to right. Associativity refers to the order in which a language
evaluates operators having the same precedence. Thus, in the following example, B is added
to A and then C is subtracted from the result of A+B.

A + B - C

When operators differ in precedence, the operators with higher precedence apply first. In the
following example, B is divided by C (division has higher precedence than addition) and then
the result is added to A.

A + B / C

Parentheses can change the operator precedence.

(A + B) / C // not the same as A + B / C

Numeric Conventions in Expressions

Operands can be expressed as based and sized numbers—with the following restriction: The
Verilog language interprets a number of the form sss ’f nnn, when used directly in an
expression, as the unsigned number represented by the two’s complement of nnn. The
following example shows two ways to write the expression “minus 12 divided by 3.” Note that
-12 and -d12 both evaluate to the same bit pattern, but in an expression -d12 loses its
identity as a signed, negative number.

integer IntA;
IntA = -12 / 3; // The result is -4.
IntA = -’d 12 / 3; // The result is 1431655761

Arithmetic Operators

The binary arithmetic operators are the following:

+ - * / % (the modulus operator)

The unary arithmetic operators take precedence over the binary operators. The unary
operators are the plus (+) and minus (-) signs.

For the arithmetic operators, if any operand bit value is the unknown value x, then the entire
result value is x.

Integer division truncates any fractional part.
November 2008 54 Product Version 8.2

Verilog-XL Reference
Expressions
The modulus operator—for example, y % z, gives the remainder when the first operand is
divided by the second, and thus is zero when z divides y exactly. The result of a modulus
operation takes the sign of the first operand. Table 4-1 on page 55 gives examples of modulus
operations.

Arithmetic Expressions with Registers and Integers

An arithmetic operation on a register data type behaves differently than an arithmetic
operation on an integer data type.

The Verilog language sees a register data type as an unsigned value and an integer data type
as a signed value. As a result, when you assign a value of the form
-<size><base_format><number> to a register and then use that register as an
expression operand, you are actually using a positive number that is the two’s complement of
nnn. In contrast, when you assign a value of the form
-<size><base_format><number> to an integer and then use that integer as an
expression operand, the expression evaluates using signed arithmetic. The following
example shows various ways to divide minus twelve by three using integer and register data
types in expressions.

integer intA;
reg [15:0] regA;
intA = -4’d12;
regA = intA / 3; // Result is 65532, which is the bit pattern

// for 16 bit -4 assigned to an unsigned register
regA = -4’d12; // Result is 65524 because regA is unsigned
intA = regA / 3;

intA = -4’d12 / 3; // Result is 1431655761 because it is
// evaluated to 32 bits

regA = -12 / 3; // Result is 65532 because regA is unsigned.

Table 4-2 Examples of Modulus Operator

Modulus
Expression Result Comments

10 % 3 1 10/3 yields a remainder of 1

11 % 3 2 11/3 yields a remainder of 2

12 % 3 0 12/3 yields no remainder

-10 % 3 -1 the result takes the sign of the first operand

11 % -3 2 the result takes the sign of the first operand

-4’d12 % 3 1 -4’d12 is seen as a large, positive number that
leaves a remainder of 1 when divided by 3
November 2008 55 Product Version 8.2

Verilog-XL Reference
Expressions
Relational Operators

The following examples define the relational operators.

a < b // a less than b
a > b // a greater than b
a <= b // a less than or equal to b
a >= b // a greater than or equal to b

The relational operators all yield the scalar value 0 if the specified relation is false, or the value
1 if the specified relation is true. If, due to unknown bits in the operands, the relation is
ambiguous, then the result is the unknown value (x).

Note: If Verilog-XL tests a value that is x or z, then the result of that test is false.

All the relational operators have the same precedence. Relational operators have lower
precedence than arithmetic operators. The following examples illustrate the implications of
this precedence rule:

a < size - 1 // this construct is the same as
a < (size - 1) // this construct, but . . .
size - (1 < a) // this construct is not the same
size - 1 < a // as this construct

Note that when size - (1 < a) evaluates, the relational expression evaluates first and
then either zero or one is subtracted from size.

When size - 1 < a evaluates, the size operand is reduced by one and then compared
with a.

Equality Operators

The equality operators rank just lower in precedence than the relational operators. The
following examples list and define the equality operators.

a === b // a equal to b, including x and z
a !== b // a not equal to b, including x and z
a == b // a equal to b, result may be unknown
a != b // a not equal to b, result may be unknown

All four equality operators have the same precedence. These four operators compare
operands bit for bit, with zero filling if the two operands are of unequal bit-length. As with the
relational operators, the result is 0 if false, 1 if true.

For the == and != operators, if either operand contains an x or a z, then the result is the
unknown value (x).
November 2008 56 Product Version 8.2

Verilog-XL Reference
Expressions
For the === and !== operators, the comparison is done just as it is in the procedural case
statement. Bits that are x or z are included in the comparison and must match for the result
to be true. The result of these operators is always a known value, either 1 or 0.

Logical Operators

This section describes logical operators.

Logical AND and Logical OR Operators

The operators logical AND (&&) and logical OR (||) are logical connectives. Expressions
connected by && or || are evaluated left to right, and evaluation stops as soon as the truth
or falsehood of the result is known. The result of the evaluation of a logical comparison is one
(defined as true), zero (defined as false), or, the unknown value (x) if either operand is
ambiguous.

For example, if register alpha holds the integer value 237 and beta holds the value zero,
then the following examples perform as described:

regA = alpha && beta; // regA is set to 0
regB = alpha || beta; // regB is set to 1

The precedence of && is greater than that of ||, and both are lower than relational and
equality operators. The following expression ANDs three
sub-expressions without needing any parentheses:

a < size-1 && b != c && index != lastone

However, it is recommended for readability purposes that parentheses be used to show very
clearly the precedence intended, as in the following rewrite of the above example:

(a < size-1) && (b != c) && (index != lastone)

Logical Negation Operator

A third logical operator is the unary logical negation operator !. The negation operator
converts a non-zero or true operand into 0 and a zero or false operand into 1. An ambiguous
truth value remains as x. A common use of ! is in constructions such as the following:

if (!inword)

In some cases, the preceding construct makes more sense to someone reading the code
than the equivalent construct shown below:

if (inword == 0)
November 2008 57 Product Version 8.2

Verilog-XL Reference
Expressions
Constructions like if (!inword) can be read easily (“if not inword”), but more complicated
ones can be hard to understand. The first form is slightly more efficient in simulation speed
than the second.

Bit-Wise Operators

The bit operators perform bit-wise manipulations on the operands—that is, the operator
compares a bit in one operand to its equivalent bit in the other operand to calculate one bit
for the result.

Be sure to distinguish the bit-wise operators & and | from the logical operators && and ||.
For example, if x is 1 and y is 2, then x & y is 0, while x && y is 1. When the operands are
of unequal bit length, the shorter operand is zero-filled in the most significant bit positions.

The following logic tables show the results for each possible calculation.

Bit-wise operators logic tables

bit-wise
unary
negation

bit-wise binary AND
operator

bit-wise binary inclusive

OR operator

~ & 0 1 x | 0 1 x

0 1 0 0 0 0 0 0 1 x

1 0 1 0 1 x 1 1 1 1

x x x 0 x x x x 1 x

bit-wise binary

exclusive OR operator

bitwise binary exclusive

NOR operator

^ 0 1 x ^~ 0 1 x

0 0 1 x 0 1 0 x

1 1 0 x 1 0 1 x

x x x x x x x x
November 2008 58 Product Version 8.2

Verilog-XL Reference
Expressions
Reduction Operators

The unary reduction operators perform a bit-wise operation on a single operand to produce
a single bit result. The first step of the operation applies the operator between the first bit of
the operand and the second—using the following logic tables. The second and subsequent
steps apply the operator between the one-bit result of the prior step and the next bit of the
operand—still using the same logic table.

Reduction Operators logic tables

Note that the reduction unary NAND and reduction unary NOR operators operate the same
as the reduction unary AND and OR operators, respectively, but with their outputs negated.
The effective results produced by the unary reduction operators are listed in the following two
tables.

reduction unary

AND operator

reduction unary inclusive

OR operator

reduction unary

exclusive OR operator

& 0 1 x | 0 1 x ^ 0 1 x

0 0 0 0 0 0 1 x 0 0 1 x

1 0 1 x 1 1 1 1 1 1 0 x

x 0 x x x x 1 x x x x x

Results of AND, OR, NAND, and NOR unary reduction operations

Operand & | ~& ~|

no bits set 0 0 1 1

all bits set 1 1 0 0

some bits set but not all 0 1 1 0

Results of Exclusive OR and exclusive NOR unary reduction operations

Operand ^ ~^

odd number of bits set 1 0

even number of bits set (or none) 0 1
November 2008 59 Product Version 8.2

Verilog-XL Reference
Expressions
Syntax Restrictions

The Verilog language imposes two syntax restrictions intended to protect description files
from a typographical error that is particularly hard to find. The error consists of transposing a
space and a symbol. Note that the constructs on line 1 below do not represent the same
syntax as the similar constructs on line 2.

1. a & &b a | |b
2. a && b a || b

To protect users from this type of error, Verilog requires the use of parentheses to separate a
reduction or or and operator from a bit-wise or or and operator.

The following table shows the syntax that requires parentheses:

Shift Operators

The shift operators, << and >>, perform left and right shifts of their left operand by the number
of bit positions given by the right operand. Both shift operators fill the vacated bit positions
with zeroes. The following example illustrates this concept.

module shift;
reg [3:0] start, result;
initial

begin
start = 1; // Start is set to 0001
result = (start << 2); // Result is 0100

end
endmodule

In this example, the register result is assigned the binary value 0100, which is 0001 shifted
to the left two positions and zero filled.

Arithmetic Shift Operators for Signed Objects

The arithmetic shift operators (<<< and >>>) work the same as regular shift operators on
unsigned objects. However, when used on signed objects, the following rules apply:

Syntax equivalents for syntax restriction

Invalid Syntax Equivalent Syntax

a & &b a & (&b)

a| |b a | (|b)
November 2008 60 Product Version 8.2

Verilog-XL Reference
Expressions
■ Arithmetic shift left ignores the signed bit and shifts bit values to the left (like a regular
shift left operator), filling the open bits with zeroes.

■ Arithmetic shift right propagates all bits, including the signed bit, to the right while
maintaining the signed bit value.

The following example illustrates these concepts.

module shift;
reg signed [3:0] start, result;
initial

begin
start = -1; // Start is 1111
result = (start <<< 2); // Result is 1100
result = (result <<< 1); // Result is 1000
start = 5; // Start is 0101
result = (start <<< 2); // Result is 0100
start = -3; // Start is 1101
result = (start >>> 1); // Result is 1110
result = (result >>> 1); // Result is 1111
result = (result >>> 1); // Result is 1111
start = 3; // Start is 0011
result = (start >>> 1) // Result is 0001
result = (result >>> 1) // Result is 0000

end
endmodule

Conditional Operator

The conditional operator has three operands separated by two operators in the following
format:

<cond_expr> ? <true_expr> : <false_expr>

If <cond_expr> evaluates to false, then <false_expr> is evaluated and used as the
result. If the conditional expression is true, then <true_expr> is evaluated and used as the
result. If <cond_expr> is ambiguous, then both <true_expr> and <false_expr> are
evaluated and their results are compared, bit by bit, using the following table to calculate the
final result. If the lengths of the operands are different, the shorter operand is lengthened to
match the longer and zero filled from the left (the high-order end).

Conditional operator ambiguous condition results

?: 0 1 x z

0 0 x x x

1 x 1 x x

x x x x x

z x x x x
November 2008 61 Product Version 8.2

Verilog-XL Reference
Expressions
The following example of a tri-state output bus illustrates a common use of the conditional
operator.

wire [15:0] busa = drive_busa ? data : 16’bz;

The bus called data is driven onto busa when drive_busa is 1. If drive_busa is
unknown, then an unknown value is driven onto busa. Otherwise, busa is not driven.

Concatenations

A concatenation is the joining together of bits resulting from two or more expressions. The
concatenation is expressed using the brace characters { and }, with commas separating the
expressions within. The next example concatenates four expressions:

{a, b[3:0], w, 3’b101}

The previous example is equivalent to the following example:

{a, b[3], b[2], b[1], b[0], w, 1’b1, 1’b0, 1’b1}

Unsized constant numbers are not allowed in concatenations. This is because the size of
each operand in the concatenation is needed to calculate the complete size of the
concatenation.

Concatenations can be expressed using a repetition multiplier as shown in the next example.

{4{w}} // This is equivalent to {w, w, w, w}

The next example illustrates nested concatenations.

{b, {3{a, b}}} // This is equivalent to
// {b, a, b, a, b, a, b}

The repetition multiplier must be a constant expression.

Operands

As stated before, there are several types of operands that can be specified in expressions.
The simplest type is a reference to a net or register in its complete form—that is, just the name
of the net or register is given. In this case, all of the bits making up the net or register value
are used as the operand.

If just a single bit of a vector net or register is required, then a bit-select operand is used. A
part-select operand is used to reference a group of adjacent bits in a vector net or register.

A memory element can be referenced as an operand.
November 2008 62 Product Version 8.2

Verilog-XL Reference
Expressions
A concatenation of other operands (including nested concatenations) can be specified as an
operand.

A function call is an operand.

Net and Register Bit Addressing

Bit-selects extract a particular bit from a vector net or register. The bit can be addressed using
an expression. The next example specifies the single bit of acc that is addressed by the
operand index.

acc[index]

The actual bit that is accessed by an address is, in part, determined by the declaration of acc.
For instance, each of the declarations of acc shown in the next example causes a particular
value of index to access a different bit:

reg [15:0] acc;
reg [1:16] acc;

If the bit select is out of the address bounds or is x, then the value returned by the reference
is x.

Several contiguous bits in a vector register or net can be addressed, and are known as part-
selects. A part-select of a vector register or net is given with the following syntax:

vect[ms_expr:ls_expr]

Both expressions must be constant expressions. The first expression must address a more
significant bit than the second expression. Compiler errors result if either of these rules is
broken.

The next example and the bullet items that follow it illustrate the principles of bit addressing.
The code declares an 8-bit register called vect and initializes it to a value of 4. The bullet
items describe how the separate bits of that vector can be addressed.

reg [7:0] vect;
vect = 4;

■ if the value of addr is 2, then vect[addr] returns 1

■ if the value of addr is out of bounds, then vect[addr] returns x

■ if addr is 0, 1, or 3 through 7, vect[addr] returns 0

■ vect[3:0] returns the bits 0100

■ vect[5:1] returns the bits 00010

■ vect[<expression that returns x>] returns x
November 2008 63 Product Version 8.2

Verilog-XL Reference
Expressions
■ vect[<expression that returns z>] returns x

■ if any bit of addr is x/z, then the value of addr is x

Memory Addressing

This section discusses memory addressing. “Memories” on page 46 discussed the
declaration of memories. The next example declares a memory of 1024 8-bit words:

reg [7:0] mem_name[0:1023];

The syntax for a memory address consists of the name of the memory and an expression for
the address—specified with the following format:

mem_name[addr_expr]

The addr_expr can be any expression; therefore, memory indirections can be specified in
a single expression. The next example illustrates memory indirection:

mem_name[mem_name[3]]

In the above example, mem_name[3]addresses word three of the memory called mem_name.
The value at word three is the index into mem_name that is used by the memory address
mem_name[mem_name[3]]. As with bit-selects, the address bounds given in the declaration
of the memory determine the effect of the address expression. If the index is out of the
address bounds or is x, then the value of the reference is x.

There is no mechanism to express bit-selects or part-selects of memory elements directly. If
this is required, then the memory element has to be first transferred to an appropriately sized
temporary register.

Strings

String operands are treated as constant numbers consisting of a sequence of 8-bit ASCII
codes, one per character, with no special termination character.

Any Verilog HDL operator can manipulate string operands. The operator behaves as though
the entire string were a single numeric value.

The following example declares a string variable large enough to hold 14 characters and
assigns a value to it. The example then manipulates the string using the concatenation
operator.

Note that when a variable is larger than required to hold the value being assigned, the
contents after the assignment are padded on the left with zeros. This is consistent with the
padding that occurs during assignment of non-string values.
November 2008 64 Product Version 8.2

Verilog-XL Reference
Expressions
module string_test;
reg [8*14:1] stringvar;
initial

begin
stringvar = "Hello world";

 $display("%s is stored as %h", stringvar,stringvar);
stringvar = {stringvar,"!!!"};

 $display("%s is stored as %h",stringvar,stringvar);
end

endmodule

The result of running Verilog on the previous description is:

Hello world is stored as 00000048656c6c6f20776f726c64
Hello world!!! is stored as 48656c6c6f20776f726c64212121

String Operations

The common string operations copy, concatenate, and compare are supported by Verilog
operators. Copy is provided by simple assignment. Concatenation is provided by the
concatenation operator. Comparison is provided by the equality operators. The examples in
“Strings” on page 64and “String Value Padding and Potential Problems” on page 65 illustrate
assignment, concatenation, and comparison of strings.

When manipulating string values in vector variables, at least 8*n bits are required in the
vector, where n is the number of characters in the string.

String Value Padding and Potential Problems

When strings are assigned to variables, the values stored are padded on the left with zeros.
Padding can affect the results of comparison and concatenation operations. The comparison
and concatenation operators do not distinguish between zeros resulting from padding and the
original string characters.

The following example illustrates the potential problem.

reg [8*10:1] s1, s2;
initial

begin
s1 = "Hello";
s2 = " world!";

if ({s1,s2} == "Hello world!")
$display("strings are equal");

end
November 2008 65 Product Version 8.2

Verilog-XL Reference
Expressions
The string variables s1 and s2 are padded with zeroes but the string “Hello world” contains
no zero padding. Therefore, the comparison ({s1,s2} == “Hello world!”) fails, as
demonstrated in the following example:

Null String Handling

The null string ("") is equivalent to the value zero (0).

Minimum, Typical, Maximum Delay Expressions

Verilog HDL delay expressions can be specified as three expressions separated by colons.
This triplet is intended to represent minimum, typical, and maximum values—in that order.
The appropriate expression is selected by the compiler when Verilog-XL is run. The user
supplies a command-line option to select which of the three expressions to use on a global
basis. In the absence of a command-line option, Verilog-XL selects the second expression
(the “typical” delay value). The syntax is as follows:

Syntax for <mintypmax_expression>

<mintypmax_expression>
::= <expression>
||= <expression1> : <expression2> : <expression3>

The three expressions follow these conventions:

■ <expression1> is less than or equal to <expression2>

■ <expression2> is less than or equal to <expression3>

Verilog models typically specify three values for delay expressions. The three values allow a
design to be tested with minimum, typical, or maximum delay values. In the following
example, one of the three specified delays will be executed before the simulation executes
the assignment; if you do not select one, the simulator takes the default.

s1 = 000000000048656c6c6f
s2 = 00000020776f726c6421

000000000048656c6c6f00000020776f726c6421 == 48656c6c6f20776f726c6421

“Hello” “ world!” “Hello world!”

s1s2
November 2008 66 Product Version 8.2

Verilog-XL Reference
Expressions
always @A
X = #(3:4:5) A;

The command-line option +mindelays selects the minimum expression in all expressions
where min:typ:max values have been specified. Likewise, +typdelays selects all the typical
expressions and +maxdelays selects all the maximum expressions. Verilog-XL defaults to
the second value when a two or three-part delay expression is specified.

Values expressed in min:typ:max format can be used in expressions. The next example
shows an expression that defines a single triplet of delay values. The minimum value is the
sum of a+d; the typical value is b+e; the maximum value is c+f, as follows:

x_delay = (a:b:c) + (d:e:f)

The next example shows some typical expressions that are used to specify min:typ:max
format values:

x_delay = (val - 32’d 50): 32’d 75: 32’d 100

The min:typ:max format can be used wherever expressions can appear, both in source
text files and in interactive commands.

Expression Bit Lengths

Controlling the number of bits that are used in expression evaluations is important if
consistent results are to be achieved. Some situations have a simple solution, for example, if
a bit-wise operation is specified on two 16-bit registers, then the result is a 16-bit value.
However, in some situations it is not obvious how many bits are used to evaluate an
expression, what size the result should be, or whether signed or unsigned arithmetic should
be used.

For example, when is it necessary to perform the addition of two 16-bit registers in 17 bits to
handle a possible carry overflow? The answer depends on the context in which the addition
takes place. If the 16-bit addition is modeling a real 16-bit adder that loses or does not care
about the carry overflow, then the model must perform the addition in 16 bits. If the addition
of two 16-bit unsigned numbers can result in a significant 17th bit, then assign the answer to
a 17-bit register.

An Example of an Expression Bit Length Problem

This section describes an example of the problems that can occur during the evaluation of an
expression. During the evaluation of an expression, interim results take the size of the largest
operand (in the case of an assignment, this also includes the left-hand side). You must
therefore take care to prevent loss of a significant bit during expression evaluation.
November 2008 67 Product Version 8.2

Verilog-XL Reference
Expressions
The expression (a + b >> 1) yields a 16-bit result, but cannot be assigned to a 16-bit
register without the potential loss of the high-order bit. If a and b are 16-bit registers, then the
result of (a+b) is 16 bits wide—unless the result is assigned to a register wider than 16 bits.

If answer is a 17-bit register, then (answer = a + b) yields a full 17-bit result. But in the
expression (a + b >> 1), the sum of (a + b) produces an interim result that is only 16
bits wide. Therefore, the assignment of (a + b >> 1) to a 16-bit register loses the carry
bit before the evaluation performs the one-bit right shift.

There are two solutions to a problem of this type. One is to assign the sum of (a+b) to a 17-
bit register before performing the shift and then shift the 17-bit answer into the 16-bits that
your model requires. An easier solution is to use the following method.

The problem:

Evaluate the expression (a+b)>>1, assigning the result to a 16-bit register without losing the
carry bit. Variables a and b are both 16-bit registers.

The solution:

Add the integer zero to the expression. The expression evaluates as follows:

1. 0 + (a+b) evaluates—the result is as wide as the widest term, which is the 32-bit zero.

2. The 32-bit sum of 0 + (a+b) is shifted right one bit

This method preserves the carry bit until the shift operation can move it back down into 16
bits.

Verilog Rules for Expression Bit Lengths

In the Verilog language, the rules governing the expression bit lengths have been formulated
so that most practical situations have an obvious solution.

The number of bits of an expression (known as the size of the expression) is determined by
the operands involved in the expression and the context in which the expression is given.

A self-determined expression is one where the bit length of the expression is solely
determined by the expression itself—for example, an expression representing a delay value.

A context-determined expression is one where the bit length of the expression is
determined by the bit length of the expression and by the fact that it is part of another
November 2008 68 Product Version 8.2

Verilog-XL Reference
Expressions
expression. For example, the bit size of the right-hand side expression of an assignment
depends on itself and the size of the left-hand side.

Table 4-3 on page 69 shows how the form of an expression determines the bit lengths of the
results of the expression. In the following example, i, j, and k represent expressions of an
operand, and L(i) represents the bit length of the operand represented by i.

Table 4-3 Bit lengths resulting from expressions

Expression Bit Length Comments

unsized constant number same as integer (usually
32)

sized constant number as given

i op j where op is:
+ - * / % & | ^ ^~

max (L(i), L(j))

+i and -i L(i)

~i L(i)

i op j where op is:
=== !== == != && || > >= < <=

1 bit all operands are self-
determined

op i where op is:
& ~& | ~| ^ ~^

1 bit all operands are self-
determined

i>>j
i<<j

L(i) j is self-determined

i ? j : k max (L(j), L(k)) i is self-determined

{i,...,j} L(i)+..+L(j) all operands are self-
determined

{ i { j, .., k } } i*(L(j)+..+L(k)) all operands are self-
determined
November 2008 69 Product Version 8.2

Verilog-XL Reference
Expressions
November 2008 70 Product Version 8.2

Verilog-XL Reference
5
Assignments

This chapter describes the following:

■ Overview on page 71

■ Continuous Assignments on page 72

■ Procedural Assignments on page 79

■ Accelerated Continuous Assignments on page 80

■ Procedural Continuous Assignments on page 93

Overview

The assignment is the basic mechanism for getting values into nets and registers. An
assignment consists of two parts, a left-hand side and a right-hand side, separated by the
equal sign (=). The right-hand side can be any expression that evaluates to a value. The left-
hand side indicates the variable that the right-hand side is to be assigned to. The left-hand
side can take one of the following forms, depending on whether the assignment is a
continuous assignment or a procedural assignment.

Table 5-1 Legal left-hand side forms in assignment statements

Statement Left-hand side

continuous assignment ■ net (vector or scalar)

■ constant bit-select of a vector net

■ constant part-select of a vector net

■ concatenation of any of the above
November 2008 71 Product Version 8.2

Verilog-XL Reference
Assignments
Continuous Assignments

Continuous assignments drive values onto nets, both vector and scalar. The word
continuous is used to describe this kind of assignment because the assignment is always
active. Whenever simulation causes the value of the
right-hand side to change, the assignment is re-evaluated and the output is propagated.

Continuous assignments provide a way to model combinational logic without specifying an
interconnection of gates. Instead, the model specifies the logical expression that drives the
net. The expression on the right-hand side of the continuous assignment is not restricted in
any way, and can even contain a reference to a function. Thus, the result of a case statement,
if statement, or other procedural construct can drive a net.

See “Calling Functions in a Continuous Assignment” on page 78 for details on using functions
in a continuous assignment statement.

The syntax for continuous assignments is as follows:

<net_declaration>
::= <NETTYPE> <expandrange>? <delay>? <list_of_variables> ;
||= trireg <charge_strength>? <expandrange>? <delay>?

<list_of_variables> ;
||= <NETTYPE> <drive_strength>? <expandrange>? <delay>?

<list_of_assignments> ;

<continuous_assign>
::= assign <drive_strength>? <delay>? <list_of_assignments> ;

<expandrange>
::= <range>
||= scalared <range>
||= vectored <range>

<range>
::= [<constant_expression> : <constant_expression>]

<list_of_assignments>
::= <assignment> <,<assignment>>*

<charge_strength>
::= (small)

procedural assignment ■ register (vector or scalar)

■ bit-select of a vector register

■ constant part-select of a vector register

■ memory element

■ concatenation of any of the above four items

Statement Left-hand side
November 2008 72 Product Version 8.2

Verilog-XL Reference
Assignments
||= (medium)
||= (large)

<drive_strength>
::= (<STRENGTH0> , <STRENGTH1>)
||= (<STRENGTH1> , <STRENGTH0>)

The Continuous Assignment Statement

The <continuous_assign> statement places a continuous assignment on a net that has
been previously declared, either explicitly by declaration or implicitly by using its name in the
terminal list of a gate, a user-defined primitive, or module instance. The following is an
example of a continuous assignment to a net that has been previously declared:

wire a;
assign a = b | (c & d);

In these statements, a is declared as a net of type wire. The right-hand side of the
assignment statement can be thought of as a logic gate whose output is connected to wire a.
The assignment is continuous and automatic. This means that whenever b, c, or d changes
value during simulation, the whole right-hand side is reevaluated and assigned to the wire a.

The following is an example of the use of a continuous assignment to model a four-bit adder
with carry.

module adder (sum_out, carry_out, carry_in, ina, inb);
output [3:0]sum_out;
input [3:0]ina, inb;
output carry_out;
input carry_in;
wire carry_out, carry_in;
wire[3:0] sum_out, ina, inb;

assign
 {carry_out, sum_out} = ina + inb + carry_in;

endmodule

The Net Declaration Assignment

“The Continuous Assignment Statement” on page 73 discusses placing continuous
assignments on nets that were previously declared. An equivalent way of writing these two
statements is through a net declaration assignment, which allows a continuous assignment
to be placed on a net in the same statement that declares that net.

wire a = b | (c & d);

Here is another example of a net declaration assignment:

wire (strong1, pull0) mynet = enable;

A net declaration can be declared once for a specific net. This contrasts with the continuous
assignment statement, where one net can receive multiple assignments of the continuous
November 2008 73 Product Version 8.2

Verilog-XL Reference
Assignments
assignment form. Also note that the assignment in the adder module in the previous section
could not be specified directly in the declaration of the nets because it requires a
concatenation on the left-hand side.

The following description contains examples of continuous assignments to a net (data) that
was previously declared and an example of a net declaration assignment to a 16-bit output
bus (busout). The module selects one of four input busses and connects the selected bus
to the output bus.

module select_bus(busout, bus0, bus1, bus2, bus3, enable, s);
parameter n = 16;
parameter Zee = 16’bz;
output [1:n] busout;
input [1:n] bus0, bus1, bus2, bus3;
input enable;
input [1:2] s;

tri [1:n] data; // Net declaration.
tri [1:n] busout = enable ? data : Zee; // Net declaration with

// continuous assignment.

assign // Assignment statement with
data = (s == 0) ? bus0 : Zee, // 4 continuous assignments.
data = (s == 1) ? bus1 : Zee,
data = (s == 2) ? bus2 : Zee,
data = (s == 3) ? bus3 : Zee;

endmodule

The following sequence of events takes place during simulation of the description in the
select_bus module in the previous example:

1. The value of s, a bus selector input variable, is checked in the assign statement. Based
on the value of s, the net data receives the data from one of the four input busses.

2. The setting of data triggers the continuous assignment in the net declaration for
busout; if enable is set, the contents of data is assigned to busout; if enable is
clear, the contents of Zee is assigned to busout.

Note that the parameter Zee has an explicit width specification on the high impedance value.
This is recommended practice, because it avoids mistakes where extra bits of a value would
cause erroneous results. The default width of the high-impedance value (z) is the word size
of the host machine, typically 32 bits.

Delays

A delay given to a continuous assignment specifies the time duration between a right-hand
side operand value change and the assignment made to the left-hand side. If the left-hand
side references a scalar net, then the delay is treated in the same way as for gate delays—
that is, different delays can be given for the output rising, falling, and changing to high
impedance (see Chapter 6, “Gate and Switch Level Modeling”).
November 2008 74 Product Version 8.2

Verilog-XL Reference
Assignments
The following can all have one, two, or three delays:

■ a continuous assignment whose left-hand side references a vector net, such as:

wire [3:0] b;
assign #(5,20) b=a;

■ a net declaration assignment, such as:

wire [3:0] #(5,20) b=a;

■ a declaration of a net that is used in a continuous assignment, such as:

wire [3:0] #(5,20) b;
assign b=a;

When a continuous assignment whose left-hand side references a vector net or when a
vector net declaration assignment includes delays, the following rules determine which delay
controls the assignment. The following rules also determine the net delay that controls a
continuous assignment to an unexpanded vector net.

■ If the right-hand side lsb remains a 1 or becomes 1, then the rising (first) delay is used.

■ If the right-hand side lsb remains 0 or becomes 0, then the falling (second) delay is used.

■ If the right-hand side lsb remains z or becomes z, then the turn-off (third) delay is used.

■ If the right-hand side lsb is an x or becomes an x, then the smallest of the delay values
is used.

The results of the continuous assignment in the following example show how these rules
operate on a delay that is based on the value or value change of the least significant bit.

module least_significant_bit (out);
output [3:0] out;
reg [3:0] a;
wire [3:0] b;

assign #(10,20) b = a;

initial
begin

a = ’b0000;
#100 a = ’b1101;
#100 a = ’b0111;
#100 a = ’b1110;
end

initial
begin
$monitor($time, , “a=%b, b=%b”,a, b);
#1000 $finish;
end

endmodule

Compiling source file
Highest level modules:
November 2008 75 Product Version 8.2

Verilog-XL Reference
Assignments
least_significant_bit

 0 a=0000, b=xxxx
20 a=0000, b=0000

 100 a=1101, b=0000
 110 a=1101, b=1101 // LSB is high so uses a rise delay
 200 a=0111, b=1101
 210 a=0111, b=0111 // LSB is high so uses a rise delay
 300 a=1110, b=0111
 320 a=1110, b=1110 // LSB is low so uses a fall delay

The following example shows how multiple continuous assignments can model delays for
discrete bits whose durations are determined by the types of transitions. A continuous
assignment to an expanded vector net that has net delays in its declaration also models
discrete bit delays whose values are dependent on the types of transitions.

module least_significant_bit (out);
output [3:0] out;
reg [3:0] a;
wire [3:0] b;

assign #(10,20) b[0] = a[0],
 b[1] = a[1],
 b[2] = a[2],
 b[3] = a[3];

initial
begin

a =’b0000;
#100 a =’b1101;
#100 a =’b0111;
#100 a =’b1110;
 end

initial
begin

$monitor($time, , “a=%b, b=%b”,a, b);
#1000 $finish;

end
endmodule

Compiling source file
Highest level modules:
least_significant_bit

 0 a=0000, b=xxxx
 20 a=0000, b=0000
 100 a=1101, b=0000
 110 a=1101, b=1101 // rise delay of 10 time units
 200 a=0111, b=1101
 210 a=0111, b=1111 // rise delay of 10 time units
 220 a=0111, b=0111 // fall delay of 20 time units
 300 a=1110, b=0111
 310 a=1110, b=1111 // rise delay of 10 time units
 320 a=1110, b=1110 // fall delay of 20 time units

Delays in continuous assignments and in net declaration assignments behave differently from
net delays because they do not add to the delays of other drivers on the net to make a longer
delay.
November 2008 76 Product Version 8.2

Verilog-XL Reference
Assignments
In situations where a right-hand side operand changes before a previous change has had
time to propagate to the left-hand side, the latest value change is the only one to be applied.
That is, only one assignment occurs. This effect is known as inertial delay.

The following example implements a vector exclusive or. The size and delay of the operation
are controlled by parameters, which can be changed when instances of this module are
created. See “Overriding Module Parameter Values” on page 213 for details.

module modxor(axorb, a, b);
parameter size = 8, delay = 15;
output [size-1:0] axorb;
input [size-1:0] a, b;
wire [size-1:0] #delay axorb = a ^ b;

endmodule

Strength

You can specify the driving strength of a continuous assignment in either a net declaration or
in a standalone assignment using the assign keyword. This applies only to assignments to
scalar nets of the types listed below:

■ wire

■ wand

■ tri

■ trireg

■ wor

■ triand

■ tri0

■ trior

■ tri1

The strength specification, if provided, must immediately follow the keyword (either the
keyword for the net type or the assign keyword) and must precede any specified delay.
Whenever the continuous assignment drives the net, the strength of the value simulates as
specified.

A <drive_strength> specification contains one strength value that applies when the
value being assigned to the net is 1 and a second strength value that applies when the
assigned value is 0. The following keywords specify the strength value for an assignment of 1:

■ supply1
November 2008 77 Product Version 8.2

Verilog-XL Reference
Assignments
■ strong1

■ pull

■ weak1

■ highz1

The following keywords specify the strength value for an assignment of 0:

■ supply0

■ strong0

■ pull0

■ weak0

■ highz0

The order of the two strength specifications is arbitrary. The following two rules constrain the
use of drive strength specifications:

■ The strength specifications (highz1, highz0) and (highz0, highz1) are illegal
language constructs.

■ The keyword vectored is ignored when it is specified together with a specification of
strength on a continuous assignment.

Calling Functions in a Continuous Assignment

The right-hand side expression of a continuous assignment can contain a reference to a
function. For example, module test in the following example contains a continuous
assignment that calls function dumb, which returns a value that is driven onto sig_out_tmp.
See “Functions and Function Calling” on page 201 for details on defining and calling
functions.

module test(sig_in, p_reset, sig_out);
input sig_in, p_reset;
output sig_out;
wire sig_out_tmp;

buf (sig_out, sig_out_tmp);

assign sig_out_tmp = dumb(sig_in, p_reset);

function dumb;
input a, b;

begin
if (b) // i.e., if p_reset

dumb = 0;
else

dumb = a;
November 2008 78 Product Version 8.2

Verilog-XL Reference
Assignments
end
endfunction
endmodule

In this example, the call to function dumb triggers an assignment to sig_out_tmp if sig_in
or p_reset changes because both signals appear on the sensitivity list of the function call
and because two variables are declared as local to the function.

In the next example, only a is declared as local to the function. The variable p_reset is
passed to the function as a global variable. Even though the function can use and modify the
variables within the boundary of the containing module (see “Scope Rules” on page 234), a
change in p_reset will not trigger an assignment to sig_out_tmp.

module test(sig_in, p_reset, sig_out);
input sig_in, p_reset;
output sig_out;
wire sig_out_tmp;

buf (sig_out, sig_out_tmp);

assign sig_out_tmp = dumb(sig_in);

function dumb;
input a;

begin
if (p_reset)

dumb = 0;
else

dumb = a;
end

endfunction
endmodule

Procedural Assignments

Chapter 8, “Behavioral Modeling” discusses procedural assignments in detail. However, a
description of the basic ideas here highlight the differences between continuous assignments
and procedural assignments.

As stated in “Continuous Assignments” on page 72, continuous assignments drive nets in a
manner similar to the way gates drive nets. The expression on the right-hand side can be
thought of as a combinational circuit that drives the net continuously. Continuous
assignments cannot be disabled.

In contrast, procedural assignments can only assign values to registers or memory elements,
and the assignment (that is, the loading of the value into the register or memory) is done only
when control is transferred to the procedural assignment statement.

Procedural assignments occur only within procedures, such as always and initial
statements (see “always Statement” on page 165 and “initial Statement” on page 165), and
in functions and tasks (see Chapter 9, “Tasks and Functions,”), and can be thought of as
November 2008 79 Product Version 8.2

Verilog-XL Reference
Assignments
triggered assignments. The trigger occurs when the flow of execution in the simulation
reaches an assignment within a procedure. Reaching the assignment can be controlled by
conditional statements. Event controls, delay controls, if statements, case statements, and
looping statements can all be used to control whether assignments get evaluated.

Accelerated Continuous Assignments

This section describes how the +caxl command-line plus option accelerates continuous
assignments to make your designs simulate faster. This section also explains the following:

■ the restrictions on accelerated continuous assignments

■ how to accelerate continuous assignments

■ the kinds of designs that simulate faster with this feature and the kind of design that
simulates slower

■ how accelerated continuous assignments affect simulation

Restrictions on Accelerated Continuous Assignments

The +caxl option accelerates continuous assignments only if they meet the restrictions
described in this section. These restrictions apply to the following syntax elements of a
continuous assignment statement:

■ the types of nets on the left-hand side of the assignment operator

■ the operators and operands in the expressions on the right-hand side of the assignment
operator

■ the contents and use of a delay expression

“Syntax elements of an accelerated continuous assignment” on page 81 summarizes the
valid syntax elements in accelerated continuous assignments. The sections following the
syntax elements provide details and examples for each restriction.
November 2008 80 Product Version 8.2

Verilog-XL Reference
Assignments
Syntax elements of an accelerated continuous assignment

Left-hand side restrictions

The +caxl option can accelerate a continuous assignment to one of the following types of
nets:

■ a scalar net

■ an expanded vector net that contains less than 64 bits

■ a bit-select of an expanded vector net

assign

#delay net = expression;

constant or
expression
whose operands
are constants

scalar net
expanded vector net that is less than 64 bits
bit-select of an expanded vector net
part-select that is less than 64 bits of an expanded
vector net
concatenation of these types of nets

operators
& bit-wise and reduction AND
&& logical AND
~& reduction NAND
| bit-wise and reduction OR
|| logical OR
~| reduction NOR
^ bit-wise and reduction XOR
~^ bit-wise and reduction XNOR
~ bit-wise NOT
! logical NOT
? : conditional
{} concatenation
{{}} duplicate concatenation
?: conditional
== logical equality
!= logical inequality
=== case equality
!== case inequality

operands
scalar nets
expanded vector nets that are
less than 64 bits
bit-selects of expanded vector
nets
part-selects that are less than 64
bits of expanded vector nets
scalar registers
November 2008 81 Product Version 8.2

Verilog-XL Reference
Assignments
■ a part-select that is less than 64 bits of an expanded vector net

The +caxl option can also accelerate a continuous assignment to a concatenation of these
types of nets, provided that the concatenation contains fewer than 64 bits. An expanded
vector net is a vector net that Verilog-XL converts to a group of scalar nets. This group
contains one scalar net for each bit of the vector net. Verilog-XL automatically converts or
“expands” a vector net for a number of reasons, which include the following:

■ to handle bit-selects and part-selects

■ to improve performance and to accelerate continuous assignments

You can require Verilog-XL to expand a vector net by including the keyword scalared in the
net’s declaration.

An unexpanded vector net is a vector net that Verilog-XL does not convert to scalar nets. You
can prevent Verilog-XL from expanding a vector net by including the keyword vectored in
its declaration.

The following example shows continuous assignments that the +caxl option can accelerate
because the left-hand side meets these restrictions.

module aca1;
reg r1,r2,r3,r4;
wire c;
wire [3:0]a,d;
wire scalared [3:0] e,f,g;

// CONTINUOUS ASSIGNMENTS TO...
assign #5 c=a[0], // a scalar net

d={r1,r2,r3,r4}, // an expanded vector net
e={r1,r2,r3,r4}, // an expanded vector net
f[0]=r2, // a bit-select of an expanded vector net
f[3:2]={r3,r4}, // a part-select of an expanded vector net
{f[1],g[2:0]}=d; // a concatenation of valid nets
...

endmodule

Verilog-XL cannot accelerate a continuous assignment to the following types of vector nets:

■ vector nets with 64 or more bits

■ vector nets declared with the keyword vectored

To accelerate a continuous assignment to a vector net, Verilog-XL must expand that vector
net. If you declare a vector net with the keyword vectored, Verilog-XL cannot accelerate a
continuous assignment to it.

The following example shows continuous assignments that +caxl cannot accelerate
because the left-hand side does not meet these restrictions.

module aca2;
reg r1,r2,r3,r4;
November 2008 82 Product Version 8.2

Verilog-XL Reference
Assignments
wire [63:0] a;
wire vectored [3:0] b;
assign a = r1,// unaccelerated contiuous assignment to

// an expanded vector net with mor than 63 bits
b={r1,r2,r3,r4}; // unaccelerated continuous assignment to

// an unexpanded vector net
...

endmodule

Right-hand side restrictions

The +caxl option can accelerate a continuous assignment only if the expression on the right-
hand side contains certain operands and operators. The right-hand expression of a
continuous assignment can contain any of the following operands:

■ scalar nets

■ expanded vector nets that contain less than 64 bits

■ bit-selects of expanded vector nets

■ part-selects that are less than 64 bits of expanded vector nets

■ scalar registers

■ constants

The +caxl option can also accelerate a continuous assignment where the right-hand side is
a concatenation of these types of nets, provided that the concatenation contains fewer than
64 bits.

The following example shows continuous assignments that +caxl can accelerate because
the operands in the expression on the right-hand side meet these restrictions. All operands
are less than 64 bits in the example..

module aca3;
reg r1;
wire a,b;
wire [3:0] c,d;
wire scalared [3:0] e,f;
wire scalared [31:23] g,h;
assign

h[31]=a & b, // operands a and b are scalar nets
h[31:28]=c | d, // operands c and d are vector nets
h[27]=e[0] ^ f[1], // operands e and f are bit-selects

// of expanded vector nets
h[26:24]=e[2:0], // operand e is a part-select of an

// expanded vector net
h[23]=r1; // operand is a scalar reg
...

endmodule

The prohibited operands are as follows:
November 2008 83 Product Version 8.2

Verilog-XL Reference
Assignments
■ expanded vector nets that contain more than 63 bits

■ unexpanded vector nets

■ bit-selects of unexpanded vector nets

■ part-selects of unexpanded vector nets

■ vector registers

■ bit-selects of vector registers

■ part-selects of vector registers

The following example shows continuous assignments that +caxl cannot accelerate
because the operands in the expression of the right-hand side do not meet these restrictions.

module aca4;
reg [7:0]a,b;
wire vectored [7:0] c;
wire vectored [4:0] d;
wire [7:0] e,f;
wire [3:0] g,h,i;
wire [63:0] j;

assign
i = j, // unaccelerated because operand is

// a vector net with more than 63 bits
e=c, // unaccelerated because operand is

// an unexpanded vector net
f[0]=c[0] & d[0], // unaccelerated because operands are

// bit-selects of an unexpanded vector net
g=d[3:0], // unaccelerated because operand is

// a part-select of an unexpanded vector net
e=a, // unaccelerated because operand is a vector reg
g[0]=b[1], // unaccelerated because operand is

// a bit-select of a vector reg
h=b[3:0]; // unaccelerated because operand is

// a part-select of a vector reg
...

endmodule

The expression on the right-hand side of a continuous assignment can only contain the
following operator

Table 5-2 Valid Operators
& bit-wise and reduction AND ! logical NOT

&& logical AND {} concatenation

~& reduction NAND {{}} duplicate concatenation

| bit-wise and reduction OR ?: conditional

|| logical OR == logical equality
November 2008 84 Product Version 8.2

Verilog-XL Reference
Assignments
The following example shows continuous assignments that +caxl can accelerate because
the operators in the expression on the right-hand side meet these restrictions.

module aca5;
reg r1,r2,r3,r4,r5,r6,r7;
wire a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,s,t;
wire [1:0]u,v,w,y;
assign+

a=r1 & r2, // bit-wise AND operator
b=&s, // unary reduction AND operator
c=r1 && r2, // logical AND operator
d=~&u, // unary reduction NAND operator
e=r2 | r3, // bit-wise OR operator
f=r3 || r4, // logical OR operator
g=|u, // unary reduction OR operator
h=~|u, // unary reduction NOR operator
i=r4 ^ r5, // bit-wise XOR operator
j=^u, // unary reduction XNOR operator
k=r5 ~^r6, // bit-wise XNOR operator
l=~^v, // unary reduction XNOR operator
m=~j, // bit-wise NOT operator
n = !r1, // logical NOT operator
w={a,b}, // conatenation operator
y={2{r7}}, // duplicate concatenation operator
q=r1 ? a : b, // conditional operator
s= r1 == r2, // logical equality operator
t= r3 != r4; // logical inequality operator

endmodule

You can enter other operators in the right-hand side of accelerated continuous assignments,
but only in an expression or sub-expression whose operands are constants. (A sub-
expression is a part of an expression that Verilog-XL can evaluate separately.) The prohibition
against other operators does not apply in these expressions or sub-expressions because
Verilog-XL evaluates them at compile time. The following example shows how you can use
other operators in accelerated continuous assignments.

module aca6;
parameter p1=8,p2=15;
reg r1;
wire [3:0] a,b,c;

assign
a = 1 + p1, // 1 + p1 expression with addition

// operator and constant operands

b = r1 | (p2 << 1), // p2 << 1 sub-expression with shift
// operator and constant operands

c {r1,(p2 % p1)}; // p2 % p1 sub-expression with
// modulo operator and constant operands

~| reduction NOR != logical inequality

^ bit-wise and reduction XOR === case equality

~^ bit-wise and reduction XNOR !== case inequality

~ bit-wise NOT
November 2008 85 Product Version 8.2

Verilog-XL Reference
Assignments
endmodule

The following example shows continuous assignments that +caxl cannot accelerate
because they use other operators with variable operands.

module aca7;
reg r1,r2;
reg [3:0] r3;
wire a,b,c;
wire [4:0] d;
wire [31:0] e;

assign

e = r1 * r2, // r1 * r2 expression with an arithmetic
// operator and variable operands

a = (b <= c), // b <= c expression with a relational
// operator and variable operands

d = r3 << 1; // r3 << 1 expression with a shift operator
// and variable operands

endmodule

Delay expression restrictions

The +caxl option can accelerate a continuous assignment that includes a delay only if that
delay is a constant or an expression whose operands are constants.

The following example shows continuous assignments that +caxl can accelerate because
the delay expression meets this restriction.

module aca8;
reg r1,r2;
wire a,b,q,qb;
parameter p=10;
assign #p q = ~(a & qb); // #p delay is a constant
assign #(p+1) qb = ~(b & q); // #(p+1) delay expression with constant operands

...
endmodule

The following example shows continuous assignments that +caxl cannot accelerate
because the delay expression does not meet this restriction.

module aca9;
wire a,b,c,d;
reg r1,r2;

assign #r1 a=c; // #r1 delay is not a constant
assign #(a & r2) b=d; // operands a and r2 in delay expression are variables

...
endmodule

Controlling the Acceleration of Continuous Assignments

The +caxl command-line option accelerates continuous assignments subject to control by
two compiler directives: ‘accelerate and ‘noaccelerate.
November 2008 86 Product Version 8.2

Verilog-XL Reference
Assignments
■ The ‘accelerate compiler directive makes continuous assignments that follow it
acceleratable by the XL algorithm. A later ‘noaccelerate compiler directive cuts off
the effect of a previous ‘accelerate compiler directive.

■ The ‘noaccelerate compiler directive prevents the XL algorithm from accelerating
continuous assignments that follow it; a later ‘accelerate compiler directive cuts off
the effect of a previous ‘noaccelerate compiler directive.

The following example shows the region of a sample design, delimited by ‘accelerate and
‘noaccelerate, whose continuous assignments are accelerated if the +caxl option is on
the command line.

In the following example, +caxl accelerates continuous assignments in the middle section,
but the other continuous assignments cannot be accelerated.

Controlling acceleration of continuous assignments
‘noaccelerate // --- prevents ---
module mod2; // --- accelerated ---

... // --- continuous ---
assign d = e | f; // --- events ---

... // --- in ---

... // --- this ---
endmodule // --- region ---

‘accelerate // +++ permits +++
module mod3 (v,l,g); // +++ accelerated +++

... // +++ continuous +++
assign g =h ^ i; // +++ assignments +++

... // +++ in +++

... // +++ this +++
endmodule // +++ region +++

‘noaccelerate // --- prevents ---
module mod4(j,t,v); // --- accelerated ---

... // --- continuous ---
assign j = e ~^ k;. // --- events ---

... // --- in ---

... // --- this ---
endmodule // --- region ---

The Effects of Accelerated Continuous Assignments

Accelerating continuous assignments can have the following effects on your simulation.
These effects are described in the following sections.

■ faster simulation

■ slightly slower compilation
November 2008 87 Product Version 8.2

Verilog-XL Reference
Assignments
■ slightly more memory use

■ alteration in simulation results

Simulation speed

Accelerating continuous assignments does not increase the simulation speed of all designs.
The types of designs that simulate faster, and the one type that simulates slower, are
described in this section.

Designs that simulate faster

The following is a list of the kinds of designs that simulate faster when +caxl accelerates
continuous assignments:

■ designs that consist entirely of accelerated continuous assignments to scalar nets

■ designs that are a combination of gate-level and accelerated continuous assignments

■ gate-level designs that are stimulated by accelerated continuous assignments

■ designs that consist of accelerated continuous assignments to large vector nets

The following are examples of these designs and an explanation of how accelerated
continuous assignment increases their simulation speed.

1. Accelerating continuous assignments is what most increases the simulation speed of
designs that consist entirely of accelerated continuous assignments to scalar nets.
These designs simulate approximately eight times faster when you accelerate all their
continuous assignments. The following source description shows a design of a
multiplexer that consists of accelerated continuous assignments to scalar nets:

module aca10 (op1,op2,s1,s2,out,cr);
input op1,op2,s1,s2;
output out,cr;
wire nop1,nop2,mx1,mx2;

assign
nop1 = ~op1,
nop2 = ~op2,
mx1 = ((op1 & s1)|(nop1 & ~s1)),
mx2 = ((op2 & s2)|(nop2 & ~s2)),
out = mx1 ^ mx2,
cr = mx1 & mx2;

endmodule

2. Accelerating continuous assignments also increases the simulation speed of designs
whose logic is a combination of gate-level and accelerated continuous assignments.
November 2008 88 Product Version 8.2

Verilog-XL Reference
Assignments
How much the acceleration of the continuous assignments increases the simulation
speed depends on the proportion of continuous assignments to gate instances.

The following example shows a design that is a combination of accelerated continuous
assignments and gate instances. In this source description, data flows from gates to
continuous assignments and back to gates.

module aca11 (op1,op2,s1,s2,out,cr);
input op1,op2,s1,s2;
output out,cr;
wire nop1,nop2,mx1,mx2;

assign
mx1 = ((op1 & s1)|(nop1 & ~s1)),
mx2 = ((op2 & s2)|(nop2 & ~s2));
not nt1 (nop1,op1),
 nt2 (nop2,op2);
xor xr1 (out,mx1,mx2);
and ad1 (cr,mx1,mx2);

endmodule

3. Accelerating continuous assignments also increases the simulation speed of gate-level
designs that are stimulated by accelerated continuous assignments. How much the
acceleration of the continuous assignments increases the simulation speed of these
designs depends on the proportion of continuous assignments to gate instances.

The source description shown in the following example includes one accelerated
continuous assignment. Accelerating this continuous assignment does little to increase
the design’s simulation speed because the accelerated continuous assignment is such
a small proportion of this design.

module aca13;
reg r1,r2,r3;
wire a;

assign a=r3; // one accelerated continuous assignment...
twoway t1 (r1,r2,a,o);

initial
...

endmodule

module twoway(r1,r2,a,o);
input r1,r2;
output o;
inout a; // ...that drives this inout port

bufif1(a,r1,r2);
bufif0(o,a,r2);

endmodule

4. Accelerating the continuous assignments in designs that consist of continuous
assignments to large vector nets results in the smallest increase in simulation speed.
Continuous assignments to vector nets 64 bits wide and larger cannot be accelerated.
The closer the left-hand side of a continuous assignment comes to this limit of 63 bits,
the more time the XL algorithm needs to simulate the continuous assignment.
November 2008 89 Product Version 8.2

Verilog-XL Reference
Assignments
The source description in the following example shows the continuous assignment of
expressions with large operands and several operators to very large vector nets. The
complexity of the expressions on the right-hand side and large vector nets on the left-
hand side result in a limited increase in simulation speed.

module aca14;

wire [30:0]
a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t;

wire [61:0] m1,m2,m3,m4,m5;

assign m1=~(({a,b}&{d,e})|({c,d}^{e,f})),
m2={e,f}&{h,i},
m3=~{i,j},
m4=~({m,n}|{a,b}),
m5=((q & r)^(p | t)~^{q,r});

endmodule

Designs that simulate slower

Not all designs with continuous assignments that can be accelerated simulate faster with the
XL algorithm. XL speeds up the simulation when it processes a continuous assignment, but
transitions between the XL and non-XL algorithms slow down the simulation. A large number
of transitions can make a simulation run slower than if no part of it is simulated by the XL
algorithm. The following is a list of designs that contain continuous assignments that you can
accelerate, but which simulate faster without accelerating these continuous assignments.

1. Designs whose data flows many times from accelerated to nonaccelerated continuous
assignments simulate at a slower speed than if you did not accelerate any continuous
assignment. This slower speed is caused by the performance cost of a large number of
transitions between algorithms. The following source description shows data flowing
through a path of continuous assignments that cause Verilog-XL to transition frequently
between algorithms.

module aca15;
wire a,b,c,d,e,f,g,h,i,j,k,l,m,n,o;
assign

a = b & c,// accelerated continuous assignment
b = d + e, // nonaccelerated continuous assignment
d = f | g, // accelerated continuous assignment
f = h - i, // nonaccelerated continuous assignment
h = j ^ k, // accelerated continuous assignment
j = l * m, // nonaccelerated continuous assignment
l = n ~^ o; // accelerated continuous assignment
...

endmodule

2. Designs whose data flows many times from accelerated continuous assignments to
procedural assignments also simulate at a slower speed that if you did not accelerate any
continuous assignment. This slower speed is also caused by transitions between
algorithms. In the following source description, data flows between both kinds of
assignments.
November 2008 90 Product Version 8.2

Verilog-XL Reference
Assignments
module aca16;
reg r1,r2,r3,r4,r5;
wire a,b,c,d,e;

assign
a = r1, // accelerated
b = r2, // continuous
c = r3, // assignments
d = r4, // ...
e = r5; // ...

always
begin
#10 r1 = b; // procedural
#10 r2 = c; // assignments
#10 r3 = d; // ...
#10 r4 = e; // ...
#10 r5 = ~r5; // ...
end

initial

begin
r5=1;
...
end

endmodule

In this source description, a value of 1 propagates through several wires and registers.
Data flow begins with a procedural assignment to reg r5, then through a path of registers
and wires that are driven by alternating continuous and procedural assignments.

Compilation speed

During compilation, Verilog-XL processes accelerated continuous assignments so that they
can be simulated by the XL algorithm. Therefore, compilation time increases as the number
of accelerated continuous assignments increases. A design that consists entirely of
continuous assignments that can be accelerated takes approximately twice as long to
compile if you accelerate these continuous assignments.

Memory usage

Accelerated continuous assignments cause Verilog-XL to use more memory at compile time,
but less memory at run time.

Verilog-XL needs more memory to compile a design with accelerated continuous
assignments. A design that consists entirely of accelerated continuous assignments needs
20% more memory to compile.

Accelerated continuous assignments reduce Verilog-XL’s memory requirements during
simulation.
November 2008 91 Product Version 8.2

Verilog-XL Reference
Assignments
The possibility of different results

Accelerating continuous assignments to vector nets when these continuous assignments
include delay expressions can produce simulation results that differ from the results produced
without accelerating these continuous assignments. This possible difference is caused by the
difference between how the XL and non-XL algorithm simulate these continuous
assignments.

In both the XL and non-XL algorithms, when a continuous assignment statement includes a
delay expression, Verilog-XL evaluates the right-hand side and schedules the assignment to
occur after the delay elapses. In the non-XL algorithm, if any of the bits of the right-hand side
change before the delay elapses, Verilog-XL re-evaluates the entire right-hand side and
reschedules the assignment. In the XL algorithm, if any of the bits of the right-hand side
change before the delay elapses, Verilog-XL schedules a subsequent assignment to those
bits.

The following two examples show how accelerating continuous assignments can produce
different simulation results.

The first of two examples shows a module that contains accelerated and unaccelerated
continuous assignments that assign the same values and include the same delay expression.
The accelerated continuous assignments propagate value changes at simulation times when
the unaccelerated continuous assignments do not propagate these value changes.

module dif;

wire [1:0] a1, a2;
wire vectored [1:0] b1;
reg c1,c2;
reg [1:0] d1;

assign #10 a1 = {c1,c2}; // accelerated continuous
assignment

assign
#10 b1 = {c1,c2}, // unaccelerated continuous
 a2 = d1; // assignments

initial
begin
$monitor(“At simulation time %0d\n”,
$time,
“ accelerated a1=%b\n”,a1,
“unaccelerated b1=%b a2=%b\n\n”,b1,a2);
#25 c1 = 0; // procedural assignments of the

d1[1] = 0; // same values to the bits of the
#5 c2 = 0; // right-hand side of all three

d1[0] = 0; // continuous assignments.
end

endmodule

In the previous example, the continuous assignment to wire a1 of the concatenation of scalar
registers c1 and c2 can be accelerated. The continuous assignment to wire b1 cannot be
accelerated because it assigns a value to an unexpanded vector net, and the continuous
November 2008 92 Product Version 8.2

Verilog-XL Reference
Assignments
assignment to wire a2 cannot be accelerated because its operand is a vector register. The
delay expression in these continuous assignments is 10 time units.

Procedural assignments assign the same values to the right-hand sides of these continuous
assignments. These procedural assignments specify a five time unit interval between bit
changes of the right-hand sides of the continuous assignments.

The XL algorithm schedules the propagation of all bit changes as they occur; the non-XL
algorithm does not. The difference in simulation results between the accelerated and
unaccelerated continuous assignments is shown in Figure 5-1 on page 93.

Figure 5-1 Difference in Simulation results

In the previous example, the XL algorithm assigns values to a1 at simulation times 35 and
40. The non-XL algorithm waits until simulation time 40 to assign values.

Procedural Continuous Assignments

Continuous assignment statements allow you to describe combinational logic whose output
is to be computed anytime any input changes. Procedural continuous assignments are
procedural statements that allow for continuous assignments to be made to registers or nets
for certain specified periods of time. Because the assignment is not in force forever, as with
continuous assignments, procedural continuous assignments are sometimes called
quasi-continuous assignments.

Highest level modules:

dif

At simulation time 0

accelerated a1=xx

unaccelerated b1=xx a2=xx

At simulation time 35

accelerated a1=0x

unaccelerated b1=xx a2=xx

At simulation time 40

accelerated a1=00

unaccelerated b1=00 a2=00

The XL algorithm assigns values at simulation times
35 and 40.

The non-XL algorithm assigns values
only at simulation time 40.
November 2008 93 Product Version 8.2

Verilog-XL Reference
Assignments
The syntax for these assignment statements is as follows:

<statement>
::= assign <assignment> ;

<statement>
::= deassign <lvalue> ;

<force_statement>
::= force <assignment> ;

<release_statement>
::= release <lvalue> ;

The left-hand side of the assignment in the assign statement is restricted to be a register
reference or a concatenation of registers. It cannot be a memory element (array reference),
or a bit-select or a part-select of a register. In contrast, the left-hand side of the assignment
in the force statement can be a register reference, a net reference, or a bit-select or part-
select of an expanded vector net. It can be a concatenation of any of the above. Bit-selects
and part-selects of vector registers or unexpanded vector nets are not allowed, and result in
an error.

The assign and deassign Procedural Statements

The assign and deassign procedural assignment statements allow continuous
assignments to be placed onto registers for controlled periods of time. The assign
procedural statement overrides procedural assignments to a register. The deassign
procedural statement ends a continuous assignment to a register. The assign and
deassign procedural statements allow, for example, modeling of asynchronous clear/preset
on a D-type edge-triggered flip-flop, where the clock is inhibited when the clear or preset is
active.

The following example shows a use of the assign and deassign procedural statements in
a behavioral description of a D flip-flop with preset and clear inputs.

module dff(q,d,clear,preset,clock);
output q;
input d,clear,preset,clock;
reg q;
always @(clear or preset)
begin
if(!clear)

assign q = 0; // assign procedural statement
else if(!preset)

assign q = 1; // assign procedural statement
else

deassign q; // deassign procedural statement
end

always @(posedge clock)
q = d; // procedural assignment statement

endmodule
November 2008 94 Product Version 8.2

Verilog-XL Reference
Assignments
When either clear or preset is low, the output q is held continuously to the appropriate
constant value and a positive edge on the clock is affect q. When both the clear and
preset are high, then q is deassigned.

If the keyword assign is applied to a register for which there is already a procedural
continuous assignment, then this new procedural continuous assignment automatically
deassigns the register before making the new procedural continuous assignment.

The force and release Procedural Statements

Another form of procedural continuous assignment is provided by the force and release
procedural statements. These statements have a similar effect on the assign-deassign
pair, but a force can be applied to nets as well as to registers. The left-hand side of the
assignment can be:

■ a register

■ a net

■ a constant bit select of an expanded vector net

■ a part select of an expanded vector net

■ a concatenation

The left-hand side cannot be a memory element (array reference) or a bit-select or a part-
select of a vector register or an unexpanded vector net.

A force procedural statement to a register overrides a procedural assignment or procedural
continuous assignment that takes place on the register until a release procedural statement
is executed on the register. After the release procedural statement is executed, the register
does not immediately change value (as would a net that is forced). The value specified in the
force statement is maintained in the register until the next procedural assignment takes place,
except in the case where a procedural continuous assignment is active on the register.

A force procedural statement on a net overrides all drivers of the net—gate outputs, module
outputs, and continuous assignments—until a release procedural statement is executed on
the net.

Releasing a register that currently has an active assign re-establishes the assign statement.
The reason for having a two-level override system for registers is that assign-deassign is
meant for actual descriptions of hardware, and the force-release is meant for debugging
purposes.
November 2008 95 Product Version 8.2

Verilog-XL Reference
Assignments
The following example shows part of a log file from a simulation that included interactively
entered force and release procedural statements.

At the interactive prompt on line C1, AND gate and1 is “patched” as an OR gate by a force
procedural statement. This “patch” forces the value of its ORed inputs onto output e. On line
C2, an assign procedural statement of ANDed values to output d is “patched” by a force
procedural statement of ORed values.

 1 module test;
 2 reg
 2 a, // = 1’hx, x
 2 b, // = 1’hx, x
 2 c, // = 1’hx, x
 2 d; // = 1’hx, x
 3 wire
 3 e; // = StX
 5 and
 5 and1(e, a, b, c); // AND gate instance
 7 initial
 8 begin
 9* $list;
 10 $monitor("d=%b,e=%b", d, e);
 11 assign d = a & b & c; // assign proc. statement
 12 a = 1;
 13 b = 0;
 14 c = 1;
 15 #10
 15 $stop;
 16 end
 17 endmodule
d=0,e=0
L15 "quasi.v": $stop at simulation time 10
Type ? for help
C1 > force e = (a | b | c); // force procedural statement
C2 > force d = (a | b | c); // force procedural statement
C3 > #10 $stop;
C4 > .
d=1,e=1
C3: $stop at simulation time 20
C4 > release e; // release procedural statement
C5 > release d; // release procedural statement
C6 > c = 0;
C7 > #10 $finish;
C8 > .
e=0,d=0
C7: $finish at simulation time 30
November 2008 96 Product Version 8.2

Verilog-XL Reference
6
Gate and Switch Level Modeling

This chapter describes the following:

■ Overview on page 98

■ Gate and Switch Declaration Syntax on page 98

■ and, nand, nor, or, xor, and xnor Gates on page 105

■ buf and not Gates on page 106

■ bufif1, bufif0, notif1, and notif0 Gates on page 107

■ MOS Switches on page 108

■ Bidirectional Pass Switches on page 110

■ cmos Switches on page 112

■ pullup and pulldown Sources on page 113

■ Implicit Net Declarations on page 113

■ Logic Strength Modeling on page 114

■ Strengths and Values of Combined Signals on page 116

■ Strength Resolution for Continuous Assignments on page 129

■ Mnemonic Format on page 130

■ Strength Reduction by Non-Resistive Devices on page 131

■ Strength Reduction by Resistive Devices on page 131

■ Strengths of Net Types on page 131

■ Gate and Net Delays on page 132

■ Gate and Net Name Removal on page 140
November 2008 97 Product Version 8.2

Verilog-XL Reference
Gate and Switch Level Modeling
Overview

A logic network can be modeled using continuous assignments or switches and logic gates.
Gates and continuous assignments serve different modeling purposes and it is important to
appreciate the differences between them to achieve the right balance between accuracy and
efficiency in Verilog-XL. Modeling with switches and logic gates has the following advantages:

■ Gates provide a much closer one-to-one mapping between the actual circuit and the
network model.

■ There is no continuous assignment equivalent to the bidirectional transfer gate.

■ Because gates and switches have fixed functions, Verilog-XL can optimize its data
structure to reduce the amount of memory needed to simulate large circuits.

■ For a random network of nets, it is likely that the use of gates and switches for modeling
gives a shorter simulation run time than the use of continuous assignments.

A limitation of those nets declared with the keyword vectored affects gates and switches as
well as continuous assignments. Individual bits of vectored nets cannot be driven; thus, gates
and switches can only drive scalar output nets. If you declare a multi-bit net as vectored
and you drive individual bits of it, Verilog-XL will display a compilation error message. If you
do not declare a multi-bit net as vectored, Verilog-XL handles it as a vector except in the
following cases. A multi-bit net is handled as a scalar if:

■ Part of the vector is driven by a gate or switch.

■ Part of the vector is assigned a value with a continuous assignment.

The Switch-XL algorithm, invoked with the +switchxl plus option, expects references to the
terminals of switches to be expanded. References in the terminals of switches cannot be
references to register bit-selects when the +switchxl option is used. See Chapter 8,
“Behavioral Modeling,” of the Verilog-XL User Guide for more information on the Switch-XL
algorithm.

Gate and Switch Declaration Syntax

A gate or switch declaration names a gate or switch type and specifies its output signal
strengths and delays. It contains one or more gate instances. Gate instances include an
optional instance name and a required terminal connection list. The terminal connection list
specifies how the gate or switch connects to other components in the model. All the instances
contained in a gate or switch declaration have the same output strengths and delays.

The gate or switch declaration syntax is as follows:
November 2008 98 Product Version 8.2

Verilog-XL Reference
Gate and Switch Level Modeling
<gate_declaration>
::=<GATETYPE><drive_strength>?<delay>?<gate_instance>

<,<gate_instance>>*;

<GATETYPE> is one of the following keywords:
and nand or nor xor xnor buf bufif0 bufif1
not notif0 notif1 pulldown pullup
nmos rnmos pmos rpmos cmos rcmos
tran rtran tranif0 rtranif0 tranif1 rtranif1

<drive_strength>
::= (<STRENGTH0> , <STRENGTH1>)
||= (<STRENGTH1> , <STRENGTH0>)

<delay>
::= # <number>
||= # <identifier>
||= # (<mintypmax_expression> <,<mintypmax_expression>>?

<,<mintypmax_expression>>?)

<gate_instance>
::= <name_of_gate_instance>? (<terminal> <,<terminal>>*)

<name_of_gate_instance>
::= <IDENTIFIER> <range_spec>?

<terminal>
::= <IDENTIFIER>
||= <expression>

<range_spec>
::= [<lefthand_index>:<righthand_index>]

<lefthand_index>
::= <constant_expression>

<righthand_index>
::= <constant_expression>

<constant_expression> is one of the following elements
scalar, vector, register, or concatenations of these elements.

This section describes the following parts of a gate or switch declaration:

■ The keyword that names the type of gate or switch primitive

■ The drive strength specification

■ The delay specification

■ The identifier that names each gate or switch instance in gate or switch declarations

■ An optional range specification for an array of instances

■ The terminal connection list in primitive gate or switch instances
November 2008 99 Product Version 8.2

Verilog-XL Reference
Gate and Switch Level Modeling
The Gate Type Specification

A gate declaration begins with the <GATETYPE> keyword. The keyword specifies the gate
or switch primitive that is used by the instances that follow in the declaration.

The following keywords can begin a gate or switch declaration.

and nor pullup tran
buf not rcmos tranif0
bufif0 notif0 rnmos tranif1
bufif1 notif1 rpmos xnor
cmos or rtran xor
nand pmos rtranif0
nmos pulldown rtranif1

The Drive Strength Specification

The drive strength specifications specify the strengths of the values on the output terminals
of the instances in the gate declaration. It is possible to specify the strength of the output
signals from the gate primitives in the following table.

and nand notif1 xnor
buf nor or xor
bufif0 not pulldown
bufif1 notif0 pullup

The drive strength specification in this table has two parts. A gate declaration must contain
both parts or no parts, with the exception of pullup and pulldown sources. One of the
parts specifies the strength of signals with a value of 1, and the other specifies the strength
of signals with a value of 0.

The STRENGTH1 specification, which specifies the strength of an output signal with a value
of 1, is one of the following keywords:

supply1 strong1 pull1 weak1 highz1

Specifying highz1 causes the gate to output a logic value of z in place of a 1.

The STRENGTH0 specification, which specifies the strength of an output signal with a value
of 0, is one of the following:

supply0 strong0 pull0 weak0 highz0

Specifying highz0 causes the gate to output a logic value of z in place of a 0.

The strength specifications must follow the gate type keyword and precede any delay
specification. The STRENGTH0 specification can precede or follow the STRENGTH1
specification. In the absence of a strength specification, the instances have the default
strengths strong1 and strong0.
November 2008 100 Product Version 8.2

Verilog-XL Reference
Gate and Switch Level Modeling
The strength specifications, (highz0, highz1) and (highz1, highz0), are invalid and
produce the following compiler error message:

Error! Illegal strength specification

The following example shows a drive strength specification in a declaration of an open
collector nor gate:

nor(highz1,strong0)(out1,in1,in2);

In this example, the nor gate outputs a z in place of a 1.

The Delay Specification

The delay specifies the propagation delay through the gates and switches in a declaration.
Gates and switches in declarations with no delay specification have no propagation delay. A
delay specification can contain up to three delay values, depending on its gate type. The
pullup and pulldown source declarations do not include delay specifications.

The Primitive Instance Identifier

The <IDENTIFIER> in “Gate and Switch Declaration Syntax” on page 98 is an optional
name given to a gate or switch instance. An instance that is declared as an array must be
named (not optional). The name is useful in tracing the operation of the circuit during
debugging. Verilog-XL can generate names for unnamed gate instances in the source
description. See “Modules” on page 210 for information about automatic naming. Compiler
directives discussed in “Gate and Net Name Removal” on page 140 remove optional gate and
net names to reduce virtual memory requirements at simulation time.

The Range Specification

Repetitive instances that are defined by a range specification (<range_spec> in “Gate and
Switch Declaration Syntax” on page 98) differ only in the selected bits of the port expression
to which they are connected.To specify an array of instances, specify an instance name
followed by a range specification, which consists of two constant expressions (of local module
constants or parameters) separated by a colon (:) inside of square brackets ([]). The
constant expressions are the left-hand index (LHI) and the right-hand index (RHI). If these
two constant expressions have the same value, only one instance is generated.

An array of instances has a continuous range. To declare an array of instances, one instance
name is associated with only one range; you cannot specify the same instance name for
another range.
November 2008 101 Product Version 8.2

Verilog-XL Reference
Gate and Switch Level Modeling
For example, the following specification is illegal because the same instance name is used
for two ranges:

nand #2 t_nand[0:3] (...), t_nand[4:7] (...);

The following specifications is made legal by specifying unique instance names with separate
ranges:

nand #2 t_nand[0:7] (...);
nand #2 x_nand[0:3] (...), y_nand[4:7] (...);

Primitive Instance Connection List

The <terminal> in “Gate and Switch Declaration Syntax” on page 98 is the terminal list.
The terminal list describes how the gate or switch connects to the rest of the model. The gate
or switch type limits these expressions. The output or bidirectional terminals always come first
in the terminal list, followed by the input terminals.

Rules for Using an Array of Instances

The following rules apply for arrays of instances:

Rule 1

For terminal connections to an array of instances, a comparison is made between the bit
length of each port expression in a declared instance array and the bit length of each single-
instance port or terminal in an instantiated model or primitive.

Port connections are as follows.

Same Bit Lengths:

For each port or terminal where the comparison shows the same bit lengths, the instance-
array port expression is connected to each single-instance port. The following example shows
equivalent module descriptions that illustrate connections where port sizes match.

module driver (in, out, en);
 input [3:0] in;
 output [3:0] out;
 input en;

 bufif0 ar[3:0] (out, in, en); // array of tri-state buffers

endmodule

module driver_equiv (in, out, en);
 input [3:0] in;
November 2008 102 Product Version 8.2

Verilog-XL Reference
Gate and Switch Level Modeling
 output [3:0] out;
 input en;

 bufif0 ar3 (out[3], in[3], en); // each buffer declared
 bufif0 ar2 (out[2], in[2], en); // separately
 bufif0 ar1 (out[1], in[1], en);
 bufif0 ar0 (out[0], in[0], en);

endmodule

Different Bit Lengths:

If the bit lengths are different, then the bit length of each port expression in the declared
instance array should be the product of the number of instances and the bit length of the
corresponding single-instance port or terminal. In such case, each instance gets a part-select
of the port expression as specified in the range.

The connections to the port of the instance start with the lowest bits of the port expressions
(right-hand index) and continue to the highest bits (left-hand index).

The following example shows equivalent modules that illustrate how different instances within
an array of instances are connected when the port sizes do not exactly match (but are evenly
divisible).

module busdriver (busin, bushigh, buslow, enh, enl);
 input [15:0] busin;
 output [7:0] bushigh, buslow;
 input enh, enl;

 driver busar3 (busin[15:12], bushigh[7:4], enh);
 driver busar2 (busin[11:8], bushigh[3:0], enh);
 driver busar1 (busin[7:4], buslow[7:4], enl);
 driver busar0 (busin[3:0], buslow[3:0], enl);

endmodule

module busdriver_equiv (busin, bushigh, buslow, enh, enl);
 input [15:0] busin;
 output [7:0] bushigh, buslow;
 input enh, enl;

 driver busar[3:0] (.out({bushigh, buslow}), .in(busin),
 .en({enh, enh, enl, enl}));

endmodule

Too Many or Too Few Bits:

If there are too many or too few bits to connect to all the instances, an error condition is
generated. For example, specifying the following bit lengths generates an error because 4
(inumber of instances) times 4 (bit length of the corresponding single-instance port) is not 12
bits.

module busdriver (busin, bushigh, buslow, enh, enl);
 input [11:0] busin;
November 2008 103 Product Version 8.2

Verilog-XL Reference
Gate and Switch Level Modeling
 output [7:0] bushigh, buslow;
 .
 .
 .
endmodule

Arrays of instances may only be referenced by referencing individual elements of the array.
References to the array itself or part-selects of the array are disallowed.

Rule 2

An array of instances must have the ability to be represented as a set of single instances and
their port connections. You cannot use expressions that cannot be represented as separate
part-select elements (for example, a+b).

Rule 3

You can have an unconnected port from an array of instances only if the port is unconnected
for all instances of the array.

Rule 4

Range indexes (LHI and RHI) must be local module expressions of constants or parameters
that cannot exceed the range of the array. Range index constants include scalar, vector,
register, or concatenations of these elements.

Rule 5

Within modules that are instantiated by arrays (or their child modules), defparam statements
cannot alter any of the parameters that govern their instantiation. These parameters appear
within the constant expressions of a range or as part of the port declarations of the
instantiated module. Illegally altered parameters generate an error message.

The following code shows an example of illegally altering a parameter where the input port of
instance 0 is size 32, but the input port of instance 1 is size 16.

module top;
 ...
 defparam top.kudos_array[0].p = 32;
 kudos kudos_array[0:1] (a);
endmodule

module kudos(in)
 parameter p = 16;
 input [0:p]in;
 ...
endmodule
November 2008 104 Product Version 8.2

Verilog-XL Reference
Gate and Switch Level Modeling
The following example also shows an illegal use of a defparam statement where the number
of instances in the array is not able to be determined. The number of instances of m2 is
governed by top.io.p whose value is overridden by the defparam statement in the last
instance of m2.

module top;
 defparam top.i0.i0[3].a = 2;
 m1 io();
endmodule

module m1;
 parameter p = 4;
 m2 [1:p] io();
endmodule

module m2;
 parameter a = 4;
 defparam top.io.p = a;
endmodule

To illustrate the incorrect logic of this example, the last instance of m2 is top.io.io[3]. But
the overriding parameter value is 2 which means that there are only two instances of m2,
which means that the last instance is top.io.io[1] where the parameter value is 4, and
so on. This rule prevents this behavior from occurring.

Rule 6

Arrays of instances for macro molecules are treated as normal modules and are not
expanded.

Rule 7

System tasks can take modules or gates as arguments as long as only individual instances
of an array are referenced and the indexes are constant expressions. The
$showallinstances system task tallies the instance count for modules that have been
instantiated in arrays.

and, nand, nor, or, xor, and xnor Gates

Declarations of these gates begin with one of these keywords:

and nand nor or xor xnor

The delay specification can be zero, one, or two delays. If there is no delay, there is no delay
through the gate. One delay specifies the delays for all output transitions. If the specification
contains two delays, the first delay determines the rise delay, the second delay determines
the fall delay, and the smaller of the two delays applies to transitions to x.
November 2008 105 Product Version 8.2

Verilog-XL Reference
Gate and Switch Level Modeling
These six gates have one output and one or more inputs. The first terminal in the terminal list
connects to the gate’s output and all other terminals connect to its inputs. The truth tables for
these gates, showing the result of two input values, appear in the following table.

Versions of the six gates in the previous truth tables having more than two inputs behave
identically with cascaded 2-input gates in producing logic results, but the number of inputs
does not alter propagation delays. The following example declares a two input and gate. The
inputs are in1 and in2. The output is out.

and (out,in1,in2);

buf and not Gates

Declarations of these gates begin with one of the following keywords:

buf not

The delay specification can be zero, one, or two delays. If there is no delay, there is no delay
through the gate. One delay specifies the delays for all output transitions. If the specification
contains two delays, the first delay determines the rise delay, the second delay determines
the fall delay, and the smaller of the two delays applies to transitions to x.

These two gates have one input and one or more outputs. The last terminal in the terminal
list connects to the gate’s input, and the other terminals connect outputs.

Logic tables for and, or, and xor gates

and 0 1 x z or 0 1 x z xor 0 1 x z

0 0 0 0 0 0 0 1 x x 0 0 1 x x

1 0 1 x x 1 1 1 1 1 1 1 0 x x

x 0 x x x x x 1 x x x x x x x

z 0 x x x z x 1 x x z x x x x

Logic tables for nand, nor, and xnor gates

nand 0 1 x z nor 0 1 x z xnor 0 1 x z

0 1 1 1 1 0 1 0 x x 0 1 0 x x

1 1 0 x x 1 0 0 0 0 1 0 1 x x

x 1 x x x x x 0 x x x x x x x

z 1 x x x z x 0 x x z x x x x
November 2008 106 Product Version 8.2

Verilog-XL Reference
Gate and Switch Level Modeling
Truth tables for versions of these gates with one input and one output appear in the following
table.

The following example declares a two output buf:

buf (out1,out2,in);

The input is in. The outputs are out1 and out2.

bufif1, bufif0, notif1, and notif0 Gates

Declarations of these gates begin with one of the following keywords:

bufif0 bufif1 notif1 notif0

These four gates model three-state drivers. In addition to values of 1 and 0, these gates
output z.

In order, after the keyword, you can specify a strength specification, a delay specification, an
identifier, and a terminal list. For example:

bufif1 (weak1,weak0) #100 bf1 (outw,inw,control1);

The keyword and terminal list are required; the strength specification, a delay specification,
and identifier are optional.

The delay specification can be zero, one, two, or three delays. If there is no delay, there is no
delay through the gate. One delay specifies the delay of all transitions. If the specification
contains two delays, the first delay determines the rise delay, the second delay determines
the fall delay, and the smaller of the two delays specifies the delay of transitions to x and z.
If the specification contains three delays, the first delay determines the rise delay, the second
delay determines the fall delay, the third delay determines the delay of transitions to z, and
the smallest of the three delays applies to transitions to x.

Logic tables for buf and not gates

buf not

input output input output

0 0 0 1

1 1 1 0

x x x x

z x z x
November 2008 107 Product Version 8.2

Verilog-XL Reference
Gate and Switch Level Modeling
Some combinations of data input values and control input values cause these gates to output
either of two values, without a preference for either value. The logic tables of these gates
include two symbols representing such unknown results. The symbol L represents a result
that has a value of 0 or z. The symbol H represents a result that has a value of 1 or z. Delays
on transitions to H or L are the same as delays on transitions to x.

These four gates have one output, one data input, and one control input. The first terminal in
the terminal list connects to the output, the second connects to the data input, and the third
connects to the control input. The following table presents the logic tables for these gates.

MOS Switches

Models of MOS networks consist largely of the following four primitive types, which are also
the keywords used to declare these gates:

nmos pmos rnmos rpmos

The pmos keyword stands for PMOS transistor and the nmos keyword stands for NMOS
transistor. PMOS and NMOS transistors have relatively low impedance between their sources

Logic tables for bufif0 and bufif1 gates

bufif0 CONTROL bufif1 CONTROL

0 1 x z 0 1 x z

D

A

T

A

0 0 z L L D

A

T

A

0 z 0 L L

1 1 z H H 1 z 1 H H

x x z x x x z x x x

z x z x x z z x x x

Logic tables for notif0 and notif1 gates

notif0 CONTROL notif1 CONTROL

0 1 x z 0 1 x z

D

A

T

A

0 1 z H H D

A

T

A

0 z 1 H H

1 0 z L L 1 z 0 L L

x x z x x x z x x x

z x z x x z z x x x
November 2008 108 Product Version 8.2

Verilog-XL Reference
Gate and Switch Level Modeling
and drains when they conduct. The rpmos keyword stands for resistive PMOS transistor and
the rnmos keyword stands for resistive NMOS transistor. Resistive PMOS and resistive
NMOS transistors have significantly higher impedance between their sources and drains
when they conduct than PMOS and NMOS transistors have. The load devices in static MOS
networks are examples of rpmos and rnmos gates. These four gate types are unidirectional
channels for data similar to the bufif gates.

A delay specification follows the keyword. The next item is the optional identifier. A terminal
list completes the declaration.

The delay specification can be zero, one, two, or three delays. If there is no delay, there is no
delay through the switch. A single delay determines the delay of all output transitions. If the
specification contains two delays, the first delay determines the rise delay, the second delay
determines the fall delay, and the smaller of the two delays specifies the delay of transitions
to z and x. If there are three delays, the first delay specifies the rise delay, the second delay
specifies the fall delay, the third delay determines the delay of transitions to z, and the
smallest of the three delays applies to transitions to x. Delays on transitions to H and L are
the same as delays on transitions to x.

These four switches have one output, one data input, and one control input. The first terminal
in the terminal list connects to the output, the second terminal connects to the data input, and
the third terminal connects to the control input.

The nmos and pmos switches pass signals from their inputs and through their outputs with a
change in the signals’ strengths in only one case, discussed in “Strength Reduction by Non-
Resistive Devices” on page 131. The rnmos and rpmos gates reduce the strength of signals
that propagate through them, as discussed in “Strength Reduction by Resistive Devices” on
page 131.

Some combinations of data input values and control input values cause these switches to
output either of two values, without a preference for either value. The logic tables for these
switches include two symbols representing such unknown results. The symbol L represents
a result which has a value of 0 or z. The symbol H represents a result that has a value of 1
or z.

The following table presents the logic tables for these switches.

Logic tables for pmos, rpmos, nmos, and rnmos gates
pmos

rpmos

CONTROL nmos

rnmos

CONTROL

0 1 x z 0 1 x z
November 2008 109 Product Version 8.2

Verilog-XL Reference
Gate and Switch Level Modeling
The following example declares a pmos switch:

pmos (out,data,control);

The output is out, the data input is data, and the control input is control.

Bidirectional Pass Switches

Declarations of bidirectional switches begin with one of the following keywords:

tran tranif1 tranif0
rtran rtranif1 rtranif0

A delay specification follows the keywords in declarations of tranif1, tranif0,
rtranif1, and rtranif0; the tran and rtran devices do not take delays. The next item
is the optional identifier. A terminal list completes the declaration.

The following example declares a tranif1 and a tran:

tranif1 #100 trf1 (inout1,inout2,control);
tran tr1 (inout1,inout2);

The bidirectional terminals are inout1 and inout2. The control input is control.

The delay specifications for tranif1, tranif0, rtranif1, and rtranif0 devices can
be zero, one, or two delays. If there is no delay, the device has no turn-on or turn-off delay. If
the specification contains one delay, that delay determines both turn-on and turn-off delays.
If there are two delays, the first delay specifies the turn-on delay, and the second delay
specifies the turn-off delay.

The tranif1, tranif0, rtranif1, and rtranif0 devices have three items in their
terminal lists. Two are bidirectional terminals that conduct signals to and from the devices,
and the other terminal connects to a control input. The terminals connected to inouts precede
the terminal connected to the control input in the terminal list.

The tranif1 and rtranif1 devices connect the two bidirectional terminals when their
control inputs are driven high and are disconnected when their control inputs are driven low.
On the other hand, the tranif0 and rtranif0 devices connect the two bidirectional

D

A

T

A

0 0 z L L D

A

T

A

0 z 0 L L

1 1 z H H 1 z 1 H H

x x z x x x z x x x

z z z z z z z z z z
November 2008 110 Product Version 8.2

Verilog-XL Reference
Gate and Switch Level Modeling
terminals when their control inputs are driven low and are disconnected when their control
inputs are driven high.

The tran and rtran devices have terminal lists that contain two bidirectional terminals.
These devices connect the two bidirectional terminals.

The bidirectional terminals of all six of these devices connect only to scalar nets or bit-selects
of expanded vector nets.

The tran, tranif0, and tranif1 devices pass signals with an alteration in their strength
in only one case, discussed in “Strength Reduction by Non-Resistive Devices” on page 131.
The rtran, rtranif0, and rtranif1 devices reduce the strength of signals passing
through them according to rules discussed in “Ambiguous Strength Signals and
Unambiguous Signals” on page 123.

To illustrate the behavior of a bidirectional pass switch, consider the example given in
Figure 6-1 on page 111.

Figure 6-1 Behavior of a bidirectional pass switch

The following table defines the behavior of the netlist shown in Figure 6-1 on page 111.

A B C o1 o2

0 0 0 z z

0 0 1 z 0

0 1 0 z z

0 1 1 0 0

1 0 0 1 z

1 0 1 1 0

1 1 0 1 1

A
B

C

o1 o2

1’b1 1’b0
November 2008 111 Product Version 8.2

Verilog-XL Reference
Gate and Switch Level Modeling
cmos Switches

cmos switches are declared using one of these keywords:

cmos rcmos

The delay specification can be zero, one, two, or three delays. If there is no delay, there is no
delay through the switch. A single delay specifies the delay for all transitions. If the
specification contains two delays, the first delay determines the rise delay, the second delay
determines the fall delay, and the smaller of the two delays is the delay of transitions to z and
x.

If the specification contains three delays, the first delay controls rise delays, the second delay
controls fall delays, the third delay controls transitions to z, and the smallest of the three
delays applies to transitions to x. Delays in transitions to H or L are the same as delays in
transitions to x.

cmos and rcmos switches have a data input, a data output, and two control inputs. In the
terminal list, the first terminal connects to the data output, the second connects to the data
input, the third connects to the n-channel control input, and the last connects to the p-channel
control input.

The cmos switch passes signals with an alteration in their strength in only one case,
discussed in “Strength Reduction by Non-Resistive Devices” on page 131. The rcmos switch
reduces the strength of signals passing through it according to rules that appear in
“Ambiguous Strength Signals and Unambiguous Signals” on page 123.

The cmos switch is a combination of the pmos switch and the nmos switch whereas the
rcmos switch is a combination of the rpmos switch and the rnmos switch. The combined
switches in these configurations share data input and data output terminals, but they have
separate control inputs. These combined configurations simulate more efficiently than the
equivalent networks of two switches.

The equivalence of the cmos switch to the pairing of an nmos switch and a pmos switch is
detailed in the following explanation:

cmos (w, datain, ncontrol, pcontrol);

/* the cmos statement above is equivalent to the two statements below */

nmos (w, datain, ncontrol);
pmos (w, datain, pcontrol);

1 1 1 x x
November 2008 112 Product Version 8.2

Verilog-XL Reference
Gate and Switch Level Modeling
pullup and pulldown Sources

Declarations of these sources begin with one of the following keywords:

pullup pulldown

A strength specification follows the keyword and an optional identifier follows the strength
specification. A terminal list completes the declaration. The following example declares a
pullup instance on net neta.

pullup pup (neta);

You can use a single declaration to define multiple instances. There is no limit to the number
of instances you can define in a single declaration. Consider another example that declares
two pullup instances on the nets neta and netb.

pullup (strong0, strong1) pup (neta), (netb);

A pullup source places a logic value of 1 on the nets listed in its terminal list. A pulldown
source places a logic value of 0 on the nets listed in its terminal list. The signals that these
sources place on nets have pull strength in the absence of a strength specification. There
are no delay specifications for these sources because the signals they place on nets continue
throughout simulation without variation.

Consider the following netlist:

buf buf_1 (out, in, c);

pullup pullup_1 (out);

The table given below describes the behavior of the sample netlist.

Implicit Net Declarations

Including a previously unused identifier in a terminal list implicitly declares a new net of the
wire type with zero delay. If the wire type is unsuitable for implicitly declared nets, the
compiler directive ‘default_nettype can change the type acquired by implicitly declared
nets. The following is the directive’s syntax:

c in out

0 0 1

0 1 1

1 0 0

1 1 1
November 2008 113 Product Version 8.2

Verilog-XL Reference
Gate and Switch Level Modeling
‘default_nettype <type_of_net>

The first character in the directive is an accent grave. The <type_of_net> can be one of
the following net types:

wire tri tri0
wand triand tri1
wor trior trireg

This directive must occur outside of module definitions. All the modules between any two
‘default_nettype directives are affected by the first ‘default_nettype directive. The
effect of the directive crosses source file boundaries in the order in which they appear on the
command line. The ‘resetall compiler directive ends the effect of a preceding
‘default_nettype directive. A source description can contain any number of these
directives. Implicit nets are of type wire in the absence of a ‘default_nettype directive.

Each implicitly declared net must connect to one or more of the following:

■ gate output

■ tranif bidirectional terminal

■ module output port

If an implicitly declared net does not connect to one of the listed items, the compiler produces
an error message with this form:

"warning! implicit wire (<name>) has no fanin"

If nothing drives a net, Verilog-XL assigns a value of z to the net.

Logic Strength Modeling

The Verilog HDL provides for accurate modeling of signal contention, bidirectional pass
gates, resistive MOS devices, dynamic MOS, charge sharing, and other technology-
dependent network configurations by allowing scalar net signal values to have a full range of
unknown values and different levels of strength or combinations of levels of strength. This
multiple-level logic strength modeling resolves combinations of signals into known or
unknown values to represent the behavior of hardware with maximum accuracy.

A strength specification has two components:

1. the strength of the 0 portion of the net value, designated <STRENGTH0> in “Gate and
Switch Declaration Syntax” on page 98.
November 2008 114 Product Version 8.2

Verilog-XL Reference
Gate and Switch Level Modeling
2. the strength of the 1 portion of the net value, designated <STRENGTH1> in “Gate and
Switch Declaration Syntax” on page 98.

Despite this division of the strength specification, it is helpful to consider strength as a
property occupying regions of a continuum in order to predict the results of combinations of
signals.

The following table demonstrates the continuum of strengths. The left column lists the
keywords that specify strength levels of trireg or gate output. The middle column shows
relative strength levels correlated with the keywords. The abbreviations that Verilog-XL
reports are in the right column.

Strength levels for scalar net signal values

In the preceding table, there are four driving strengths: supply, strong, pull, and weak.
Signals with driving strengths propagate from gate outputs and continuous assignment
outputs.

Strength Name Strength Level Abbreviation

supply0 7 Su0

strong0 6 St0

pull0 5 Pu0

large0 4 La0

weak0 3 We0

medium0 2 Me0

small0 1 Sm0

highz 0 HiZ0

highz1 0 HiZ1

small1 1 Sm1

medium1 2 Me1

weak1 3 We1

large1 4 La1

pull1 5 Pu1

strong1 6 St1
November 2008 115 Product Version 8.2

Verilog-XL Reference
Gate and Switch Level Modeling
There are also three charge storage strengths: large, medium, and small.

Signals with the charge storage strengths originate in the trireg net type.

It is possible to think of the strengths of signals in the preceding table as locations on the scale
as shown in the following figure:

Scale of strengths

Discussions of signal combinations later in this document employ graphics similar to this
figure.

A net signal can have one or more strength levels associated with it. If a net signal value is
known, its strength levels are all in either the 0 strength part of the scale represented by this
figure, or they are all in its 1 strength part. If a net signal value is unknown, it has strength
levels in both the 0 strength and the 1 strength parts. A signal with a value of z has a strength
level only in the HiZ0 or HiZ1 subdivisions of the scale.

Strengths and Values of Combined Signals

In addition to a value, a signal has either a single unambiguous strength level or it has an
ambiguous strength, consisting of more than one level. When signals combine, their
strengths and values determine the strength and value of the resulting signal in accord with
the principles in the four sections that follow.

Combined Signals of Unambiguous Strength

This section deals with combinations of signals in which each signal has a known value and
a single strength level.

If two signals of unequal strength combine in a wired net configuration, the stronger signal is
the result. This case appears in the following figure.

7 6 5 4 3 2 1 0 76543210

0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1
November 2008 116 Product Version 8.2

Verilog-XL Reference
Gate and Switch Level Modeling
Combining unequal strengths

In the Combining unequal strengths figure on page 117, the numbers in parentheses indicate
the relative strengths of the signals. The combination of a pull 1 and a strong 0 results in
a strong 0, which is the stronger of the two signals. The combination of two signals of like
value results in the same value with the greater of the two strengths. The combination of
signals identical in strength and value results in the same signal.

The combination of signals with unlike values and the same strength has three possible
results. Two of the results occur in the presence of wired logic and the third occurs in its
absence. “Wired Logic Net Types” on page 127 discusses wired logic. The result in the
absence of wired logic is the subject of the figure on page 118 in the next section.

Ambiguous Strengths: Sources and Combinations

The classifications of signals possessing ambiguous strengths are the following:

■ signals with known values and multiple strength levels

■ signals with a value of x, which have strength levels consisting of subdivisions of both
the strength 1 and the strength 0 parts of the scale of strengths in the Scale of strengths
figure on page 116

■ signals with a value of L, which have strength levels that consist of high impedance
joined with strength levels in the 0 strength part of the scale of strengths in the Scale of
strengths figure on page 116

■ signals with a value of H, which have strength levels that consist of high impedance
joined with strength levels in the 1 strength part of the scale of strengths in the Scale of
strengths figure on page 116

Many configurations can produce signals of ambiguous strength. When two signals of equal
strength and opposite value combine, the result has a value of x and the strength levels of

Pu1(5)

St0(6)

St0(6)

Su1(7)

La1(4)

Su1(7)
November 2008 117 Product Version 8.2

Verilog-XL Reference
Gate and Switch Level Modeling
both signals and all the smaller strength levels. The following figure shows the combination
of a weak signal with a value of 1 and a weak signal with a value of 0 yielding a signal with
weak strength and a value of x. The second figure describes the signal.

Combination of signals of equal strength and opposite values

Weak x signal strength

An ambiguous signal strength can be a range of possible values. An example is the strength
of the output from the tristate drivers with unknown control inputs in the following figure.

Bufifs with control inputs of x

The output of the bufif1 in the previous figure is a strong H, composed of the range of
values described in the following figure.

We1

We0

WeX

7 6 5 4 3 2 1 0 76543210

0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

x

St1

x

We0StH WeL

bufif1 bufif0
November 2008 118 Product Version 8.2

Verilog-XL Reference
Gate and Switch Level Modeling
Strong H range of values

The output of the bufif0 in is a weak L, composed of the range of values described in the
following figure.

Weak L range of values

The combination of two signals of ambiguous strength results in a signal of ambiguous
strength. The resulting signal has a range of strength levels that includes the strength levels
in its component signals. The combination of outputs from two tristate drivers with unknown
control inputs, shown in the following figure, is an example.

Combined signals of ambiguous strength

7 6 5 4 3 2 1 0 76543210

0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

x

x

Pu1

We0

PuH

WeL

35X
November 2008 119 Product Version 8.2

Verilog-XL Reference
Gate and Switch Level Modeling
In the Combined signals of ambiguous strength figure on page 119, the combination of
signals of ambiguous strengths produces a range which includes the extremes of the signals
and all the strengths between them, as described in the following figure
.

The result is an x because values of both H and L are being driven onto the output net with
ambiguous strengths. The number 35, which precedes the x, is a concatenation of two digits.
The first is the digit 3, which corresponds to the highest strength level for the result’s value of
0. The second digit, 5, corresponds to the highest strength level for the result’s value of 1.

Switch networks can produce a range of strengths of the same value, such as the signals
from the upper and lower configurations in the following figure.

Ambiguous strengths from switch networks

In the Ambiguous strengths from switch networks figure on page 120, the upper combination
of a register, a gate controlled by a register of unspecified value, and a pullup produces a
signal with a value of 1 and a range of strengths (651) described in the following figure.

7 6 5 4 3 2 1 0 76543210

0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

reg a

reg b Vcc

reg g

reg d

reg e

651

530

56X

pullup=x

=1

=x

=0

=0

pulldown ground

and
We0 (3)

Pu0 (5)

Pu1

(6)

(5)
November 2008 120 Product Version 8.2

Verilog-XL Reference
Gate and Switch Level Modeling
Range of two strengths of a defined value

In the Ambiguous strengths from switch networks figure on page 120, the lower combination
of a pulldown, a gate controlled by a register of unspecified value, and an and gate produces
a signal with a value of 0 and a range of strengths (530) described in the following figure.

Range of three strengths of a defined value

When the signals from the upper and lower configurations in the figure on page 120 combine,
the result is an unknown with a range (56X) determined by the extremes of the two signals
shown in the following figure.

Unknown value with a range of strengths

In the Ambiguous strengths from switch networks figure on page 120, replacing the
pulldown in the lower configuration with a supply0 changes the range of the result to the
range (StX) described in the following figure.

7 6 5 4 3 2 1 0 76543210

0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1
November 2008 121 Product Version 8.2

Verilog-XL Reference
Gate and Switch Level Modeling
Strong x range

The range in the Strong x range figure on page 122 is strong x, because it is unknown and
both of its components’ extremes are strong. The extreme of the output of the lower
configuration is strong because the lower pmos reduces the strength of the supply0 signal.
“Strength Reduction by Non-Resistive Devices” on page 131 discusses this modeling feature.

Logic gates produce results with ambiguous strengths as well as tristate drivers. Such a case
appears in the following figure.

Ambiguous strength from gates

In the previous figure, register b has an unspecified value, so its input to the upper and gate
is strong x. The upper and gate has a strength specification including highz0. The signal
from the upper and gate is a strong H composed of the values described in the following
figure.

Ambiguous strength signal from a gate

7 6 5 4 3 2 1 0 76543210

0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

StH

36X

We0

a=1

b=x

c=0

d=0

7 6 5 4 3 2 1 0 76543210

0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1
November 2008 122 Product Version 8.2

Verilog-XL Reference
Gate and Switch Level Modeling
HiZ0 is part of the result because the strength specification for the gate in question specified
that strength for an output with a value of 0. A strength specification other than high
impedance for the 0 value output results in a gate output of x. The output of the lower and
gate is a weak 0 described in the following figure.

Weak 0

When the signals combine, the result is the range (36X) described in the following figure.

Ambiguous strength in combined gate signals

This figure presents the combination of an ambiguous signal and an unambiguous signal.
Such combinations are the topic of the following section.

Ambiguous Strength Signals and Unambiguous Signals

The combination of a signal with unambiguous strength and known value with another signal
of ambiguous strength presents several possible cases. To understand a set of rules
governing this type of combination, it is necessary to consider the strength levels of the
ambiguous strength signal separately from each other and relative to the unambiguous
strength signal. When a signal of known value and unambiguous strength combines with a
component of a signal of ambiguous strength, these are the effects:

7 6 5 4 3 2 1 0 76543210

0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1
November 2008 123 Product Version 8.2

Verilog-XL Reference
Gate and Switch Level Modeling
Rule 1

The strength levels of the ambiguous strength signal that are greater than the strength level
of the unambiguous signal remain in the result.

Rule 2

The strength levels of the ambiguous strength signal that are smaller than or equal to the
strength level of the unambiguous signal disappear from the result, subject to Rule 3.

Rule 3

If the operation of Rule 1 and Rule 2 results in a gap in strength levels because the signals
are of opposite value, the signals in the gap are part of the result.

The following figures show some applications of the rules.

In the following figure, the strength levels in the ambiguous strength signal that are smaller
than or equal to the strength level of the unambiguous strength signal disappear from the
result, demonstrating Rule 2.

Elimination of strength levels

7 6 5 4 3 2 1 0 76543210

0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

Combining the two signals above results in the following signal:
November 2008 124 Product Version 8.2

Verilog-XL Reference
Gate and Switch Level Modeling
In the following figure, Rule 1, Rule 2, and Rule 3 apply. The strength levels of the ambiguous
strength signal that are of opposite value and lesser strength than the unambiguous strength
signal disappear from the result. The strength levels in the ambiguous strength signal that are
less than the strength level of the unambiguous strength signal, and of the same value,
disappear from the result. The strength level of the unambiguous strength signal and the
greater extreme of the ambiguous strength signal define a range in the result.

Result demonstrating a range and the elimination of strength levels of two values

In the following figure, Rule 1 and Rule 2 apply. The strength levels in the ambiguous strength
signal that are less than the strength level of the unambiguous strength signal disappear from
the result. The strength level of the unambiguous strength signal and the strength level at the
greater extreme of the ambiguous strength signal define a range in the result.

7 6 5 4 3 2 1 0 76543210

0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

Combining the two signals above results in the following signal:
November 2008 125 Product Version 8.2

Verilog-XL Reference
Gate and Switch Level Modeling
Result demonstrating a range and the elimination of strength levels of one value

In the next figure, Rule 1, Rule 2, and Rule 3 apply. The greater extreme of the range of
strengths for the ambiguous strength signal is larger than the strength level of the
unambiguous strength signal. The result is a range defined by the greatest strength in the
range of the ambiguous strength signal and by the strength level of the unambiguous strength
signal.

7 6 5 4 3 2 1 0 76543210

0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

Combining the two signals above results in the following signal:
November 2008 126 Product Version 8.2

Verilog-XL Reference
Gate and Switch Level Modeling
A range of both values

Wired Logic Net Types

The net types triand, wand, trior, and wor resolve conflicts when multiple drivers are
at the same level of strength. These net types resolve signal values by treating signals as
inputs of logic functions.

For example, consider the combination of two signals of unambiguous strength in the
following figure.

7 6 5 4 3 2 1 0 76543210

0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

The combination of the two signals above produces the following result:
November 2008 127 Product Version 8.2

Verilog-XL Reference
Gate and Switch Level Modeling
Wired logic with unambiguous strength signals

The combination of the signals in this figure, using wired AND logic, produces a result with the
same value as the result produced by an AND gate with the two signals’ values as its inputs.
The combination of signals using wired OR logic produces a result with the same value as the
result produced by an OR gate with the two signals’ values as its inputs. The strength of the
result is the same as the strength of the combined signals in both cases. If the value of the
upper signal changes so that both signals possess a value of 1, then the results of both types
of logic have a value of 1.

When ambiguous strength signals combine in wired logic, it is necessary to consider the
results of all combinations of each of the strength levels in the first signal with each of the
strength levels in the second signal, as shown in the following figure.

wired AND logic value result : 0

wired OR logic value result : 1

7 6 5 4 3 2 1 0 76543210

0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

Signal 1

Signal 2

7 6 5 4 3 2 1 0 76543210
0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210
0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1
November 2008 128 Product Version 8.2

Verilog-XL Reference
Gate and Switch Level Modeling
The combinations of strength levels for AND logic appear in the following table:

The result is the following signal:

The combinations of strength levels for OR logic appear in the following table:

The result is the following signal:

Strength Resolution for Continuous Assignments

In continuous assignment statements, if the strength value is not specified, the logic value of
the LHS (Left Hand Side) is the resolution of the logic values of the RHS (Right Hand Side),
with default strength. However, if the strength value is specified, then the strength value of the
LHS will depend on the logic value of the RHS, as explained in the following example:

Signal 1 Signal 2 Signal 3

Strength Value Strength Value Strength Value

5 0 5 1 5 0

6 0 5 1 6 0

Signal 1 Signal 2 Signal 3

Strength Value Strength Value Strength Value

5 0 5 1 5 1

6 0 5 1 6 0

7 6 5 4 3 2 1 0 76543210

0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

0 strength 1 strength

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1
November 2008 129 Product Version 8.2

Verilog-XL Reference
Gate and Switch Level Modeling
Example
//test.v

module top;
wire a,b;
wire c;

assign (pull1,strong0) a = 1’b0;//////////(1)
assign (pull1,supply0) b =1’b1;//////////(2)

assign #2 c = b;//////////////////////////(3)
assign #1 c = a;//////////////////////////(4)

initial
begin
$monitor($time,"value of c is %v",c);

end

endmodule

In the above example, a has a logic value of ZERO (0) with strength St0 and b has the logic
value of ONE (1) with strength St1. Refer assignment statements (1) and (2) above. The
strength information will not pass to the assignment statement. That is, the strength values
specified in a and b in statements (3) and (4), will not get carried over to c after the
assignment. As c is driven by both a and b, the resolved value of c is the resolution between
the logic values of a and b. In the resolution, the strengths of both a and b will not be
considered.

Therefore, as the strength value is not specified in statements (3) and (4), c will have the
resolved logic value of a and b with default strength - St0, St1, or StX depending upon its
logic value.

However, if we replace statements (3) and (4) with the following:

assign #2 (pull1, supply0) c = b;
assign #1 (pull1, strong0) c = a;

Then, the strength value of c will depend on the logic value of the RHS, which in this example
will be St0.

Mnemonic Format

Trace messages giving signal strength information are compatible with the %v format option
in the $display, $write, $strobe, $monitor system tasks. See “Strength Format” on page 338
of the Verilog-XL User Guide for more information on this mnemonic strength notation.
November 2008 130 Product Version 8.2

Verilog-XL Reference
Gate and Switch Level Modeling
Strength Reduction by Non-Resistive Devices

The nmos, pmos, and cmos gates pass through the strength from the data input to the output,
except that a supply strength is reduced to a strong strength.

The tran, tranif0, and tranif1 gates do not affect signal strength across the
bidirectional terminals, except that a supply strength is reduced to a strong strength.

Strength Reduction by Resistive Devices

The rnmos, rpmos, rcmos, rtran, rtranif1, and rtranif0 devices reduce the strength
of signals that pass through them according to the following table:

Strengths of Net Types

The tri0, tri1, supply0, and supply1 net types generate signals with specific strength
levels. The trireg declaration can specify either of two signal strength levels other than a
default strength level.

tri0 and tri1 Net Strengths

The tri0 net type models a net connected to a resistive pulldown device. Its signal has a
value of 0 and a pull strength in the absence of an overriding source. The tri1 net type
models a net connected to a resistive pullup device: its signal has a value of 1 and a pull
strength in the absence of an overriding source.

input strength reduced strength

supply drive pull drive

strong drive pull drive

pull drive weak drive

weak drive medium capacitor

large capacitor medium capacitor

medium capacitor small capacitor

small capacitor small capacitor

high impedance high impedance
November 2008 131 Product Version 8.2

Verilog-XL Reference
Gate and Switch Level Modeling
trireg Strength

The trireg net type models charge storage nodes. The strength of the drive resulting from
a trireg net that is in the charge storage state (that is, a driver charged the net and then
went to high impedance) is one of these three strengths: large, medium, or small. The
specific strength associated with a particular trireg net is specified by the user in the net
declaration. The default is medium. The syntax of this specification is described in “Charge
Strength” on page 39.

supply0 and supply1 Net Strengths

The supply0 net type models ground connections. The supply1 net type models
connections to power supplies. The supply0 and supply1 net types have supply driving
strengths.

Gate and Net Delays

Gate and net delays provide a means of accurately describing delays through a circuit. The
gate delays specify the signal propagation delay from any gate input to the gate output. Up
to three values per output can be specified. The descriptions in this chapter of each gate type
give the rules for determining how many delays gates can take.

Net delays refer to the time it takes from any driver on the net changing value to the time when
the net value is updated and propagated further. Up to three delay values per net can be
specified.

Note: Verilog-XL treats two nets connected by a bidirectional switch as one net and simulates
the delays on both nets in parallel.

For both gates and nets, the default delay is zero when no delay specification is given. When
one delay value is given, then this value is used for all propagation delays associated with the
gate or net. The following is an example of a delay specification with one delay:

and #(10) (out, in1, in2);

The following is an example of a delay specification with two delays:

and #(10, 12) (out, in1, in2);

When two delays are given, the first specifies the rise delay and the second specifies the fall
delay. The delay when the signal changes to high impedance or to unknown is the lesser of
the two delay values.

The following is an example of a delay specification with three delays:
November 2008 132 Product Version 8.2

Verilog-XL Reference
Gate and Switch Level Modeling
bufif1 #(10, 12, 11) (out, in1, in2);

For a three delay specification:

■ the first delay refers to the transition to the 1 value (rise delay)

■ the second delay refers to the transition to the 0 value (fall delay)

■ the third delay refers to the transition to the high-impedance value

When a value changes to the unknown (x) value, the delay is the smallest of the three delays.

When an entire vector net changes value the selection of which of its net delays controls the
transition depends on whether Verilog-XL treats the net as a one entity or as a group of scalar
nets. The default is that the net is one entity and the selection of net delays depends on the
state or transition of its least significant bit. A net with this status is an unexpanded net.
Declaring the net with the keyword scalared or requiring Verilog-XL to access its individual
bits changes the default behavior by making the net act like a group of scalars. A net with this
status is an expanded net. Expanding a net results in a separate delay selection for each
transition of each bit. These separate delay selections follow the rules given previously in this
section.

Selection of the net delay for an unexpanded net follows these rules:

■ If the right-hand side LSB remains 0 or becomes 0, then the falling (second) delay is
used.

■ If the right-hand side LSB remains z or becomes z, then the turn-off (third) delay is used.

■ If the right-hand side LSB remains a 1 or becomes 1, then the rising (first) delay is used.

■ If the right-hand side LSB is an x or becomes an x, then the smallest of the delay values
is used.

The following examples show the effects on a simulation of a continuous assignment causing
transitions on a vector net with net delays, with and without declaring the scalared keyword.

Selection of rise and fall delay on a vector net declared without scalared
module top;

reg [3:0] a;
wire [3:0] #(5,20) b;

assign b=a;

initial
begin

a = ’b0000;
#100 a = ’b1101;
#100 a = ’b0111;
#100 a = ’b1110;

end
November 2008 133 Product Version 8.2

Verilog-XL Reference
Gate and Switch Level Modeling
initial
begin

$monitor($time, , “a=%b, b=%b”,a, b);
#1000 $finish;

end
endmodule

The results of the preceding simulation follow:

0 a=0000, b=xxxx
20 a=0000, b=0000
100 a=1101, b=0000
105 a=1101, b=1101
200 a=0111, b=1101
205 a=0111, b=0111
300 a=1110, b=0111
320 a=1110, b=1110

The following example (with scalared) shows a value for b at time 205 that differs from the
results in the previous example (without scalared) because it shows only the rising
transition of bit [1].

A falling transition in bit [3] occurs at time 220 in the following example, but occurs at time
205 in the previous example, where the value of 1 on bit [0] controls the delay.

At time 305, the following example shows a separate rising transition on bit [3] that is
delayed until time 320 in previous example, where its delay is controlled by a falling transition
on bit [0].

Selection of rise and fall delay on a vector net declared with scalared
module top;

reg [3:0] a;
wire scalared [3:0] #(5,20) b;

assign b=a;

initial
begin

a = ’b0000;
#100 a = ’b1101;
#100 a = ’b0111;
#100 a = ’b1110;

end

initial
begin

$monitor($time, , “a=%b, b=%b”,a, b);
#1000 $finish;

end
endmodule

The results of the preceding simulation follow:

0 a=0000, b=xxxx
20 a=0000, b=0000
100 a=1101, b=0000
105 a=1101, b=1101
November 2008 134 Product Version 8.2

Verilog-XL Reference
Gate and Switch Level Modeling
200 a=0111, b=1101
205 a=0111, b=1111
220 a=0111, b=0111
300 a=1110, b=0111
305 a=1110, b=1111
320 a=1110, b=1110

The following table summarizes the from-to propagation delay choice for the two and three
delay specifications.

Rules for propagation delays

The following example specifies a simple latch module with tri-state outputs, where individual
delays are given to the gates. The propagation delay from the primary inputs to the outputs
of the module will be cumulative, and depends on the signal path through the network.

module tri_latch(qout, nqout, clock, data, enable);
output qout, nqout;
input clock, data, enable;

tri qout, nqout;
not #5

(ndata, data);
nand #(3, 5)

(wa, data, clock),
(wb, ndata, clock);

from value to value
delay used if there are

2 delays 3 delays

0 1 d1 d1

0 x min(d1,d2) min(d1,d2,d3)

0 z min(d1,d2) d3

1 0 d2 d2

1 x min(d1,d2) min(d1,d2,d3)

1 z min(d1,d2) d3

x 0 d2 d2

x 1 d1 d1

x z min(d1,d2) d3

z 0 d2 d2

z 1 d1 d1

z x min(d1,d2) min(d1,d2,d3)
November 2008 135 Product Version 8.2

Verilog-XL Reference
Gate and Switch Level Modeling
nand #(12, 15)
(q, nq, wa),
(nq, q, wb);

bufif1 #(3, 7, 13)
q_drive (qout, q, enable),
nq_drive (nqout, nq, enable);

endmodule

min/typ/max Delays

The syntax for delays on gate primitives (including user-defined primitives), nets, and
continuous assignments allows three values each for the rising, falling, and turn-off delays.
The minimum, typical, and maximum values for each are specified as constant expressions
separated by colons.

The following example shows the minimum, typical, and maximum values for rising, falling,
and turn-off delays:

module iobuf(io1, io2, dir);
.
.
.
bufif0 #(5:7:9, 8:10:12, 15:18:21) (io1, io2, dir);
bufif1 #(6:8:10, 5:7:9, 13:17:19) (io2, io1, dir);
.
.
.

endmodule

The syntax for delay controls in procedural statements also allows minimum, typical, and
maximum values. These are specified by expressions separated by colons. The following
example illustrates this concept.

parameter
min_hi = 97, typ_hi = 100, max_hi = 107;

reg clk;

always
begin

#(95:100:105) clk = 1;
#(min_hi:typ_hi:max_hi) clk = 0;

 end

The delay used during simulation will be one of the three—either minimum, typical, or
maximum. One delay choice is used throughout a simulation run; it cannot be changed
dynamically.

Selection of which delays will be used is done using one of three command options. The
+maxdelays option selects all of the maximum delays; the +typdelays option selects all
of the typical delays; the +mindelays option selects all of the minimum delays. For example,
November 2008 136 Product Version 8.2

Verilog-XL Reference
Gate and Switch Level Modeling
the following command line runs Verilog-XL with only the values specified for the maximum
delay:

verilog source1.v +maxdelays

Note: If only one delay is specified, then Verilog-XL uses it regardless of whether minimum,
typical, or maximum delays are selected. If more than one delay is desired, then all three
delays must be specified; for example, it is not possible to specify minimum and maximum
without typical.

Caution

There is currently no syntax checking on plus command options. Be very
careful in specifying them to avoid confusing results. If you misspell
“maxdelays”, “mindelays” or “typdelays”, the option will be ignored.

trireg Net Charge Decay

Like all nets, a trireg declaration’s delay specification can contain up to three delays. The
first two delays specify the simulation time that elapses in a transition to the 1 and 0 logic
states when the trireg is driven to these states by a driver. The third delay specifies the
charge decay time instead of the time that elapses in a transition to the z logic state. The
charge decay time specifies the simulation time that elapses between when a trireg’s
drivers turn off and when its stored charge can no longer be determined.

A trireg needs no turn-off delay specification because a trireg never makes a transition
to the z logic state. When a trireg’s drivers make transitions from the 1, 0, or x logic states
to off, the trireg retains the previous 1, 0, or x logic state that was on its drivers. The z
value does not propagate from a trireg’s drivers to a trireg. A trireg can only hold a
z logic state when z is the trireg’s initial logic state or when it is forced to the z state with
a force statement.

A delay specification for charge decay models a charge storage node that is not ideal; a
charge storage node whose charge leaks out through its surrounding devices and
connections.

This section describes the charge decay process and the delay specification for charge
decay.
November 2008 137 Product Version 8.2

Verilog-XL Reference
Gate and Switch Level Modeling
The charge decay process

Charge decay is the cause of transition of a 1 or 0 that is stored in a trireg to an unknown
value (x) after a specified number of time units. The charge decay time is that specified
number of time units.

The charge decay process begins when the trireg’s drivers turn off and the trireg starts
to hold charge. The charge decay process ends under the following two conditions:

1. The specified number of time units elapse and the trireg makes a transition from 1 or
0 to x.

2. The trireg’s drivers turn on and propagate a 1, 0 or x into the trireg.

When charge decay causes a trireg’s value to change to x, Verilog-XL issues a warning
message such as the following:

Warning! Time = simulation_time:
 Charge on node hierarchical_name_of_trireg has

decayed [Verilog-DECAY]
 "source_file_name", line_number: trireg_identifier

You can tell Verilog-XL not to issue this warning with the $disable_warnings system task.

The delay specification for charge decay time

The third delay in a trireg declaration specifies the charge decay time. A three-valued delay
specification in a trireg declaration has the following form:

#(d1, d2, d3)
// three delays —
//(rising_delay,falling_delay,charge_decay_time)

The specification in a trireg declaration of the charge decay time must be preceded by a
rise and fall delay specification. The following example shows a specification of the charge
decay time in a trireg declaration:

trireg (large) #(0,0,50) cap1;

This example declares a trireg with the identifier cap1. This trireg stores a large
charge. The delay specifications for the rise delay is 0, the fall delay is 0, and the charge
decay time specification is 50 time units.

Note: A charge decay time is not a propagation delay like a rising delay or a falling delay. A
charge decay time greater than 0 does not prevent the acceleration of the trireg.

The following figure and source description file contains a trireg declaration with a charge
decay time specification.
November 2008 138 Product Version 8.2

Verilog-XL Reference
Gate and Switch Level Modeling
trireg with a charge decay

module capacitor;
reg data,gate;
trireg (large) #(0,0,50) cap1; // trireg declaration with a

// charge decay time of
// 50 time units

nmos nmos1 (cap1,data,gate); // nmos switch that drives the trireg

initial
begin

$monitor("%0d data = %v gate = %v cap1 = %v",
$time,data,gate,cap1);

data = 1;
gate = 1;

#10 gate = 0; // <-- toggles the driver of the
#30 gate = 1; // <-- control input to the
#10 gate = 0; // <-- nmos switch
#100 $finish;

end
endmodule

The following shows the simulation results of the model in the trireg with a charge decay figure
on page 139.

0 data = St1 gate = St1 cap1 = St1
10 data = St1 gate = St0 cap1 = La1
40 data = St1 gate = St1 cap1 = St1
50 data = St1 gate = St0 cap1 = La1

Warning! Time = 100: Charge on node capacitor.cap1 has
 decayed [Verilog-DECAY]
 "trireg1.v", 4: cap1
100 data = St1 gate = St0 cap1 = LaX

The last line shows that the trireg cap1 changes value to LaX at simulation time 100.

The results show the following sequence of events:

1. At simulation time 0, data drives a strong 1 into trireg cap1.

2. At simulation time 10, gate’s value changes to 0, disconnecting trireg cap1 from data;
trireg cap1 enters the capacitive state, storing its value of 1 with a large strength.

data

gate

nmos1
trireg
November 2008 139 Product Version 8.2

Verilog-XL Reference
Gate and Switch Level Modeling
The charge decay process begins for trireg cap1; its value is scheduled to change to
x at simulation time 60.

3. At simulation time 40, gate’s value changes to 1, connecting trireg cap1 to data;
trireg cap1 enters the driven state, and data drives a strong 1 into trireg cap1.
The charge decay process stops for trireg cap1 because it is no longer in the capacitive
state.

4. At simulation time 50, reg gate’s value changes to 0, disconnecting trireg cap1 from
reg data again; trireg cap1 enters the capacitive state, storing its value of 1 with a
large strength. The charge decay process begins again for trireg cap1; its value is
scheduled to change to x at simulation time 100.

5. At simulation time 100, the charge decay process changes the stored value in trireg
cap1 from 1 to x.

Note: Specifying a charge decay time can affect performance. You may see a performance
degradation caused by specifying trireg charge decay time in a design—such as a
dynamic circuit, whose triregs frequently enter the capacitive state.

Gate and Net Name Removal

Four compiler directives have been provided that control the removal of gate and/or net
names to reduce the virtual memory requirements at the gate and switch level. The names
are removed from the second module and all subsequent module instances so that removing
gate and net names saves the most memory in designs containing gate-level modules that
are instantiated many times.

The compiler directives are the following:

‘remove_gatenames
‘noremove_gatenames
‘remove_netnames
‘noremove_netnames

The first two directives control the removal of gate names, and the latter two control the
removal of net names. For both controls, the default is to NOT remove the names.

These directives can only be specified outside modules. The control applies to all modules
following a directive until the end of the source description (going across source files if
necessary) or until another of these directives is given or until a ‘resetall directive is given.
Any number of these compiler directives can be given in a source description.

The removal of gate names is more useful than the removal of net names because gate
names at the present are used only for the tracing of value changes across the gates.
November 2008 140 Product Version 8.2

Verilog-XL Reference
Gate and Switch Level Modeling
Net names cannot be removed if they have been referenced in a hierarchical name. An
example of a hierarchical referencing is a monitoring task, or nets that need to be referenced
interactively. Another example of hierarchical referencing is named port connections.

As shown in the following partial description, all gate names from modules a and b, and net
names from all the instances of module b are removed.

...
‘remove_gatenames
module a;

...
b b1(), b2(), b3();
...

endmodule

‘remove_netnames

module b;
...
c c1(), c2();
...

endmodule

‘noremove_gatenames
‘noremove_netnames

module c;
...

endmodule

Note that it is not possible to selectively remove the gate and/or net names from particular
instances of a module.
November 2008 141 Product Version 8.2

Verilog-XL Reference
Gate and Switch Level Modeling
November 2008 142 Product Version 8.2

Verilog-XL Reference
7
User-Defined Primitives (UDPs)

This chapter describes the following:

■ Overview on page 143

■ UDP Syntax on page 144

■ UDP Definition on page 145

■ Summary of UDP Symbols on page 148

■ Combinational UDPs on page 148

■ Level-Sensitive Sequential UDPs on page 150

■ Edge-Sensitive UDPs on page 150

■ Sequential UDP Initialization on page 151

■ Mixing Level-Sensitive and Edge-Sensitive Descriptions on page 154

■ Level-Sensitive Dominance on page 155

■ UDP Instances on page 156

■ Compilation on page 157

■ Reducing Pessimism on page 158

■ Processing of Simultaneous Input Changes on page 159

■ Memory Usage and Performance Considerations on page 160

■ UDP Examples on page 161

Overview

This chapter describes how to extend the set of gate-level primitives provided with Verilog-XL
by designing and specifying new primitive elements called user-defined primitives (UDPs).
November 2008 143 Product Version 8.2

Verilog-XL Reference
User-Defined Primitives (UDPs)
You can write both combinational and sequential UDPs in a way that is similar to a truth table
enumeration of a logic function. You can then instantiate UDP definitions in the same way as
gate primitives. This technique can reduce the amount of memory that a description needs
and can improve simulation performance. Evaluation of UDPs is accelerated by the Verilog-
XL algorithm.

UDP Syntax

The formal syntax of the UDP definition is as follows.

Syntax for user-defined primitives
<UDP>

::= primitive <name_of_UDP> (<output_terminal_name>,
<input_terminal_name> <,<input_terminal_name>>*) ;

<UDP_declaration>+
<UDP_initial_statement>?
<table_definition>
endprimitive

<name_of_UDP>
::= <IDENTIFIER>

<UDP_declaration>
::= <UDP_output_declaration>
||= <reg_declaration>
||= <UDP_input_declaration>

<UDP_output_declaration>
::= output <output_terminal _name>;

<reg_declaration>
::= reg <output_terminal_name> ;

<UDP_input_declaration>
::= input <input_terminal_name> <,<input_terminal_name>>* ;

<UDP_initial_statement>
::= initial <output_terminal_name> = <init_val> ;

<init_val>
::= 1’b0
||= 1’b1
||= 1’bx
||= 1
||= 0

<table_definition>
::= table

<table_entries>
endtable

<table_entries>
::= <combinational_entry>+
||= <sequential_entry>+

<combinational_entry>
::= <level_input_list> : <OUTPUT_SYMBOL> ;

<sequential_entry>
::= <input_list> : <state> : <next_state> ;
November 2008 144 Product Version 8.2

Verilog-XL Reference
User-Defined Primitives (UDPs)
<input_list>
::= <level_input_list>
||= <edge_input_list>

<level_input_list>
::= <LEVEL_SYMBOL>+

<edge_input_list>
::= <LEVEL_SYMBOL>* <edge> <LEVEL_SYMBOL>*

<edge>
::= (<LEVEL_SYMBOL> <LEVEL_SYMBOL>)
||= <EDGE_SYMBOL>

<state>
::= <LEVEL_SYMBOL>

<next_state>
::= <OUTPUT_SYMBOL>
||= -

(This is a literal hyphen — see “Memory Usage and Performance Considerations” on
page 160 for more details.)

Lexical tokens:

<OUTPUT_SYMBOL> is one of the following:
0 1 x X

<LEVEL_SYMBOL> is one of the following:
0 1 x X ? b B

<EDGE_SYMBOL> is one of the following:
r R f F p P n N *

UDP Definition

UDP definitions are independent of modules; they are at the same level as module definitions
in the syntax hierarchy. They can appear anywhere in the source text, either before or after
they are used inside a module. They cannot appear between the keywords module and
endmodule. The maximum number of UDP definitions that you can use in a simulation is
240.

A UDP definition begins with the keyword primitive followed by the name of the UDP. After
the UDP name, specify a comma-separated list of terminals enclosed in parentheses. Follow
this header with the terminal declarations and a state table. Terminate the UDP definition with
the keyword endprimitive.

For example:

primitive and_or(out, a1,a2,a3, b1,b2);
output out;
input a1,a2,a3, b1,b2;
table

//state table information goes here
...
November 2008 145 Product Version 8.2

Verilog-XL Reference
User-Defined Primitives (UDPs)
endtable
endprimitive

UDP Terminals

UDPs can have multiple input terminals, but only one output terminal. They cannot have
bidirectional inout terminals. All UDP terminals are scalar. No vector terminals are allowed.

The maximum number of inputs to a combinational UDP is ten. The maximum number of
inputs to a sequential UDP is limited to nine because the internal state counts as an input.

Only logic values of 0, 1, or x are allowed on input and output. The tri-state value z is not
supported.

The output terminal must be the first terminal in the terminal list.

The output terminal of a sequential UDP requires an additional declaration as type reg. It is
illegal to declare a reg for the output terminal of a combinational UDP.

UDP Declarations

UDPs must contain input and output terminal declarations. The output terminal declaration
begins with the keyword output, followed by one output terminal name. The input terminal
declaration begins with the keyword input, followed by one or more input terminal names.

Sequential UDPs must contain a reg declaration for the output terminal. Combinational
UDPs cannot contain a reg declaration. You can specify the initial value of the output terminal
reg in an initial statement in a sequential UDP.

Sequential UDP initial Statement

The sequential UDP initial statement specifies the value of the output terminal when
simulation begins. This statement begins with the keyword initial. The statement that
follows must be an assignment statement that assigns a single bit literal value to the output
terminal reg. See “Sequential UDP Initialization” on page 151 for more information.

UDP State Table

The state table that defines the behavior of a UDP begins with the keyword table and ends
with the keyword endtable.
November 2008 146 Product Version 8.2

Verilog-XL Reference
User-Defined Primitives (UDPs)
Each row of the table is created using a variety of characters that indicate input and output
states. Three states—0, 1, and x—are supported. The z state is not supported. There are a
number of special characters you can use to represent certain combinations of state
possibilities. These are listed in “Summary of UDP Symbols” on page 148.

Combinational UDPs have one field per input and one field for the output. Use a colon to
separate the input fields from the output field. Each row of the table is terminated by a
semicolon. For example, the following state table entry specifies that when the three inputs
are all 0, the output is 0.

table
0 0 0 : 0;
...
endtable

Sequential UDPs have an additional field inserted between the input fields and the output
field. This additional field represents the current state of the UDP and is considered
equivalent to the current output value. It is delimited by colons. For example:

table
0 0 0 : 0 : 0;
...
endtable

The order of the inputs in the state table description must correspond to the order of the inputs
in the port list in the UDP definition header. It is not related to the order of the input
declarations.

Each row in the table defines the output for a particular combination of input states. If all
inputs are specified as x, then the output must be specified as x. All combinations that are
not explicitly specified result in a default output state of x.

Consider the following entry from a UDP state table:

0 1 : ? : 1 ;

In this entry, the ? represents a don’t-care condition. This symbol indicates iterative
substitution of 1, 0, and x. The table entry specifies that when the inputs are 0 and 1, the
output is 1 no matter what the value of the current state is.

You do not have to explicitly specify every possible input combination. All combinations that
are not explicitly specified result in a default output state of x.

It is illegal to have the same combination of inputs, including edges, specified for different
outputs.
November 2008 147 Product Version 8.2

Verilog-XL Reference
User-Defined Primitives (UDPs)
Summary of UDP Symbols

Like the ? symbol described in the preceding section, there are several symbols that you can
use in UDP definitions to make the description more readable. The following table
summarizes the meaning of all the value symbols that are valid in the table part of a UDP
definition.

Combinational UDPs

In combinational UDPs, the output state is determined solely as a function of the current input
states. Whenever an input changes state, the UDP is evaluated and one of the state table
rows is matched. The output state is set to the value indicated by that row.

The following example defines a multiplexer with two data inputs and a control input.
Remember, there can only be a single output.

Table 7-1 UDP Table Symbols

Symbol Interpretation Notes

0 Logic 0

1 Logic 1

x Unknown

? Iteration of 0, 1, and x Cannot be used in output field

b Iteration of 0 and 1 Like ?, except x is excluded
Cannot be used in output field

- No change Can only be used in output field of a
sequential UDP

(vw) Value change from v to w v and w can be any one of: 0, 1, x, ?, or
b

* Same as ?? Any value change on input

r Same as 01 Rising edge on input

f Same as 10 Falling edge on input

p Iteration of (01), (0x), and (x1) Positive edge on input

n Iteration of (10), (1x), and (x0) Negative edge on input
November 2008 148 Product Version 8.2

Verilog-XL Reference
User-Defined Primitives (UDPs)
Combinational user-defined primitive
primitive multiplexer(mux, control, dataA, dataB) ;

output mux ;
input control, dataA, dataB ;

table
// control dataA dataB mux

0 1 0 : 1 ;
0 1 1 : 1 ;
0 1 x : 1 ;
0 0 0 : 0 ;
0 0 1 : 0 ;
0 0 x : 0 ;
1 0 1 : 1 ;
1 1 1 : 1 ;
1 x 1 : 1 ;
1 0 0 : 0 ;
1 1 0 : 0 ;
1 x 0 : 0 ;
x 0 0 : 0 ;
x 1 1 : 1 ;

endtable
endprimitive

The first entry in the previous table specifies the following: when control equals 0 and
dataA equals 1 and dataB equals 0, then output mux equals 1.

All combinations of the inputs that are not explicitly specified drive the output to the unknown
value x. For example, in the table for multiplexer, the input combination
0xx(control=0, dataA=x, dataB=x) is not specified. If this combination occurs during
simulation, the value of output mux will be x.

To improve readability and to make writing the tables easier, several special symbols are
provided. A ? represents iteration of the table entry over the values 0, 1, and x. That is, ?
generates cases of that entry where the ? is replaced by a 0, 1, or x. It represents a don’t-
care condition on that input. Using ?, the description of the multiplexer given in
“Combinational user-defined primitive” on page 149 can be abbreviated as shown in the
following example.

Using the ? symbol in a user-defined primitive
primitive multiplexer(mux,control,dataA,dataB) ;

output mux ;
input control, dataA, dataB ;

table
// control dataA dataB mux

0 1 ? : 1 ; // ? = 0,1,x
0 0 ? : 0 ;
1 ? 1 : 1 ;
1 ? 0 : 0 ;

x 0 0 : 0 ;
x 1 1 : 1 ;
November 2008 149 Product Version 8.2

Verilog-XL Reference
User-Defined Primitives (UDPs)
endtable
endprimitive

Level-Sensitive Sequential UDPs

Level-sensitive sequential behavior is represented the same way as combinational behavior,
except that the output is declared to be of type reg, and there is an additional field in each
table entry. This new field represents the current state of the UDP.

The output field in a sequential UDP represents the next state.

The following is an example of a latch.

UDP for a latch
primitive latch(q, clock, data) ;

output q; reg q;
input clock, data;

table
 // clock data q q+

0 1 : ? : 1 ;
0 0 : ? : 0 ;
1 ? : ? : - ; // - = no change

endtable
endprimitive

This description differs from a combinational UDP in two ways:

■ The output identifier q has an additional reg declaration to indicate that there is an
internal state q. The output value of the UDP is always the same as the internal state.

■ A field for the current state has been added. This field is separated by colons from the
inputs and the output.

Edge-Sensitive UDPs

In level-sensitive behavior, the values of the inputs and the current state are sufficient to
determine the output value. Edge-sensitive behavior differs in that changes in the output are
triggered by specific transitions of the inputs. This makes the state table a transition table as
illustrated in the following example.

UDP for an edge-sensitive D-type flip-flop
primitive d_edge_ff(q, clock, data);
output q; reg q;
input clock, data;
November 2008 150 Product Version 8.2

Verilog-XL Reference
User-Defined Primitives (UDPs)
table
// obtain output on rising edge of clock
// clock data q q+

(01) 0 : ? : 0 ;
(01) 1 : ? : 1 ;
(0?) 1 : 1 : 1 ;
(0?) 0 : 0 : 0 ;

// ignore negative edge of clock
(?0) ? : ? : - ;

// ignore data changes on steady clock
? (??) : ? : - ;
endtable

endprimitive

The previous example has terms like (01) in the input fields. These terms represent
transitions of the input values. Specifically, (01) represents a transition from 0 to 1. The first
line in the table can be interpreted as follows: when clock changes value from 0 to 1 and data
equals 0, the output goes to 0 no matter what the current state is.

Note: Each table entry can have a transition specification on only one input. Entries such as
the one shown below are illegal:

(01)(01)0 : 0 : 1;

As in the combinational and the level-sensitive entries, a ? implies iteration of the entry over
the values 0, 1, and x. A dash (-) in the output column indicates no value change.

All unspecified transitions default to the output value x. Thus, in the previous example,
transition of clock from 0 to x with data equal to 0 and current state equal to 1 result in the
output q going to x.

All transitions that should not affect the output must be explicitly specified. Otherwise, they
will cause the value of the output to change to x. If the UDP is sensitive to edges of any input,
the desired output state must be specified for all edges of all inputs.

Sequential UDP Initialization

To specify the value on the output terminal of a sequential UDP, use an initial statement
that contains a procedural assignment statement. The initial statement is optional.

Like initial statements in modules, initial statements in UDPs begin with the keyword
initial. However, the contents of initial statements in UDPs and the valid left- and
right-hand sides of their procedural assignment statements differ from initial statements
November 2008 151 Product Version 8.2

Verilog-XL Reference
User-Defined Primitives (UDPs)
in modules. The difference between these two types of initial statements is described in
the following table:

The following example shows a sequential UDP that contains an initial statement.

Sequential UDP with initial statement
primitive srff (q,s,r);
output q;
input s,r;
reg q;
initial q = 1’b1; // initial statement specifies that output

// terminal q has a value of 1 at the start
// of the simulation

table
// s r q q+

 1 0 : ? : 1 ;
 f 0 : 1 : - ;
 0 r : ? : 0 ;
 0 f : 0 : - ;
 1 1 : ? : 0 ;
endtable
endprimitive

In the previous example, the output q has an initial value of 1 at the start of the simulation; a
delay specification in the UDP instance does not delay the simulation time of the assignment
of this initial value to the output. When simulation starts, this value is the current state in the
state table.

Note: Verilog-XL does not have an initialization or power-up phase. The initial value on the
output to a sequential UDP does not propagate to the design output before simulation starts.
All nets in the fanout of the output of a sequential UDP begin with a value of x even when that
output has an initial value of 1 or 0.

initial statements in UDPs initial statements in modules

The content is limited to one procedural
assignment statement.

The contents can be one procedural
statement of any type or a block statement
that contains more than one procedural
statement.

The procedural assignment statement must
assign a value to a reg whose identifier
matches the identifier of an output terminal.

Procedural assignment statements can assign
values to a reg whose identifier does not
match the identifier of an output terminal.

The procedural assignment statement must
assign one of the following values:

1’b1, 1’b0, 1’bx, 1, 0

Procedural assignment statements can assign
values of any size, radix, and value.
November 2008 152 Product Version 8.2

Verilog-XL Reference
User-Defined Primitives (UDPs)
The following example and figure show how values are applied in a module that instantiates
a sequential UDP with an initial statement. The following example shows the source
description for the module and UDP.

Figure 7-1 Instance of a sequential UDP with an initial statement
primitive dff1 (q,clk,d);
input clk,d;
output q;
reg q;
initial

q = 1’b1; // initial statement

table
// clk d q q+

p 0 : ? : 0 ;
p 1 : ? : 1 ;
n ? : ? : - ;
? * : ? : - ;
? X : ? : - ;
X ? : ? : - ;

endtable
endprimitive

module dff (q,qb,clk,d);
input clk,d;
output q,qb;

dff1 g1 (qi,clk,d); // UDP instance output is qi
buf #3 g2 (q,qi);
not #5 g3 (qb,qi); // q and qb are in the fanout of qi

endmodule

In this example, UDP dff1 contains an initial statement that sets the initial value of its
output to 1. Module dff contains an instance of UDP dff1. In this instance, the UDP output
is qi; the output’s fanout includes nets q and qb.
November 2008 153 Product Version 8.2

Verilog-XL Reference
User-Defined Primitives (UDPs)
The following figure shows the schematic of the module in Figure 7-1 on page 153 and the
simulation times of the propagation of the initial value of the output of the UDP
.

In this figure, the fanout from the UDP output qi includes nets q and qb. At simulation time
0, qi changes value to 1. That initial value of qi does not propagate to net q until simulation
time 3, and does not propagate to net qb until simulation time 5.

Mixing Level-Sensitive and Edge-Sensitive Descriptions

UDP definitions allow a mixing of level-sensitive and edge-sensitive constructs in the same
description. The following example, which shows an edge-triggered JK flip-flop with
asynchronous preset and clear, illustrates this concept.

Sequential UDP for level-sensitive and edge-sensitive behavior
primitive jk_edge_ff(q, clock, j, k, preset, clear);

output q; reg q;
input clock, j, k, preset, clear;
November 2008 154 Product Version 8.2

Verilog-XL Reference
User-Defined Primitives (UDPs)
table
//clock jk pc state output/next state

? ?? 01 : ? : 1 ; //preset logic
? ?? *1 : 1 : 1 ;
? ?? 10 : ? : 0 ; //clear logic
? ?? 1* : 0 : 0 ;

r 00 00 : 0 : 1 ; //normal clocking cases
r 00 11 : ? : - ;
r 01 11 : ? : 0 ;
r 10 11 : ? : 1 ;
r 11 11 : 0 : 1 ;
r 11 11 : 1 : 0 ;
f ?? ?? : ? : - ;

b *? ?? : ? : - ; //j and k transition cases
b ?* ?? : ? : - ;

endtable

endprimitive

In this example, the preset and clear logic is level-sensitive. Whenever the preset and clear
combination is 01, the output has value 1. Similarly, whenever the preset and clear
combination has value 10, the output has value 0.

The remaining logic is sensitive to edges of the clock. In the normal clocking cases, the flip-
flop is sensitive to the rising clock edge as indicated by an r in the clock field in those entries.
The insensitivity to the falling edge of clock is indicated by a hyphen (-) in the output field (see
Table on page 148) for the entry with an f as the value of clock. Remember, you must
specify the desired output for this input transition to avoid unwanted x values at the output.
The last two entries show that the transitions in j and k inputs do not change the output on a
steady low or high clock.

Level-Sensitive Dominance

In some cases, an edge-sensitive and a level-sensitive table entry may conflict with each
other. In these cases, the general rule is that when the input and current state conditions of
a level-sensitive table entry and an edge-sensitive table entry specify conflicting next states,
the level-sensitive entry dominates the edge-sensitive entry.

The following table shows a level-sensitive table entry and an edge-sensitive entry from the
Sequential UDP for level-sensitive and edge-sensitive behavior figure on page 154. The
column on the right shows a case that is included by the table entry.

Conflicting level-sensitive and edge-sensitive entries

Behavior Table entry Included case

Level-sensitive ? ?? 01 : ? : 1 ; 0 00 01 : 0 : 1 ;
November 2008 155 Product Version 8.2

Verilog-XL Reference
User-Defined Primitives (UDPs)
The included cases specify opposite next state values for the same input and current state
combination. The level-sensitive case specifies that when the inputs clock, jk and pc are
0 00 01, and the current state is 0, the output changes to 1. The edge-sensitive case
specifies that when clock falls from 1 to 0, and the other inputs jk and pc are 00 01, and
the current state is 0, the output changes to 0.

In this example, the level-sensitive entry dominates, and the output changes to 1.

UDP Instances

You specify instances of user-defined primitives inside modules in the same manner as gate
and switch primitives. See “Gate and Switch Declaration Syntax” on page 98 for information
about declaring gates and switches. The instance name is optional except when the instance
is declared as an array. The system can automatically generate names for unnamed
instances of UDPs. See “Automatic Naming” on page 233 for more information on automatic
naming.

The following syntax shows how to create a UDP instance:

Syntax for UDP Instances
<udp_instantiation>

::= udp_identifier [drive_strength] [delay2] udp_instance
{,udp_instance};

<udp_instance>
::= [name_of_udp_instance] (output_port_connection,

 input_port_connection {, input_port_connection})

<name_of_udp_instance>
::= udp_instance_identifier [range]

The port order is as specified in this syntax definition. Only two delays (rising and falling) can
be specified, because z is not supported for UDPs. An optional range may be specified for
an array of UDP instances. The port connection rules are the same as outlined in “Rules for
Using an Array of Instances” on page 102.

The following example creates an instance of the D-type flip-flop d_edge_ff (defined in the
UDP for an edge-sensitive D-type flip-flop figure on page 150).

module flip;
reg clock , data ;

Edge-sensitive f ?? ?? : ? : - ; f 00 01 : 0 : 0 ;

Conflicting level-sensitive and edge-sensitive entries

Behavior Table entry Included case
November 2008 156 Product Version 8.2

Verilog-XL Reference
User-Defined Primitives (UDPs)
parameter p1 = 10 ;
parameter p2 = 33;
d_edge_ff #(5,7) d_inst(q, clock, data);

initial
begin

data = 1; clock = 1;

 #100 $finish;
end
always #p1 clock = ~clock;
always #p2 data = ~data;
endmodule

Compilation

When UDPs are compiled, the table entries are checked for:

■ Consistency — If two entries specify different outputs for the same combination of inputs,
including edges, Verilog-XL issues an error message. Take special care when using the
?, b, *, p, and n symbols.

■ Redundancy — If two or more table entries specify the same output for the same
combination of inputs, including edges, Verilog-XL issues a warning message. The
message indicates the entry that duplicates what is specified in previous lines.

For example, line 2 in the following example will be flagged as redundant because the
CLK input for line 1 (?) includes the CLK input for line 2 (1).

// D CLK RB SB notifier: Qt : Qt+1

(line 1) 1 ? 1 ? ? : ? : 1;

(line 2) 1 1 1 ? ? : ? : 1;

However, the following lines 3 and 4 are not redundant because the ? entry for CLK in
line 4 also represents the 0 and 1 cases where an x entry in line 3 does not.

// D CLK RB SB notifier: Qt : Qt+1

(line 3) 1 x 1 ? ? : ? : 1;

(line 4) 1 ? 1 ? ? : ? : 1;

The following lines 5 and 6 will be flagged as redundant because level-sensitive behavior
takes precedence over edge-sensitive behavior. The (01) entry for CLK in line 5 will never
be selected, and is, therefore, redundant to the ? entry for CLK in line 6.

// D CLK RB SB notifier: Qt : Qt+1

(line 5) 1 (01) 1 ? ? : ? : 1;

(line 6) 1 ? 1 ? ? : ? : 1;
November 2008 157 Product Version 8.2

Verilog-XL Reference
User-Defined Primitives (UDPs)
Reducing Pessimism

Three-valued logic tends to make pessimistic estimates of the output when one or more
inputs are unknown. You can use UDPs to reduce this pessimism. The following is an
extension of the example “UDP for a latch” on page 150 illustrating reduction of pessimism.

Latch UDP illustrating pessimism
primitive latch(q, clock, data);

output q; reg q ;
input clock, data ;
table

// clock data state output/next state
0 1 : ? : 1 ;
0 0 : ? : 0 ;
1 ? : ? : - ; // - = no change

// ignore x on clock when data equals state
x 0 : 0 : - ;
x 1 : 1 : - ;

endtable
endprimitive

The last two entries specify what happens when the clock input has value x. If these are
omitted, the output will go to x whenever the clock is x. This is a pessimistic model, as the
latch should not change its output if it is already 0 and the data input is 0. This is also true
when the data input is 1 and the current output is 1.

Consider the jk flip-flop with preset and clear in the following example. This example has
additional entries for the positive clock (p) edges, the negative clock edges (?0 and 1x),
and with the clock value x. In all of these situations, the output remains unchanged rather than
going to x. Thus, this model is less pessimistic than the previous example.

UDP for a JK flip-flop with preset and clear
primitive jk_edge_ff(q, clock, j, k, preset, clear);

output q; reg q;
input clock, j, k, preset, clear;
table

 // clock jk pc state output/next state

// preset logic
? ?? 01 : ? : 1 ;
? ?? *1 : 1 : 1 ;

// clear logic
? ?? 10 : ? : 0 ;
? ?? 1* : 0 : 0 ;

// normal clocking cases
r 00 00 : 0 : 1 ;
r 00 11 : ? : - ;
r 01 11 : ? : 0 ;
r 10 11 : ? : 1 ;
r 11 11 : 0 : 1 ;
r 11 11 : 1 : 0 ;
f ?? ?? : ? : - ;
November 2008 158 Product Version 8.2

Verilog-XL Reference
User-Defined Primitives (UDPs)
// j and k cases
b *? ?? : ? : - ;

 b ?* ?? : ? : - ;
// cases reducing pessimism

p 00 11 : ? : - ;
p 0? 1? : 0 : - ;
p ?0 ?1 : 1 : - ;
(?0)?? ?? : ? : - ;
(1x)00 11 : ? : - ;
(1x)0? 1? : 0 : - ;
(1x)?0 ?1 : 1 : - ;
x *0 ?1 : 1 : - ;
x 0* 1? : 0 : - ;

endtable
endprimitive

Processing of Simultaneous Input Changes

When multiple UDP inputs change at the same simulation time, the UDP will be evaluated
multiple times, once per input value change. This situation cannot be detected by any form of
table entry. This fact has important implications for modeling sequential circuits where the
order of input changes and subsequent UDP evaluations can have a profound effect on the
results of the simulation.

Consider the D-type flip-flop in the following example.

primitive d_edge_ff(q, clock, data);
output q; reg q;
input clock, data;

table
// obtain output on rising edge of clock
// clock data q q+

(01) 0 : ? : 0 ;
(01) 1 : ? : 1 ;
(0?) 1 : 1 : 1 ;
(0?) 0 : 0 : 0 ;

// ignore negative edge of clock
(?0) ? : ? : - ;

// ignore data changes on steady clock
? (??) : ? : - ;

endtable
endprimitive

If the current state of the flip-flop is 0 and the clock and data inputs make transitions from 0
to 1 at the same simulation time, then the state of the output at the next simulation time is
unpredictable because it cannot predict which of these transitions is processed first.

If the clock input transition is processed first and the data input transition is processed
second, then the next state of the output is 0. However, if the data input transition is processed
first and the clock transition is processed second, then the next state of the output will be 1.
November 2008 159 Product Version 8.2

Verilog-XL Reference
User-Defined Primitives (UDPs)
Take this fact into consideration when constructing models. Keep in mind that gate-level
models have the same sort of unpredictable behavior given particular input transition
sequences; event-driven simulation is subject to idiosyncratic dependence on the order in
which events are processed.

Use timing checks to detect simultaneous input transitions and to provide a warning. See
Chapter 12, “Using Specify Blocks and Path Delays” for more information.

Memory Usage and Performance Considerations

You should be aware of the amount of memory required for the internal tables created for the
evaluation of UDPs during simulation. Although only one such table is required per UDP
definition, and not one for each instance, the UDPs with 8, 9, and 10 inputs do consume a
large amount of memory, especially if you are using the path delay accuracy enhancement
algorithm (see “Enhancing Path Delay Accuracy” on page 279 for details). The trade-off here
is speed versus memory. If you need many instances of a large UDP, it is easily possible to
gain back the memory used by the definition, because each UDP instance can take less
memory than that required for the group of gates it replaces.

The memory required for a UDP definition is shown below. The figures in this table are worst
case, and can vary depending on the actual number of terms specified in the definition. Note
that the number of variables is the number of inputs for combinational UDPs and the number
of inputs plus one for sequential UDPs.

Table 7-2 UPD memory requirements

Number of Variables Memory Required (K bytes) With Path Delay Accuracy

1 - 4 <1 <1

5 <1 3

6 5 10

7 17 36

8 56 138

9 187 538

10 623 2125
November 2008 160 Product Version 8.2

Verilog-XL Reference
User-Defined Primitives (UDPs)
UDP Examples

The following examples show UDP modeling for an and-or gate, a majority function for carry,
and a 2-channel multiplexor with storage.

UDP for an and-or gate
// Description of an AND-OR gate.
// out = (a1 & a2 & a3) | (b1 & b2).
primitive and_or(out, a1,a2,a3, b1,b2);

output out;
input a1,a2,a3, b1,b2;
table
// a b : out ;

111 ?? : 1 ;
??? 11 : 1 ;
0?? 0? : 0 ;
0?? ?0 : 0 ;
?0? 0? : 0 ;
?0? ?0 : 0 ;
??0 0? : 0 ;
??0 ?0 : 0 ;

endtable
endprimitive

UDP for a majority function for carry
// Majority function for carry
// carryout = (a & b) | (a & carryin) | (b & carryin)
primitive carry(carryout, carryin, a, b);

output carryout;
input carryin, a, b;
table

0 00 : 0;
0 01 : 0;
0 10 : 0;
0 11 : 1;
1 00 : 0;
1 01 : 1;
1 10 : 1;
1 11 : 1;
// the following cases reduce pessimism
0 0x : 0;
0 x0 : 0;
x 00 : 0;
1 1x : 1;
1 x1 : 1;
x 11 : 1;

endtable
endprimitive

UDP for a 2-channel multiplexor with storage
// Description of a 2-channel multiplexer with storage.
// The storage is level sensitive.
November 2008 161 Product Version 8.2

Verilog-XL Reference
User-Defined Primitives (UDPs)
primitive mux_with_storage(out,clk,control,dataA,dataB);
output out;
reg out;
input clk, control, dataA, dataB;
table
//clk control dataA dataB : current-state : next state ;

1 0 1 ? : ? : 1 ;
1 0 0 ? : ? : 0 ;
1 1 ? 1 : ? : 1 ;
1 1 ? 0 : ? : 0 ;
1 x 0 0 : ? : 0 ;
1 x 1 1 : ? : 1 ;
0 ? ? ? : ? : - ;
x 0 1 ? : 1 : - ;
x 0 0 ? : 0 : - ;
x 1 ? 1 : 1 : - ;
x 1 ? 0 : 0 : - ;

endtable
endprimitive
November 2008 162 Product Version 8.2

Verilog-XL Reference
8
Behavioral Modeling

This chapter describes the following:

■ Overview on page 163

■ Structured Procedures on page 164

■ Procedural Assignments on page 166

■ Conditional Statements on page 174

■ Multi-Way Decision Statements on page 175

■ Looping Statements on page 179

■ Procedural Timing Controls on page 182

■ Block Statements on page 189

■ Behavior Model Examples on page 194

Overview

The language constructs introduced so far allow hardware to be described at a relatively
detailed level. Modeling a circuit with logic gates and continuous assignments reflects quite
closely the logic structure of the circuit being modeled; however, these constructs do not
provide the power of abstraction necessary for describing the complex high-level aspects of
a system. The procedural constructs described in this chapter are well suited to tackling such
problems as describing a microprocessor and implementing complex timing checks.

Verilog behavioral models contain procedural statements that control the simulation and
manipulate variables of the data types previously described. These statements are contained
within procedures. Each procedure has an activity flow associated with it.

Each activity flow starts at the control constructs initial and always. Each initial
statement and each always statement starts a separate activity flow, and all of the activity
flows are concurrent, allowing you to model the inherent concurrence of the hardware.
November 2008 163 Product Version 8.2

Verilog-XL Reference
Behavioral Modeling
The following example is a complete Verilog behavioral model.

module behave;
reg [1:0]a,b;
initial

begin
a = ’b1;
b = ’b0;

end
always

begin
#50 a = ~a;

end
always

begin
#100 b = ~b;

end
endmodule

During the simulation of this model, all of the flows defined by the initial and always
statements start together at simulation time zero. The initial statements execute once,
and the always statements execute repetitively.

In this model, the register variables a and b initialize to binary 1 and 0 respectively at
simulation time zero. The initial statement is then complete and does not execute again
during this simulation run. This initial statement contains a begin-end block (also called
a sequential block) of statements. In this begin-end block, a is initialized first, followed by b.

The always statements also start at time zero, but the values of the variables do not change
until the times specified by the delay controls (introduced by #) have gone by. Thus, register
a inverts after 50 time units, and register b inverts after 100 time units. Since the always
statements repeat, this model produces two square waves. Register a toggles with a period
of 100 time units, and register b toggles with a period of 200 time units. The two always
statements proceed concurrently throughout the entire simulation run.

Structured Procedures

All procedures in Verilog are specified within one of the following four statements:

■ always statement

■ initial statement

■ task

■ function

Tasks and functions are procedures that are enabled from one or more places in other
procedures. Tasks and functions are covered in detail in Chapter 9, “Tasks and Functions.”
November 2008 164 Product Version 8.2

Verilog-XL Reference
Behavioral Modeling
The initial and always statements are enabled at the beginning of simulation. The
initial statement executes only once and its activity dies when the statement has finished.
The always statement executes repeatedly. Its activity dies only when the simulation is
terminated. There is no limit to the number of initial and always blocks that can be
defined in a module.

always Statement

Each always statement repeats continuously throughout the whole simulation run. The
syntax for the always statement is as follows:

<always_statement>
::= always <statement>

The always statement, because of its looping nature, is only useful when used in conjunction
with some form of timing control. If an always statement provides no means for time to
advance, the always statement creates a simulation deadlock condition. The following code,
for example, creates an infinite zero-delay loop:

always areg = ~areg;

Providing a timing control to this code creates a potentially useful description, as in the
following example:

always #half_period areg = ~areg;

initial Statement

An initial statement is similar to an always statement, except that it is executed only
once. The syntax for an initial statement is as follows:

<initial_statement>
::= initial <statement>

The following example illustrates the use of an initial statement for the initialization of
variables at the start of simulation.

initial
begin

areg = 0; // initialize a register
for (index = 0; index < size; index = index + 1)

memory[index] = 0; //initialize a memory word
end

A typical use of the initial statement is the specification of waveform descriptions that
execute once to provide stimulus to the main part of the circuit being simulated. The following
example illustrates this usage:

initial
begin
November 2008 165 Product Version 8.2

Verilog-XL Reference
Behavioral Modeling
inputs = ’b000000; // initialize at time zero
#10 inputs = ’b011001; // first pattern
#10 inputs = ’b011011; // second pattern
#10 inputs = ’b011000; // third pattern
#10 inputs = ’b001000; // last pattern

end

Procedural Assignments

As described in Chapter 5, “Assignments,”, procedural assignments are for updating reg,
integer, time, and memory variables.

There is a significant difference between procedural assignments and continuous
assignments, as described below:

■ Continuous assignments drive net variables and are evaluated and updated whenever
an input operand changes value.

■ Procedural assignments update the value of register variables under the control of the
procedural flow constructs that surround them.

The Verilog HDL contains two types of procedural assignment statements:

■ blocking procedural assignment statements

■ non-blocking procedural assignment statements

“Blocking Procedural Assignments” on page 167 and “Non-Blocking Procedural
Assignments” on page 167 specify different procedural flow in sequential blocks.

The right-hand side of a procedural assignment can be any expression that evaluates to a
value. However, part-selects on the right-hand side must have constant indexes. The left-
hand side of the procedural assignment indicates the variable that receives the assignment
from the right-hand side.

The left-hand side of a procedural assignment can take one of the following forms:

■ Register, integer, real, or time variable; that is, an assignment to the name reference of
one of these data types.

■ Bit-select of a register, integer, real, or time variable; that is, an assignment to a single
bit that leaves the other bits untouched.

■ Part-select of a register, integer, real, or time variable; that is, a part-select of two or more
contiguous bits that leaves the rest of the bits untouched. For the part-select form, only
constant expressions are legal.
November 2008 166 Product Version 8.2

Verilog-XL Reference
Behavioral Modeling
■ Memory element; that is, a single word of a memory.

Note: Bit-selects and part-selects are illegal on memory element references.

■ concatenation of any of the above:

A concatenation of any of the previous four forms, which effectively partitions the result
of the right-hand side expression and assigns the partition parts to the various parts of
the concatenation.

Note: Assignment to a register or time variable does not sign-extend. Assignment to a
register differs from assignment to a time or integer variable when the right-hand side
evaluates to fewer bits than the left-hand side. Registers are unsigned; if you assign a
register to an integer, the variable does not sign-extend.

Blocking Procedural Assignments

A blocking procedural assignment statement must be executed before executing the
statements that follow it in a sequential block (see “Sequential Blocks” on page 190). A
blocking procedural assignment statement does not have to be executed before statements
that follow in a parallel block (see “Parallel Blocks” on page 191).

The syntax for a blocking procedural assignment is as follows:

<value> = <timing_control> <expression>

Where <value> is a data type that is valid for a procedural assignment statement, = is the
assignment operator, and timing_control is the optional intra-assignment delay. The
timing_control delay can be either a delay control (for example, #6) or an event control
(for example, @(posedge clk)). The expression is the right-hand side value that the
simulator assigns to the left-hand side.

The following example shows blocking procedural assignments:

rega = 0; // a register assignment
rega[3] = 1; // a bit-select assignment
rega[3:5] = 7; // a part-select assignment
mema[address] = 8’hff; // a memory element assignment
{carry, acc} = rega + regb; // a concatenation

Non-Blocking Procedural Assignments

The non-blocking procedural assignment allows you to schedule assignments without
blocking the procedural flow. You can use the non-blocking procedural statement whenever
you want to make several register assignments within the same time step without regard to
order or dependence upon each other.
November 2008 167 Product Version 8.2

Verilog-XL Reference
Behavioral Modeling
The syntax for a non-blocking procedural assignment is as follows:

<value> <= <timing_control> <expression>

Where <value> is a data type that is valid for a procedural assignment statement, <= is the
non-blocking assignment operator, and timing_control is the optional intra-assignment
timing control. The timing_control delay can be either a delay control (for example, #6)
or an event control (for example, @(posedge clk)). The expression is the right-hand side
value that the simulator assigns to the left-hand side.

The non-blocking assignment operator is the same operator that the simulator uses for the
less-than-or-equal relational operator. The simulator interprets the <= operator to be a
relational operator when you use it in an expression, and it interprets the <= operator to be
an assignment operator when you use it in a non-blocking procedural assignment construct.

Evaluating Non-Blocking Procedural Assignments

When the simulator encounters a non-blocking procedural assignment, the simulator
evaluates and executes the non-blocking procedural assignment in two steps as follows:

1. The simulator evaluates the right-hand side and schedules the assignment of the new
value to take place at a time specified by a procedural timing control.

2. At the end of the time step, in which the given delay has expired or the appropriate event
has taken place, the simulator executes the assignment by assigning the value to the
left-hand side.
November 2008 168 Product Version 8.2

Verilog-XL Reference
Behavioral Modeling
These two steps are shown in the following figure.

At the end of the time step in Step 2 means that the non-blocking assignments are the last
assignments executed in a time step—with one exception. Non-blocking assignment events
can create blocking assignment events. The simulator processes these blocking assignment
events after the scheduled non-blocking events.

Unlike a regular event or delay control, the non-blocking assignment does not block the
procedural flow. The non-blocking assignment evaluates and schedules the assignment, but

module evaluates2(out);

output out;
reg a, b, c;

initial
begin
a = 0;
b = 1;
c = 0;
end

always c = #5 ~c;

always @(posedge c)
begin
a <= b;
b <= a;
end

endmodule

The simulator
evaluates the
right-hand side of the
non-blocking
assignments and
schedules the
assignments of the
new values at
posedge c.

Step 1:

a = 0

b = 1

Step 2:

At posedge c, the
simulator updates the
left-hand side of each
non-blocking
assignment statement.

Non-blocking
assignment
scheduled
changes at

time 5

a = 1

b = 0

Assignment
values are:

Evaluates, schedules, and
executes in two steps.
November 2008 169 Product Version 8.2

Verilog-XL Reference
Behavioral Modeling
does not block the execution of subsequent statements in a begin-end block, as shown in the
following example.
.

//Size the windows correctly. In the previous page, the example is not fully visible because
window size is small

//non_block1.v
module non_block1(out);
//input
output out;
reg a, b, c, d, e, f;
//blocking assignments
initial begin

a = #10 1;
b = #2 0;
c = #4 1;
end

//non-blocking assignments
initial begin
d <= #10 1;
e <= #2 0;
f <= #4 1;
end

initial begin
$monitor ($time, ,"a = %b b = %b c = %b
 d = %b e = %b f = %b", a,b, c, d,e, f);
#100 $finish;

end
endmodule // non_block1

The simulator assigns 1 to register a
at simulation time 10, assigns 0 to
register b at simulation time 12,
and assigns 1 to register c
at simulation time 16.

Scheduled
changes at

time 2

e = 0

f = 1

d = 1

non-blocking
assignment lists

Scheduled
changes at

time 4

Scheduled
changes at

time 10

The simulator assigns 1 to register
d at simulation time 10, assigns 0 to
register e at simulation time 2, and
assigns 1 to register f at simulation
time 4.
November 2008 170 Product Version 8.2

Verilog-XL Reference
Behavioral Modeling
Note: As shown in the next example, the simulator evaluates and schedules assignments for
the end of the current time step and can perform swapping operations with non-blocking
procedural assignments.
.

When you schedule multiple non-blocking assignments to occur in the same register in a
particular time slot, the simulator cannot guarantee the order in which it processes the

//non_block1.v
module non_block1(out,);
output out;
reg a, b;
initial begin

a = 0;
b = 1;
a <= b;
b <= a;

end
initial begin

$monitor ($time, ,"a = %b b = %b", a,b);
#100 $finish;

end
endmodule

The simulator
evaluates the
right-hand side of the
non-blocking
assignments and
schedules the
assignments for the
end of the current time
step.

Step 1:

Step 2:
At the end of the
current time step, the
simulator updates the
left-hand side of each
non-blocking
assignment statement.

a = 1

b = 0

Assignment
values are:

Evaluates, schedules, and
executes in two steps.
November 2008 171 Product Version 8.2

Verilog-XL Reference
Behavioral Modeling
assignments—the final value of the register is indeterminate. As shown in the following
example, the value of register a is not known until the end of time step 4
.

If the simulator executes two procedural blocks concurrently, and these procedural blocks
contain non-blocking assignment operators, the final value of the register is indeterminate as
in the following example.
:

When multiple non-blocking assignments with timing controls are made to the same register,
the assignments can be made without cancelling previous non-blocking assignments. In the

module multiple2(out);
output out;
reg a;

initial
a <= #4 0;

initial
a <= #4 1;

endmodule

The register’s assigned value is
indeterminate.

a = 0 a = 1

non-blocking
assignment

current time list

a =???

Assigned
value is:

module multiple3(out);
output out;
reg a;

initial a <= #4 0;
initial a <= #4 1;
endmodule

a = 0 a = 1

non-blocking assignment current
time list

a =???

Assigned value isThe register’s assigned value is
indeterminate.
November 2008 172 Product Version 8.2

Verilog-XL Reference
Behavioral Modeling
following example, the simulator evaluates the value of i[0] to r1 and schedules the
assignments to occur after each time delay.
:

Processing Blocking and Non-Blocking Procedural Assignments

For each time slot during simulation, blocking and non-blocking procedural assignments are
processed in the following way:

1. Evaluate the right-hand side of all assignment statements in the current time slot.

2. Execute all blocking procedural assignments and non-blocking procedural assignments
that have no timing controls. At the same time, set aside for processing non-blocking
procedural assignments with timing controls.

3. Check for procedures that have timing controls and execute a procedure if its timing
control is set for the current time unit.

4. Advance the simulation clock.

r1 = 0

r1 = 0

r1 = 1

r1 = 0

r1 = 1

r1 = 1

module multiple;
reg r1;
reg [2:0] i;

initial
begin

// starts at time 0 doesn’t hold the block
for (i = 0; i <= 5; i = i+1)
r1 <= # (i*10) i[0];

end
endmodule

Scheduled changes at
time 50

Scheduled changes at
time 40

Scheduled changes at
time 30

Scheduled changes at
time 20

Scheduled changes at
time 10

S changes at time 0

r1

10 20 30 40 500

Make the assignments to r1 without cancelling
previous non-blocking assignments.
November 2008 173 Product Version 8.2

Verilog-XL Reference
Behavioral Modeling
Conditional Statements

The conditional statement (or if-else statement) is used to decide whether to execute a
statement. The syntax is as follows:

<statement>
::= if (<expression>) <statement_or_null>
||= if (<expression>) <statement_or_null>

else <statement_or_null>

<statement_or_null>
::= <statement>
||= ;

The <expression> is evaluated; if it is true (that is, it has a non-zero known value), the first
statement executes. If it is false (that is, it has a zero value or the value is x or z), the first
statement does not execute. If there is an else statement and <expression> is false, the
else statement executes.

Since the numeric value of the if expression is tested for being zero, certain shortcuts are
possible. For example, the following two statements express the same logic:

if (expression)

if (expression != 0)

Because the else part of an if-else is optional, there can be confusion when an else is
omitted from a nested if sequence. This is resolved by always associating the else with the
closest previous if that lacks an else. In the following example, the else goes with the
inner if, as we have shown by indentation:

if (index > 0)
if (rega > regb)

result = rega;
else // else applies to preceding if

result = regb;

If that association is not what you want, use a begin-end block statement to force the proper
association, as shown in the following example:

if (index > 0)
begin

if (rega > regb)
result = rega;

end
else

result = regb;

Begin-end blocks left out inadvertently can change the logic behavior being expressed, as
shown in the following example:

if (index > 0)
for (scani = 0; scani < index; scani = scani + 1)

if (memory[scani] > 0)
begin
November 2008 174 Product Version 8.2

Verilog-XL Reference
Behavioral Modeling
$display("...");
memory[scani] = 0;

end
else /* WRONG */

$display("error - index is zero");

The indentation in the previous example shows unequivocally what you want, but the compiler
does not get the message and associates the else with the inner if. This kind of bug can
be very hard to find.

Note: One way to find this kind of bug is to use the $list system task, which indents
according to the logic of the description.

Notice that in the next example, there is a semicolon after result = rega. This is because
a <statement> follows the if, and a semicolon is an essential part of the syntax of a
<statement>.

if (rega > regb)
result = rega;

else
result = regb;

For Verilog-XL to behave predictably in interactive mode, each conditional statement must
conform to one or both of the following rules:

■ The conditional statement must be in a sequential (begin-end) procedural block or a
parallel (fork-join) procedural block.

■ The conditional statement must include an else statement.

Multi-Way Decision Statements

There are two statements that you can use to specify one or more actions to be taken based
on specified conditions: if-else-if and case.

if-else-if Statements

The sequence of if statements, known as an if-else-if construct, is the most general
way to write a multi-way decision. The syntax of an if-else-if construct is shown as
follows:

if (<expression>)
<statement>

else if (<expression>)
<statement>

else if (<expression>)
<statement>

else
<statement>
November 2008 175 Product Version 8.2

Verilog-XL Reference
Behavioral Modeling
The expressions are evaluated in order. If any expression is true, the statement associated
with it is executed, and the whole conditional chain is terminated. Each statement is either a
single statement or a block of statements.

The last else part of the if-else-if construct handles the default case in which none of
the other conditions were satisfied. Sometimes there is no explicit action for the default; in
that case, the trailing else can be either omitted or used for error checking to catch an
impossible condition.

The following example uses the if-else statement to test the variable index to decide
whether one of three modify_segn registers must be added to the memory address, and to
decide which increment is to be added to the index register. The first ten lines declare the
registers and parameters.

// Declare registers and parameters
reg [31:0] instruction, segment_area[255:0];
reg [7:0] index;
reg [5:0] modify_seg1,

modify_seg2,
modify_seg3;

parameter
segment1 = 0, inc_seg1 = 1,
segment2 = 20, inc_seg2 = 2,
segment3 = 64, inc_seg3 = 4,
data = 128;

initial
begin
// Test the index variable
if (index < segment2)

begin
instruction = segment_area [index + modify_seg1];
index = index + inc_seg1;

end
else if (index < segment3)

begin
instruction = segment_area [index + modify_seg2];
index = index + inc_seg2;

end
else if (index < data)

begin
instruction = segment_area [index + modify_seg3];

index = index + inc_seg3;
end

else
instruction = segment_area [index];

end // initial block

case Statements

The case statement is a special multi-way decision statement that tests whether an
expression matches one of several other expressions, and branches accordingly. For
example, the case statement is useful for describing the decoding of a microprocessor
November 2008 176 Product Version 8.2

Verilog-XL Reference
Behavioral Modeling
instruction. The syntax of the case statement is as follows. The default statement is optional.
Using multiple default statements in one case statement is illegal syntax.

<statement>
::= case (<expression>) <case_item>+ endcase
||= casez (<expression>) <case_item>+ endcase
||= casex (<expression>) <case_item>+ endcase

<case_item>
::= <expression> <,<expression>>* : <statement_or_null>
||= default : <statement_or_null>
||= default <statement_or_null>

A simple example of the case statement is the decoding of register rega to produce a value
for result as shown in the following example:

reg [15:0] rega;
reg [9:0] result;

...
case (rega)

16’d0: result = 10’b0111111111;
16’d1: result = 10’b1011111111;
16’d2: result = 10’b1101111111;
16’d3: result = 10’b1110111111;
16’d4: result = 10’b1111011111;
16’d5: result = 10’b1111101111;
16’d6: result = 10’b1111110111;
16’d7: result = 10’b1111111011;
16’d8: result = 10’b1111111101;
16’d9: result = 10’b1111111110;
default result = ’bx;

endcase

The case expressions are evaluated and compared in the exact order in which they are given.
During the linear search, if one of the case item expressions matches the expression in
parentheses, then the statement associated with that case item is executed. If all
comparisons fail, and the default item is given, then the default item statement is executed. If
the default statement is not given, and all of the comparisons fail, then none of the case item
statements is executed.

Apart from syntax, the case statement differs from the multi-way if-else-if construct in
two important ways:

■ The conditional expressions in the if-else-if construct are more general than
comparing one expression with several others, as in the case statement.

■ The case statement provides a definitive result when there are x and z values in an
expression.

In a case comparison, the comparison only succeeds when each bit matches exactly with
respect to the values 0, 1, x, and z. Consequently, care is needed in specifying the
expressions in the case statement. The bit length of all the expressions must be equal so that
exact bit-wise matching can be performed. The length of all the case item expressions, as
November 2008 177 Product Version 8.2

Verilog-XL Reference
Behavioral Modeling
well as the controlling expression in the parentheses, is made equal to the maximum width of
any of the <case_item> expressions and the control expression. The most common
mistake made here is to specify ´bx or ´bz instead of n’bx or n’bz, where n is the bit length
of the expression in parentheses. The default length of x and z is the word size of the host
machine, usually 32 bits.

The reason for providing a case comparison that handles the x and z values is that it
provides a mechanism for detecting those values and reducing the pessimism that can be
generated by their presence. The following example illustrates the use of a case statement
to properly handle x and z values.

case (select[1:2])
2’b00: result = 0;
2’b01: result = flaga;
2’b0x,
2’b0z: result = flaga ? ’bx : 0;
2’b10: result = flagb;
2’bx0,
2’bz0: result = flagb ? ’bx : 0;
default: result = ’bx;

endcase

This example contains a case statement used to trap x and z values. Notice that if
select[1] is 0 and flaga is 0, then no matter what the value of select[2] is, the result
is set to 0. The first, second, and third case items cause this assignment.

The following example shows another way to use a case statement to detect x and z values:

case(sig)
1’bz:

$display("signal is floating");
1’bx:

$display("signal is unknown");
default:

$display("signal is %b", sig);
 endcase

Using case Statements with Inconsequential Conditions

Two other types of case statements are provided to handle inconsequential conditions in
comparisons. One type treats high-impedance values (z) as inconsequential. The other type
treats both high-impedance and unknown (x) values as inconsequential.

You use these types of case statements in the same way as traditional case statement, but
they begin with new keywords—casez and casex.

Inconsequential values (z values for casez, z and x values for casex) in any bit of either the
case expression or the case items are treated as inconsequential conditions during the
comparison; bit position is not considered.
November 2008 178 Product Version 8.2

Verilog-XL Reference
Behavioral Modeling
Note: Allowing inconsequential values in the case items means that you can dynamically
control which bits of the case expression are compared during simulation.

The syntax of literal numbers allows the use of the question mark (?) in place of z in casez
and casex statements. This provides a convenient format for specification of inconsequential
bits in case statements.

The following is an example of the casez statement. It demonstrates an instruction decode,
in which values of the most significant bits select the task to call. If the most significant bit of
ir is a 1, then the task instruction1 is called, regardless of the values of the other bits of
ir.

reg [7:0] ir;
...

casez (ir)
8’b1???????: instruction1(ir);
8’b01??????: instruction2(ir);
8’b00010???: instruction3(ir);
8’b000001??: instruction4(ir);

endcase

The following is an example of the casex statement. It demonstrates an extreme case of the
dynamic control of inconsequential conditions during simulation. In this case, if r =
8´b01100110, then the task stat2 is called.

reg [7:0] r, mask;
...

mask = 8’bx0x0x0x0;
casex (r ^ mask)

8’b001100xx: stat1;
8’b1100xx00: stat2;
8’b00xx0011: stat3;
8’bxx001100: stat4;

endcase

Looping Statements

There are four types of looping statements. They provide a means of controlling the execution
of a statement , either zero, one, or more times.

■ forever continuously executes a statement.

■ repeat executes a statement a fixed number of times.

■ while executes a statement until an expression becomes false. If the expression starts
out false, the statement is not executed at all.

■ for controls execution of its associated statement(s) by a three-step process, as follows:
November 2008 179 Product Version 8.2

Verilog-XL Reference
Behavioral Modeling
a. Executes an assignment, normally used to initialize a variable, that controls the
number of loops executed

b. Evaluates an expression—if the result is zero, the for loop exits. If it is not zero, the
for loop executes its associated statement(s) and then performs step 3

c. Executes an assignment, normally used to modify the value of the loop-control
variable, then repeats step 2

The following are the syntax rules for looping statements:

<statement>
::= forever <statement>
||=forever

begin
<statement>+

end

<statement>
::= repeat (<expression>) <statement>

||=repeat (<expression>)
begin

<statement>+
end

<statement>
::= while (<expression>) <statement>
||=while (<expression>)

begin
<statement>+

end

<statement>
::= for (<assignment> ; <expression> ; <assignment>)

<statement>
||=for (<assignment> ; <expression> ; <assignment>)

begin
<statement>+

end

The rest of this section presents examples for three of the looping statements.

forever Loop

Use the forever loop only conjunction with the timing controls, or the disable statement.
See “Event Control” on page 184 for an example of a forever loop.

repeat Loop

In the following example of a repeat loop, add and shift operators implement a multiplier.

parameter size = 8, longsize = 16;
reg [size:1] opa, opb;
reg [longsize:1] result;
November 2008 180 Product Version 8.2

Verilog-XL Reference
Behavioral Modeling
...
begin :mult

reg [longsize:1] shift_opa, shift_opb;

shift_opa = opa;
shift_opb = opb;
result = 0;

repeat (size)
begin

if (shift_opb[1])
result = result + shift_opa;

shift_opa = shift_opa << 1;
shift_opb = shift_opb >> 1;

end
end

while Loop

An example of the while loop follows. It counts up the number of logic 1 values in rega.

begin :count1s
reg [7:0] tempreg;
count = 0;
tempreg = rega;
while(tempreg)

begin
if (tempreg[0]) count = count + 1;
tempreg = tempreg >> 1;

end
end

for Loop

The for loop construct accomplishes the same results as the following pseudocode that is
based on the while loop:

begin
initial_assignment;
while (condition)
begin

statement
step_assignment;

end
end

The for loop implements the logic in the preceding 8 lines while using only two lines, as
shown in the pseudocode in the following example.

for (initial_assignment; condition; step_assignment)
statement

The following example uses a for loop to initialize a memory:
November 2008 181 Product Version 8.2

Verilog-XL Reference
Behavioral Modeling
begin :init_mem
reg [7:0] tempi;
for (tempi = 0; tempi < memsize; tempi = tempi + 1)

memory[tempi] = 0;
end

The next example shows another for loop statement. It is the same multiplier that was
described in “repeat Loop” on page 180.

parameter size = 8, longsize = 16;
reg [size:1] opa, opb;
reg [longsize:1] result;

...

begin :mult
integer bindex;
result = 0;
for (bindex = 1; bindex <= size; bindex = bindex + 1)

if (opb[bindex])
result = result + (opa << (bindex - 1));

end

Note: You can use the for loop statement more generally than the normal arithmetic
progression of an index variable, as in the following example. This is another way of counting
the number of logic 1 values in rega (see “while Loop” on page 181):

begin :count1s
reg [7:0] tempreg;
count = 0;
for (tempreg = rega; tempreg; tempreg = tempreg >> 1)

if (tempreg[0]) count = count + 1;
end

Procedural Timing Controls

In Verilog, actions are scheduled in the future through the use of delay controls. A general
principle of the Verilog language is that where you do not see a timing control, simulation time
does not advance—if you specify no timing delays, the simulation completes at time zero.

The Verilog language provides two types of explicit timing control over when in simulation time
procedural statements are to occur. The first type of timing controls is a delay control, in which
an expression specifies the time duration between initially encountering the statement and
executing the statement. This delay expression can be a dynamic function of the state of the
circuit, but is usually a simple number that separates statement executions in time. The delay
control is an important feature when specifying stimulus waveform descriptions. It is more
fully described in “Delay Control” on page 183, “Zero-Delay Control” on page 183, and “Intra-
Assignment Timing Controls” on page 186.

The second type of timing control is the event expression, which allows a statement execution
to wait for the occurrence of some simulation event occurring in a procedure executing
concurrently with this procedure. A simulation event can be a change of value on a net or a
November 2008 182 Product Version 8.2

Verilog-XL Reference
Behavioral Modeling
register (an implicit event), or the occurrence of an explicitly named event that is triggered
from other procedures (an explicit event). Most often, an event control is a positive or negative
edge on a clock signal.

To schedule activity for the future, use one of the following methods of timing control:

■ a delay control, which is introduced by the number symbol (#)

■ an event control, which is introduced by the at symbol (@)

■ a wait statement, which operates like a combination of an event control and a while
loop

The next several sections discuss these three methods.

Delay Control

The execution of a procedural statement can be delay-controlled by using the following
syntax:

<statement>
::= <delay_control> <statement_or_null>

<delay_control>
::= # <NUMBER>
||= # <identifier>
||= # (<mintypmax_expression>)

The following example delays the execution of the assignment by 10 time units:

#10 rega = regb;

The next three examples provide an expression following the number sign (#). The execution
of the assignment is delayed by the amount of simulation time specified by the value of the
expression.

#d rega = regb; // d is defined as a parameter
#((d+e)/2) rega = regb; // delay is the average of d and e
#regr regr = regr + 1; // delay is the value in regr

Zero-Delay Control

A special case of the delay control is the zero-delay control, as in the following example:

forever
#0 a = ~a;

This type of delay control has the effect of moving the assignment statement to the end of the
list of statements to be evaluated at the current simulation time unit. Note that if there are
November 2008 183 Product Version 8.2

Verilog-XL Reference
Behavioral Modeling
several such delay controls encountered at the same simulation time, the order of evaluation
of the statements which they control cannot be predicted.

Event Control

The execution of a procedural statement can be synchronized with a value change on a net
or register or with the occurrence of a declared event by using the following event control
syntax:

<statement>
::= <event_control> <statement_or_null>

<event_control>
::= @ <identifier>

||= @ (<event_expression>)

<event_expression>
::= <expression>
||= posedge <SCALAR_EVENT_EXPRESSION>
||= negedge <SCALAR_EVENT_EXPRESSION>
||= <event_expression> <or <event_expression>>*

<SCALAR_EVENT_EXPRESSION>
an expression that resolves to a one bit value.

You can use value changes on nets and registers as events to trigger the execution of a
statement. This is known as detecting an implicit event.

See item 1 in the following example for a syntax example of a wait for an implicit event.
Verilog syntax also allows you to detect change based on the direction of the change—that
is, toward the value 1 (posedge) or toward the value 0 (negedge). The behavior of posedge
and negedge for unknown expression values is as follows:

■ A negedge is detected on the transition from 1 to unknown and from unknown to 0.

■ A posedge is detected on the transition from 0 to unknown and from unknown to 1.

Items 2 and 3 in the following example show illustrations of edge-controlled statements.

@r rega = regb; // Item 1: controlled by any value changes in the register r

@(posedge clock) rega = regb; // Item 2: controlled by positive
// edge on clock

forever @(negedge clock) rega = regb; // Item 3: controlled by negative edge

Named Events

Verilog also provides syntax to name an event and then to trigger the occurrence of that
event. A model can use an event expression to wait for the triggering of this explicit event.
November 2008 184 Product Version 8.2

Verilog-XL Reference
Behavioral Modeling
Named events can be made to occur from a procedure. This allows control over the enabling
of multiple actions in other procedures. Named events and event control provide a powerful
and efficient means of describing the communication between, and the synchronization of,
two or more concurrently active processes. A basic example of this is a small waveform clock
generator that synchronizes the control of a synchronous circuit by signalling the occurrence
of an explicit event periodically while the circuit waits for the event to occur.

An event name must be declared explicitly before it is used. The following is the syntax for
declaring events:

<event_declaration>
::= event <name_of_event> <,<name_of_event>>* ;

<name_of_event>
::= <IDENTIFIER>

the name of an explicit event

Note: An event does not hold any data. Therefore, you cannot use
edge-triggering expressions like posedge or negedge with named events because named
events carry no timing duration information.

The following are the characteristics of a Verilog event:

■ It can be made to occur at any particular time.

■ It has no time duration.

■ Its occurrence can be recognized by using the <event_control> syntax described
in “Event Control” on page 184.

The power of the explicit event is that it can represent any general happening. For example,
it can represent a positive edge of a clock signal, or it can represent a microprocessor
transferring data down a serial communications channel. A declared event is made to occur
by the activation of an event-triggering statement of the following syntax:

-> <name_of_event> ;

An event-controlled statement (for example, @trig rega = regb;) causes the simulation
of its containing procedure to wait until some other procedure executes the appropriate
event-triggering statement (for example, ->trig;).

Event OR Construct

The ORing of any number of events can be expressed such that the occurrence of any one
event will trigger the execution of the statement. The next two examples show the ORing of
two and three events respectively.

@(trig or enable) rega = regb; // controlled by trig or enable
@(posedge clock_a or posedge clock_b or trig) rega = regb;
November 2008 185 Product Version 8.2

Verilog-XL Reference
Behavioral Modeling
Level-Sensitive Event Control

The execution of a statement can be delayed until a condition becomes true. This is
accomplished using the wait statement, which is a special form of event control. The nature
of the wait statement is level-sensitive, as opposed to basic event control (specified by the
@ character), which is edge-sensitive. The wait statement checks a condition. If the condition
is false, the wait statement causes the procedure to pause until the condition becomes true
before continuing.

The wait statement has the following form:

wait(<condition_expression>) <statement>

The following example shows the use of the wait statement to accomplish level-sensitive
event control:

begin
wait(!enable) #10 a = b;
#10 c = d;

end

If the value of enable is one when the block is entered, the wait statement delays the
evaluation of the next statement (#10 a = b;) until the value of enable changes to zero. If
enable is already zero when the begin-end block is entered, then the next statement is
evaluated immediately and no delay occurs.

Intra-Assignment Timing Controls

The delay and event control constructs previously described precede a statement and delay
its execution. The intra-assignment delay and event controls are contained within an
assignment statement and modify the flow of activity in a slightly different way.

Encountering an intra-assignment delay or event control delays the assignment just as a
regular delay or event control does, but the right-hand side expression is evaluated before,
not after the delay. This allows data swap and data shift operations to be described without
the need for temporary variables. This section describes the purpose of intra-assignment
timing controls and the repeat timing control that can be used in intra-assignment delays.
November 2008 186 Product Version 8.2

Verilog-XL Reference
Behavioral Modeling
The following table illustrates the philosophy of intra-assignment timing controls by showing
the code that could accomplish the same timing effects without using intra-assignments.

The next three examples use the fork-join behavioral construct. All statements between
the keywords fork and join execute concurrently. “Parallel Blocks” on page 191 describes
this construct in more detail.

The following example shows a race condition that could be prevented by using intra-
assignment timing control:

fork
#5 a = b;
#5 b = a;

join

The code in the previous example samples the values of both a and b at the same simulation
time, thereby creating a race condition. The intra-assignment form of timing control used in
the following example prevents this race condition:

fork // data swap
a = #5 b;
b = #5 a;

join

Intra-assignment timing control works because the intra-assignment delay causes the values
of a and b to be evaluated before the delay, and the assignments to be made after the delay.
Verilog-XL and other tools that implement intra-assignment timing control use temporary
storage in evaluating each expression on the right-hand side.

Intra-assignment timing control with
intra-assignment construct

Intra-assignment timing control
without intra-assignment construct

a = #5 b; begin
temp = b;
#5 a = temp;

end

a = @(posedge clk) b; begin
temp = b;
@(posedge clk) a =

temp;

a = repeat(3)@(posedge
clk) b;

begin
temp = b;
@(posedge clk;
@(posedge clk;
@(posedge clk) a =

temp;
November 2008 187 Product Version 8.2

Verilog-XL Reference
Behavioral Modeling
Intra-assignment waiting for events is also effective. In the example below, the right-hand-side
expressions are evaluated when the assignment statements are encountered, but the
assignments are delayed until the rising edge of the clock signal.

fork // data shift
a = @(posedge clk) b;
b = @(posedge clk) c;

join

The repeat event control

The repeat event control specifies an intra-assignment delay of a specified number of
occurrences of an event. This construct is convenient when events must be synchronized with
counts of clock signals.

The repeat event control syntax is as follows:

<repeat_event _controlled_assignment>
::=<value> = <repeat_event_control><expression>;
||=<value> <= <repeat_event_control><expression>;

<repeat_event_control>
::=repeat(<expression>)@(<identifier>)
||=repeat(<expression>)@(<event_expression>)

<event_expression>
::=<expression>
||=posedge<SCALAR_EVENT_EXPRESSION>

||=negedge<SCALAR_EVENT_EXPRESSION>
||=<event_expression>or<event_expression>

The event expression must resolve to a one bit value.

The following is an example of a repeat event control as the intra-assignment delay of a non-
blocking assignment:

a<=repeat(5)@(posedge clk)data;
November 2008 188 Product Version 8.2

Verilog-XL Reference
Behavioral Modeling
The following figure illustrates the activities that result from the previous repeat event
control.
:

In this example, the value of data is evaluated when the assignment is encountered. After
five occurrences of posedge clk, a is assigned the previously evaluated value of data.

The following is an example of a repeat event control as the intra-assignment delay of a
procedural assignment:

a = repeat(num)@(clk)data;

In this example, the value of data is evaluated when the assignment is encountered. After
the number of transitions of clk equals the value of num, a is assigned the previously
evaluated value of data.

The following is an example of a repeat event control with expressions containing
operations to specify both the number of event occurrences and the event that is counted:

a <= repeat(a+b)@(posedge phi1 or negedge phi2)data;

In the example above, the value of data is evaluated when the assignment is encountered.
After the positive edges of phi1, the negative edges of phi2, or the combination of these
two events occurs a total of (a+b) times, a is assigned the previously evaluated value of
data.

Block Statements

The block statements are a means of grouping two or more statements together so that they
act syntactically like a single statement. We have already introduced and used the sequential
block statement which is delimited by the keywords begin and end. The following section
discusses sequential blocks in more detail.

clk

data

a

data is evaluated
November 2008 189 Product Version 8.2

Verilog-XL Reference
Behavioral Modeling
A second type of block, delimited by the keywords fork and join, is used for executing
statements in parallel. A fork-join block is known as a parallel block, and enables
procedures to execute concurrently through time. “Parallel Blocks” on page 191 discusses
parallel blocks.

Sequential Blocks

A sequential block has the following characteristics:

■ Statements execute in sequence, one after another.

■ The delays are cumulative; each statement executes after all the delays preceding it
have elapsed.

■ Control passes out of the block after the last statement executes.

The following is the formal syntax for a sequential block:

<seq_block>
::= begin <statement>* end
||= begin : <name_of_block>

<block_declaration>*
<statement>*

end

<name_of_block>
::= <IDENTIFIER>

<block_declaration>
::= <parameter_declaration>
||= <reg_declaration>
||= <integer_declaration>
||= <real_declaration>
||= <time_declaration>
||= <event_declaration>

A sequential block enables the following two assignments to have a deterministic result:

begin
areg = breg;
creg = areg; // creg becomes the value of breg

end

In the previous example, the first assignment is performed and areg is updated before
control passes to the second assignment.

Delay control can be used in a sequential block to separate two assignments in time.

begin
areg = breg;
#10 creg = areg; // this gives a delay of 10 time

end // units between assignments
November 2008 190 Product Version 8.2

Verilog-XL Reference
Behavioral Modeling
The following example shows how the combination of the sequential block and the delay
control can be used to specify a time-sequenced waveform:

Time-Sequenced Waveform
parameter d = 50; // d declared as a parameter
reg [7:0] r; // and r declared as an 8-bit register

begin // a waveform controlled by sequential
// delay

#d r = ’h35;
#d r = ’hE2;
#d r = ’h00;
#d r = ’hF7;
#d -> end_wave;// trigger the event called end_wave

end

The following code shows three more examples of sequential blocks.:

begin
@trig r = 1;
#250 r = 0; // a 250 delay monostable

end

begin
@(posedge clock) q = 0;
@(posedge clock) q = 1;

end

begin // a waveform synchronized by the event c
@c r = ’h35;
@c r = ’hE2;
@c r = ’h00;
@c r = ’hF7;
@c -> end_wave;

end

Parallel Blocks

A parallel block has the following characteristics:

■ Statements execute concurrently.

■ Delay values for each statement are relative to the simulation time when the control
enters the block.

■ Delay control is used to provide time-ordering for assignments.

■ Control passes out of the block when the last time-ordered statement executes or when
a disable statement executes.

The formal syntax for a parallel block is as follows.

<par_block>
::= fork <statement>* join
||= fork : <name_of_block>
November 2008 191 Product Version 8.2

Verilog-XL Reference
Behavioral Modeling
<block_declaration>*
<statement>*

join

<name_of_block>
::= <IDENTIFIER>

<block_declaration>
::= <parameter_declaration>
||= <reg_declaration>
||= <integer_declaration>
||= <real_declaration>
||= <time_declaration>
||= <event_declaration>

The following example codes the waveform description shown in the Time-Sequenced
Waveform figure on page 191 by using a parallel block instead of a sequential block. The
waveform produced on the register is exactly the same for both implementations.

fork
#50 r = ’h35;
#100 r = ’hE2;
#150 r = ’h00;
#200 r = ’hF7;
#250 -> end_wave;

join

Block Names

Blocks can be named by adding <name_of_block> after the keywords begin or fork.
The naming of blocks serves several purposes:

■ It allows local variables to be declared for the block.

■ It allows the block to be referenced in statements like the disable statement (as
discussed in Chapter 10, “Disabling of Named Blocks and Tasks”).

■ In the Verilog language, all variables are static—that is, a unique location exists for all
variables and leaving or entering blocks does not affect the values stored in them. Thus,
block names give a means of uniquely identifying all variables at any simulation time.
This is very important for debugging purposes because it is necessary to be able to
reference a local variable inside a block from outside the body of the block.

Start and Finish Times

Both parallel and sequential blocks have the notion of start and finish times. For sequential
blocks, the start time is when the first statement is executed, and the finish time is when the
last statement is finished. For parallel blocks, the start time is the same for all the statements,
and the finish time is when the last time-ordered statement is finished executing. When blocks
are embedded within each other, the timing of when a block starts and finishes is important.
November 2008 192 Product Version 8.2

Verilog-XL Reference
Behavioral Modeling
Execution does not continue with the statement following a block until the block’s finish time
is reached—that is, until the block is completely finished executing.

Moreover, the timing controls in a fork-join block do not have to be given sequentially in
time. The following example shows that the statements from the example in “Parallel Blocks”
on page 191 written in the reverse order still produce the same waveform.

fork
#250 -> end_wave;
#200 r = ’hF7;
#150 r = ’h00;
#100 r = ’hE2;
#50 r = ’h35;

join

Sequential and parallel blocks can be embedded within each other allowing complex control
structures to be expressed easily with a high degree of structure.

One simple example of this advantage occurs when an assignment is to be made after two
separate events have transpired. This is known as the “joining” of events.

begin
fork

@Aevent;
@Bevent;

join
areg = breg;

end

Note: The two events can occur in any order (or even at the same time). The fork-join
block will complete, and the assignment will be made. In contrast to this, if the fork-join
block was a begin-end block, and the Bevent occurred before the Aevent, then the block
would be deadlocked waiting for the Bevent.

The following example shows two sequential blocks, each of which executes when its
controlling event occurs. Because the wait statements are within a fork-join block, they
execute in parallel and the sequential blocks can therefore also execute in parallel.

fork
@enable_a

begin
#ta wa = 0;
#ta wa = 1;
#ta wa = 0;

end
@enable_b

begin
#tb wb = 1;
#tb wb = 0;
#tb wb = 1;

end
join
November 2008 193 Product Version 8.2

Verilog-XL Reference
Behavioral Modeling
Behavior Model Examples

This section contains two behavioral model examples. These examples are given as
complete descriptions enclosed in modules—such that they can be put directly through the
Verilog-XL compiler and simulated, and the results can be observed.

The following example shows a simple traffic light sequencer described with its own clock
generator:

module traffic_lights;
reg clock, red, amber, green;
parameter

on = 1,
off = 0,
red_tics = 350,
amber_tics = 30,
green_tics = 200;

always // the sequence to control the lights
begin
red = on;
amber = off;
green = off;
repeat (red_tics) @(posedge clock);
red = off;
green = on;
repeat (green_tics) @(posedge clock);
green = off;
amber = on;
repeat (amber_tics) @(posedge clock);

end

always // waveform for the clock
begin

#100 clock = 0;
#100 clock = 1;

end

initial // simulate for 10 changes on the red light
begin

repeat (10) @red;
$finish;

end

always // display the time and changes made to the lights
@(red or amber or green)
$display("%d red=%b amber=%b green=%b",

$time, red, amber, green);
endmodule

The following example shows a use of variable delays. The module has a clock input and
produces two synchronized clock outputs. Each output clock has equal mark and space
times, is out of phase from the other by 45 degrees, and has a period half that of the input
clock.

Note: The clock generation is independent of the simulation time unit, except as it affects the
accuracy of the divide operation on the input clock period.
November 2008 194 Product Version 8.2

Verilog-XL Reference
Behavioral Modeling
module synch_clocks;
reg

clock,
phase1,
phase2;

time clock_time;
initial clock_time = 0;
always @(posedge clock)

begin :phase_gen
time d; // a local declaration is possible

// because the block is named
d = ($time - clock_time) / 8;
clock_time = $time;
phase1 = 0;
#d phase2 = 1;
#d phase1 = 1;
#d phase2 = 0;
#d phase1 = 0;
#d phase2 = 1;
#d phase1 = 1;
#d phase2 = 0;

end
// set up a clock waveform, finish time,
// and display
always

begin
#100 clock = 0;
#100 clock = 1;

end
initial #1000 $finish; //end simulation at time 1000
always

@(phase1 or phase2)
$display($time,,

"clock=%b phase1=%b phase2=%b",
clock, phase1, phase2);

endmodule
November 2008 195 Product Version 8.2

Verilog-XL Reference
Behavioral Modeling
November 2008 196 Product Version 8.2

Verilog-XL Reference
9
Tasks and Functions

This chapter describes the following:

■ Overview on page 197

■ Distinctions Between Tasks and Functions on page 197

■ Tasks and Task Enabling on page 198

■ Functions and Function Calling on page 201

Overview

Tasks and functions provide the ability to execute common procedures at several different
places in a description. They also provide a means of breaking up large procedures into
smaller ones to make the code easier to read and to debug the source descriptions. Input,
output, and inout argument values can be passed into and out of both tasks and functions.

Distinctions Between Tasks and Functions

The following rules distinguish tasks from functions:

■ A function must execute in one simulation time unit; a task can contain time-controlling
statements.

■ A function cannot enable a task; a task can enable other tasks and functions.

■ A function must have at least one input argument; a task can have zero or more
arguments of any type.

■ A function returns a single value; a task does not return a value.

The purpose of a function is to respond to an input value by returning a single value. A task
can support multiple goals and can calculate multiple result values. However, only the
output or inout arguments can pass result values back from the invocation of a task. A
November 2008 197 Product Version 8.2

Verilog-XL Reference
Tasks and Functions
Verilog model uses a function as an operand in an expression; the value of that operand is
the value returned by the function.

For example, you could define either a task or a function to switch bytes in a 16-bit word. The
task would return the switched word in an output argument, so the source code to enable a
task called switch_bytes could look like the following example:

switch_bytes (old_word, new_word);

The task switch_bytes would take the bytes in old_word, reverse their order, and place
the reversed bytes in new_word. A word-switching function would return the switched word
directly. Thus, the function call for the function switch_bytes might look like the following
example:

new_word = switch_bytes (old_word);

Tasks and Task Enabling

A task is enabled by the statement that defines the argument values to be passed to the task,
and by the variables that will receive the results. Control is passed back to the enabling
process after the task is complete. Thus, if a task has timing controls inside it, then the time
of enabling can be different from the time at which control is returned. A task can enable other
tasks, which in turn can enable still other tasks—with no limit on the number of tasks enabled.
Regardless of how many tasks have been enabled, control does not return until all enabled
tasks are complete.

Defining a Task

The following is the syntax for defining tasks:

<task>
::= task <name_of_task> ;

<tf_declaration>*
<statement_or_null>

endtask
<name_of_task>

::= <IDENTIFIER>
<tf_declaration>

::= <parameter_declaration>
||= <input_declaration>
||= <output_declaration>
||= <inout_declaration>
||= <reg_declaration>
||= <time_declaration>
||= <integer_declaration>
||= <real_declaration>
||= <event_declaration>

Task and function declarations specify the following:
November 2008 198 Product Version 8.2

Verilog-XL Reference
Tasks and Functions
local variables
I/O ports
registers
times
integers
real
events

These declarations all have the same syntax as the corresponding declarations in a module
definition. If there is more than one output, input, and inout port declared in a task, these must
be enclosed within a block.

Task Enabling and Argument Passing

The statement that enables a task passes the I/O arguments as a comma-separated list of
expressions enclosed in parentheses. The following is the formal syntax of the task-enabling
statement:

<task_enable>
::= <name_of_task> ;
||= <name_of_task> (<expression> <,<expression>>*) ;

The first form of a task enabling statement applies when there are no I/O arguments declared
in the task body. In the second form, the list of <expression> items is an ordered list that
must match the order of the list of I/O arguments in the task definition.

If an I/O argument is an input, then the corresponding <expression> can be any
expression. If the I/O argument is an output or an inout, then Verilog restricts it to an
expression that is valid on the left-hand side of a procedural assignment. The following items
satisfy this requirement:

■ reg, integer, real, and time variables

■ memory references

■ concatenations of reg, integer, real, and time variables

■ concatenations of memory references

■ bit-selects and part-selects of reg, integer, real, and time variables

The execution of the task-enabling statement passes input values from the variables listed
in the enabling statement to the variables specified within the task. Execution of the return
from the task passes values from the task output and inout variables to the corresponding
variables in the task-enabling statement. Verilog passes all arguments by value—that is,
Verilog passes the value rather than a pointer to the value.
November 2008 199 Product Version 8.2

Verilog-XL Reference
Tasks and Functions
The following example illustrates the basic structure of a task definition with five arguments:

module this_task;
task my_task;

input a, b;
inout c;
output d, e;

reg foo1, foo2, foo3;
begin
<statements> // the set of statements that performs the work of the task

c = foo1; // the assignments that initialize
d = foo2; // the results variables
e = foo3;

end
endtask

endmodule

The following statement enables the task in the previous example:

my_task (v, w, x, y, z);

The calling arguments (v, w, x, y, z) correspond to the I/O arguments
(a, b, c, d, e) defined by the task. At the task-enabling time, the input and inout arguments
(a, b, and c) receive the values passed in v, w, and x. Thus, the execution of the task-enabling
call effectively causes the following assignments:

a = v; b = w; c = x;

As part of the processing of the task, the task definition for my_task must place the
computed results values into c, d, and e. When the task completes, the processing software
performs the following assignments to return the computed values to the calling process:

x = c; y = d; z = e;

Task Example

The following example illustrates the use of tasks by redescribing the traffic light sequencer
that was introduced in Chapter 8, “Behavioral Modeling.”

module traffic_lights;
 reg clock, red, amber, green;
 parameter on = 1, off = 0, red_tics = 350,
 amber_tics = 30, green_tics = 200;

// initialize colors
 initial
 red = off;
 initial
 amber = off;
 initial
 green = off;

// sequence to control the lights
 always begin
 red = on; // turn red light on
 light(red, red_tics); // and wait.
 green = on; // turn green light on
November 2008 200 Product Version 8.2

Verilog-XL Reference
Tasks and Functions
 light(green, green_tics); // and wait.
 amber = on; // turn amber light on
 light(amber, amber_tics); // and wait.
 end

// task to wait for ’tics’ positive edge clocks
// before turning ’color’ light off
 task light;
 output color;
 input [31:0] tics;
 begin
 repeat (tics)
 @(posedge clock);
 color = off; // turn light off
 end
 endtask

 // waveform for the clock
 always begin
 #100 clock = 0;
 #100 clock = 1;
 end
endmodule // traffic_lights

Effect of Enabling an Already Active Task

Because Verilog supports concurrent procedures, and tasks can have non-zero time
duration, you can write a model that invokes a task when that task is already executing (a
special case of invoking a task that is already active is when a task recursively calls itself).
Verilog-XL allows multiple copies of a task to execute concurrently, but it does not copy or
otherwise preserve the task arguments or local variables. Verilog-XL uses the same storage
for each invocation of the task. This means that when the simulator interrupts a task to
process another instance of the same task, it overwrites the argument values from the first
call with the values from the second call. The user must manage what happens to the
variables of a task that is invoked while it is already active.

Functions and Function Calling

The purpose of a function is to return a value that is to be used in an expression. The rest of
this chapter explains how to define and use functions.

Defining a Function

To define functions, use the following syntax:

<function>
::= function <range_or_type>? <name_of_function> ;

<tf_declaration>+
<statement_or_null>

endfunction
November 2008 201 Product Version 8.2

Verilog-XL Reference
Tasks and Functions
<range_or_type>
::= <range>
||= integer
||= real

<name_of_function>
::= <IDENTIFIER>

<tf_declaration>
::= <parameter_declaration>
||= <input_declaration>
||= <reg_declaration>
||= <time_declaration>
||= <integer_declaration>
||= <real_declaration>
||= <event_declaration>

A function returns a value by assigning the value to the function’s name. The
<range_or_type> item, which specifies the data type of the function’s return, is
optional.

The following example defines a function called getbyte, using a <range>
specification.

module fact;
function [7:0] getbyte;

input [15:0] address;
reg [3:0] result_expression;

begin
//<statements> code to extract low-order
// byte from addressed word
getbyte = result_expression;

end
endfunction

endmodule

Returning a Value from a Function

The function definition implicitly declares a register, internal to the function, with the same
name as the function. This register either defaults to one bit or is the type that
<range_or_type> specifies. The <range_or_type> can specify that the function’s
return value is a real, an integer, or a value with a range of [n:m] bits. The function
assigns its return value to the internal variable bearing the function’s name. The following line
from the previous example illustrates this concept:

getbyte = result_expression;

Calling a Function

A function call is an operand within an expression. The operand has the following syntax:

<function_call>
::= <name_of_function> (<expression> <,<expression>>*)

<name_of_function>
::= <identifier>
November 2008 202 Product Version 8.2

Verilog-XL Reference
Tasks and Functions
The following example creates a word by concatenating the results of two calls to the function
getbyte (defined in the example in “Defining a Function” on page 201).

word = control ? {getbyte(msbyte), getbyte(lsbyte)} : 0;

Function Rules

Functions are more limited than tasks. The following five rules govern their usage:

■ A function definition cannot contain any time controlled statements—that is, any
statements introduced with #, @, or wait.

■ Functions cannot enable tasks.

■ A function definition must contain at least one input argument.

■ A function definition must include an assignment of the function result value to the
internal variable that has the same name as the function.

■ A function definition can not contain an inout declaration or an output declaration.

Function Example

The following example defines a function called factorial that returns a 32-bit register. A
loop repeatedly executes the factorial function and prints the results until n=10.

module tryfact;
// define function
function [31:0] factorial;

input [3:0] operand;
reg [3:0] index;

begin
factorial = operand ? 1 : 0;

for(index = 2; index <= operand; index = index + 1)
factorial = index * factorial;

end
endfunction

// Test the function
reg [31:0] result;
reg [3:0] n;

initial
begin

result = 1;

for(n = 2; n <= 9; n = n+1)
begin

$display("Partial result n=%d result=%d",
n, result);

result = n * factorial(n) / ((n * 2) + 1);
end
November 2008 203 Product Version 8.2

Verilog-XL Reference
Tasks and Functions
$display("Final result=%d", result);
end

endmodule // tryfact
November 2008 204 Product Version 8.2

Verilog-XL Reference
10
Disabling of Named Blocks and Tasks

This chapter describes the following:

■ Overview on page 205

■ Syntax on page 205

■ disable Statement Examples on page 206

Overview

The disable statement allows you to perform the following:

■ Terminate the activity associated with concurrently active procedures while maintaining
the structured nature of Verilog HDL procedural descriptions.

■ Disable activity in the particular block or task containing the disable statement.

■ Handle exception conditions such as hardware interrupts and global resets.

The disable statement can also:

■ Return from a task before executing all the statements in the task.

■ Break from a looping statement.

■ Skip statements to continue with another iteration of a looping statement.

Syntax

The disable statement has one of the following two syntax forms:

<disable_statement>
::= disable <name_of_task> ;
||= disable <name_of_block> ;
November 2008 205 Product Version 8.2

Verilog-XL Reference
Disabling of Named Blocks and Tasks
The disable statement removes the evaluated and scheduled nonblocking procedural
assignments from the schedule of events. Execution resumes at the statement following
either the named block or the task enabling statement.

Termination of activity also applies to all activity enabled within the named block or task. If
task enable statements are nested—that is, if one task enables another, and that one
enables yet another—then disabling a task within the chain disables all tasks downward on
the chain. The following is a simple example showing a disable statement that disables the
block that contains the statement.

module disable_block;
reg rega, regb, regc;
initial
begin :block_name

rega = regb;
disable block_name;
regc = rega; // this assignment will never execute

end
endmodule

disable Statement Examples

The following example shows the disable statement being used within a named block in a
manner similar to a forward goto. If a equals 0, the disable statement is executed, and the
next statement that is executed is the one following the named block.

module disable_block;
reg a;
initial
begin : block_name

...
if(a == 0) disable block_name;
...

end // end of named block
// continue with code following named block

...
endmodule

The following example shows the disable statement being used as an early return from a
task:

module task;
reg a;
task proc_a;

begin
...

if(a == 0) disable proc_a; // return if true
...
end

endtask
endmodule
November 2008 206 Product Version 8.2

Verilog-XL Reference
Disabling of Named Blocks and Tasks
The following example shows the disable statement being used in a way that is analogous
to the continue and break statements in the C language.

module disable2;
integer i;
reg a, b, n, clk;
initial
begin :break

for(i = 0; i < n; i = i+1)
begin :continue

@clk
if(a == 0) // "continue" loop

disable continue;
 ...<statements>...
@clk

if(a == b) // "break" from loop
disable break;

...<statements>...
 end
end
initial #10 clk = ~ clk;
endmodule

The previous example illustrates control code that allows a named block to execute until a
loop counter reaches n iterations, or until the variable a gets set to a value of b. The named
block break contains the code that executes until a == b, at which point the disable
break statement terminates the execution of that block. The named block continue
contains the code that executes for each iteration of the for loop. Each time this code
executes the disable continue statement, the continue block terminates and execution
passes to the next iteration of the for loop. For each iteration of the continue block, a set
of <statements> executes if (a != 0). Another set of <statements> executes if(a!=b).

The following example shows the disable statement being used to concurrently disable a
sequence of timing controls and the task action, when the reset event occurs:

fork
begin :event_expr

@ev1;
repeat (3) @trig;
#d action(areg, breg);

end
@reset disable event_expr;

join

This example shows a fork/join block within which is a named sequential block
(event_expr) and a disable statement that waits for the occurrence of the event reset.
The sequential block and the wait for reset execute in parallel. The event_expr block waits
for one occurrence of the event ev1 and three occurrences of the event trig. When these
four events have happened, plus a delay of d time units, the task action executes. When
the event reset occurs, regardless of events within the sequential block, the fork/join
block terminates—including the task action.
November 2008 207 Product Version 8.2

Verilog-XL Reference
Disabling of Named Blocks and Tasks
The following example is a behavioral description of a monostable that can be triggered
again. The named event retrig restarts the monostable time period. If retrig continues
to occur within 250 time units, then q will remain at 1.

always
begin :monostable

#250 q = 0;
end

always @retrig
begin

disable monostable;
q = 1;

end
November 2008 208 Product Version 8.2

Verilog-XL Reference
11
Hierarchical Structures

This chapter describes the following:

■ Overview on page 209

■ Modules on page 210

■ Overriding Module Parameter Values on page 213

■ Macro Modules on page 216

■ Ports on page 219

■ Hierarchical Names on page 228

■ Automatic Naming on page 233

■ Scope Rules on page 234

Overview

The Verilog HDL supports a hierarchical hardware description structure by allowing modules
to be embedded within other modules. Higher-level modules create instances of lower-level
modules and communicate with them through input, output, and bidirectional ports. These
module input/output ports can be scalar or vector.

As an example of a module hierarchy, consider a system consisting of printed circuit boards.
The system would be represented as the top-level module and would create instances of
modules that represent the boards. The board modules would, in turn, create instances of
modules that represent ICs, and the ICs could, in turn, create instances of modules that
represent predefined cells such as flip-flops, mux’s, and alu’s.

To describe a hierarchy of modules, the user provides textual definitions of the various
modules. Each module definition stands alone; the definitions are not nested. Statements
within the module definitions create instances of other modules, thus describing the hierarchy.
November 2008 209 Product Version 8.2

Verilog-XL Reference
Hierarchical Structures
Modules

This section gives the formal syntax for a module definition and then gives the syntax for
module instantiation, along with an example of a module definition and a module instantiation.

A module definition is enclosed between the keywords module and endmodule, where the
<IDENTIFIER> after module gives the name of the module. The optional
<list_of_ports> specifies an ordered list of the module’s I/O ports. The order used can
be significant when instantiating the module (see “Connecting Module Ports by Ordered List”
on page 220). The identifiers in this list must be declared in input, output, and inout
statements within the module definition. The <module_items> define what constitutes a
module, and include many different types of declarations and definitions; many of them have
already been introduced.

<module>
::= module <name_of_module><list_of_ports>? ;

<module_item>*
endmodule

<name_of_module>
::= <IDENTIFIER>

<list_of_ports>
::= (<port> <,<port>>*)

<module_item>
::= <parameter_declaration>
||= <input_declaration>
||= <output_declaration>
||= <inout_declaration>
||= <net_declaration>
||= <reg_declaration>
||= <time_declaration>
||= <integer_declaration>
||= <real_declaration>
||= <event_declaration>
||= <gate_instantiation>
||= <primitive_instantiation>
||= <module_instantiation>
||= <parameter_override>
||= <continuous_assign>
||= <specify_block>
||= <initial_statement>
||= <always_statement>
||= <task>
||= <function>

See “Ports” on page 219 for the definitions of the syntax item <port>. See “Module
Definition and Instance Example” on page 211 for module definition and instantiation
examples.
November 2008 210 Product Version 8.2

Verilog-XL Reference
Hierarchical Structures
Top-Level Modules

Top-level modules are modules that are included in the source text supplied as input to a
particular simulation run, but are not instantiated, as described in the following section.

Module Instantiation

Instantiation allows one module to incorporate a copy of another module into itself. Module
definitions do not nest. That is, one module definition cannot contain the text of another
module definition within its module/endmodule keyword pair. A module definition nests
another module by instantiating it. The <module_instantiation> statement creates
one or more named instances of a defined module. For example, a counter module might
instantiate a D flip-flop module to create eight instances of the flip-flop.

The following is the syntax for specifying instantiations of modules:

<module_instantiation>
::= <name_of_module> <parameter_value_assignment>?

<module_instance> <,<module_instance>>* ;

<name_of_module>
::= <IDENTIFIER>

<parameter_value_assignment>
::= # (<expression> <,<expression>>*)

<module_instance>
::= <name_of_instance> (<list_of_module_connections>?)

<name_of_instance>
::= <IDENTIFIER>

<list_of_module_connections>
::= <module_port_connection> <,<module_port_connection>>*
||= <named_port_connection> <,<named_port_connection>>*

<module_port_connection>
::= <expression>
||= <NULL>

<named_port_connection>
::= .<IDENTIFIER> (<expression>?)

The definition for <named_port_connection> includes an <IDENTIFIER> token that
can be satisfied only with a port name from the definition of the module being instantiated.
See “Connecting Module Ports by Name” on page 221 for more details.

Module Definition and Instance Example

The code in the following example illustrates a circuit (the lower-level module) being driven by
a simple waveform description (the higher-level module) where the circuit module is
instantiated inside the waveform module.
November 2008 211 Product Version 8.2

Verilog-XL Reference
Hierarchical Structures
// THE LOWER-LEVEL MODULE:
//module description of a nand flip-flop circuit
module ffnand (q, qbar, preset, clear);

output q, qbar; //declares 2 circuit output nets
input preset, clear; //declares 2 circuit input nets

nand
//declaration of two nand gates and
//their interconnections
g1 (q, qbar, preset),
g2 (qbar, q, clear);

endmodule

// THE HIGHER-LEVEL MODULE:
//a waveform description for the nand flip-flop
module ffnand_wave;

wire out1, out2; //outputs from the circuit
reg in1, in2; //variables to drive the circuit

//instantiate the circuit ffnand, name it “ff”,
//and specify the IO port interconnections
ffnand ff(out1, out2, in1, in2);

//define the waveform to stimulate the circuit
parameter d = 10;
initial

begin
#d in1 = 0; in2 = 1;
#d in1 = 1;
#d in2 = 0;
#d in2 = 1;

end
endmodule

You can specify one or more module instances (identical copies of a module) in a single
module instantiation statement.

The list of module terminals is provided only for modules defined with terminals. The
parentheses, however, are always required. When a list of module terminals is given, the first
element in the list connects to the first port, the second to the second port, and so on. See
“Ports” on page 219 for a more detailed discussion of ports and port connection lists.

A terminal can be a simple reference to a variable, an expression, or a blank. You can use an
expression for supplying a value to a module input port.

A blank module terminal represents a situation in which the I/O port is not to be connected.
For example, the following instantiation of the three-port module definition qq has an
unconnected port:

qq qq_num1 (a,,c);

The following is another instantiation of qq with connections by name that has an
unconnected port indicated by empty parentheses:

qq qq_num2 (.a(x),.b(),.c(y));
November 2008 212 Product Version 8.2

Verilog-XL Reference
Hierarchical Structures
As shown in “Module Instantiation” on page 211, a module instantiation can have either
order-based module connections or module connections based on names in its module
definition. The two types of module port connections cannot be mixed. If an instantiation with
either type of module connection has fewer items in its list of module connections than there
are items in the list of ports in its module definition, the compiler generates a warning.
Depending on whether order-based or name-based connections generate the warning, the
warning’s error code varies in the letter that follows TF.

The following warning applies to order-based lists:

Warning! Too few module port connections [Verilog-TFMPC]
“a.v”, 8:t1(In)

The following warning applies to name-based lists:

Warning! Too few module port connections [Verilog-TFNPC]
“a.v”, 7:t1(.in(In))

The code in the following example creates two instances (ff1 and ff2) of the flip-flop module
ffnand, which is defined in the example at the beginning of this section, and connects only
to the q output in one instance (out1) and only to the qbar output in the other instance
(out2).

//a waveform description for testing the nand flip-flop
//without the outputs

module ffnand_wave;

reg in1, in2; //variables to drive the circuit

//make two copies of the circuit ffnand
//and connect to one output for each

ffnand

ff1(out1, , in1, in2),
ff2(, out2, in1, in2);

//define the waveform to stimulate the circuit

parameter d = 10;

initial
begin

#d in1 = 0; in2 = 1;
#d in1 = 1;
#d in2 = 0;
#d in2 = 1;

end
endmodule

Overriding Module Parameter Values

When one module instantiates another module, it can alter the values of any parameters
declared within the instantiated module. There are two ways to alter parameter values: the
defparam statement, which allows assignment to parameters using their hierarchical
November 2008 213 Product Version 8.2

Verilog-XL Reference
Hierarchical Structures
names, and the module instance parameter value assignment, which allows values to be
assigned in-line during module instantiation. The next two sections describe these two
methods.

Using the defparam Statement

Using the defparam statement, you can change parameter values in any module instance
throughout the design using the hierarchical name of the parameter. The defparam
statement is particularly useful for grouping all of the parameter value override assignments
together in one module.

The code in the following example illustrates the use of a defparam:

module top;
parameter tenten=10;

reg clk;
reg [0:4] in1;
reg [0:9] in2;
wire [0:4] o1;
wire [0:9] o2;
vdff m1 (o1, in1, clk);
vdff m2 (o2, in2, clk);

endmodule

module vdff (out, in, clk);
parameter size = 1, delay = 1;
input [0:size-1] in;
input clk;
output [0:size-1] out;
reg [0:size-1] out;

always @(posedge clk)
delay out = in;

endmodule

module annotate;
parameter ten = 10; // <--- referenced parameter must

defparam // be declared in the same module
top.m1.size = 5, // as the defparam statement
top.m1.delay = ten,
top.m2.size = 10,
top.m2.delay = 20;

endmodule

The expressions on the right-hand side of the defparam assignments must be constant,
involving only numbers and references to parameters. The referenced parameters (on the
right-hand side of the defparam) must be declared in the same module as the defparam
statement.
November 2008 214 Product Version 8.2

Verilog-XL Reference
Hierarchical Structures
Using Module Instance Parameter Value Assignment

An alternative method for assigning values to parameters within module instances is similar
in appearance to the assignment of delay values to gate instances. It uses the syntax #
(<expression> <,<expression>>*) to supply values for particular instances of a
module to any parameters that have been specified in the definition of that module.

Consider the following example, in which the parameters within module instance mod_a are
changed during instantiation. The name of the module being instantiated is vdff. The
construct #(10,15) assigns values to parameters used in the mod_a instance of vdff.

module m;
reg clk;
wire[1:10] out_a, in_a;
wire[1:5] out_b, in_b;
// create an instance and set parameters
vdff #(10,15)

mod_a(out_a, in_a, clk);
// create an instance leaving default values
vdff

mod_b(out_b, in_b, clk);
endmodule

module vdff (out, in, clk);
parameter size = 1, delay = 1;
input [0:size-1] in;
input clk;
output [0:size-1] out;
reg [0:size-1] out;

always @(posedge clk)
delay out = in;

endmodule

The order of the assignments in a module instance parameter value assignment follows the
declaration order of the parameters within the module. In the example above, size is
assigned the value 10 and delay is assigned the value 15 for the instance of module vdff
called mod_a. Notice that the default size defined in vdff for in and out is one bit and,
therefore, the compilation of module m with module vdff results in the following Verilog-XL
warning message: Port sizes differ in port connection.

It is not necessary to assign values to all of the parameters within a module when using this
method. However, it is not possible to skip over a parameter. This means that if you want to
assign values to a subset of the parameters declared within a module, then you must declare
the parameters that make up this subset prior to declaring the parameters to which you do
not want to assign values. An alternative is to assign values to all of the parameters, but use
the default value (the same value assigned in the declaration of the parameter within the
module definition) for those parameters that you do not want to affect.

The assignment of parameter values using a module instance parameter value assignment
uses less memory during simulation than the equivalent assignment using the defparam
statement. The use of this method therefore improves compilation times.
November 2008 215 Product Version 8.2

Verilog-XL Reference
Hierarchical Structures
Parameter Dependence

You can define a parameter (for example, memory_size) with an expression containing
another parameter (for example, word_size). Since memory_size depends on the value
of word_size, a modification of word_size changes the value of memory_size.

For example, in the following parameter declaration, an update of word_size, whether by
defparam or in an instantiation statement for the module that defined these parameters,
automatically updates memory_size.

parameter
 word_size = 32,
 memory_size = word_size * 4096;

Macro Modules

The Verilog language includes a construct called a macro module. A macro module serves
the same functions as a standard module, but because it conforms to certain limitations, it
can simulate much faster in Verilog-XL.

The way that module instances are created in the Verilog-XL internal data structure carries a
fairly high overhead in memory usage during compilation. This can have a severe impact on
the runtime for designs that contain many instances of simple modules, such as a gate array
or a standard cell design. Macro modules help to reduce this overhead.

When the simulator compiles an instance of a macro module, it merges the macro module
definition with the definition of the module that contains the macro instance. It creates no
name scope and makes no port connections. Instead, it places the macro definition at the
same hierarchical level as the containing module. This process is called macro module
expansion. A compiled macro module instance is said to be expanded.

Constructs Allowed in Macro Modules

The contents of macro modules are limited to the following constructs:

■ gate and switch instances

■ user-defined primitive instances

■ nets

■ parameter declarations (used for specifying delays)

The following restrictions apply to the constructs used in macro modules:
November 2008 216 Product Version 8.2

Verilog-XL Reference
Hierarchical Structures
■ The terminal lists in gate instances and the port lists in UDP instances cannot contain
expressions with variable operands (such as those used in dynamic bit selects).

■ Procedural statements and register declarations are illegal in macro modules. If these
are present, then the module is not expanded; it is treated as a normal module.

■ The only valid use for parameters in macro modules is to specify delays.

Specifying Macro Modules

You can specify macro modules by using the keyword macromodule in place of the keyword
module in the module definition. The following example defines a macro module called
NAND2.

macromodule NAND2(q, a, b);
output q;
input a, b;

nand (q,a,b);
endmodule

Instances of Macro Modules

Instances of macro modules are specified in exactly the same way as instances of normal
modules.

If there are part-selects or concatenations in the port connections, then the macro module
instance simulates as a normal module, and no memory savings occur.

If macro module instances are expanded, they will not be tagged as cells even if they appear
between the ‘celldefine and ‘endcelldefine compiler directives. PLI access routines
that recognize cells, such as acc_next_cell, do not select expanded macro modules.

Using Parameters with Macro Modules

Observe the following restrictions when using parameters with macro modules:

■ The value expression given in the parameter definition must be a constant expression
that does not depend on other parameters. If the definition contains references to other
parameters, the macro module is not expanded.

■ The defparam statement cannot be used to redefine parameter values within macro
module instances. Therefore, module instance parameter value assignment is the only
method available for changing the value of parameters within macro module instances.
November 2008 217 Product Version 8.2

Verilog-XL Reference
Hierarchical Structures
If you redefine parameter values within macro module instances using the defparam
statement you will get an error message indicating that the defparam statement is illegal.

Effect on Decompilation and Tracing

When you decompile a macro module instance using $list or the -d command option, or
when you trace the statements within a macro module using the single step or $settrace
commands, the statements appear as part of the module containing the macro module
instance.

The code in the following example uses $list to illustrate this point:

module topmod;
wire [4:0] v;
wire a,b,c,w;

modB b1 (v[0], v[3], w, v[4]);
initial $list;

endmodule

macromodule modB(wa, wb, c, d);
inout wa, wb;
input c, d;

parameter d1=6, d2=5;
parameter d3=2, d4=6;

tranif1 g1(wa, wb, cinvert);
not #(d3, d4) (cinvert, int);
and #(d1, d2) g2(int, c, d);

endmodule

Running Verilog on the above description yields the results shown in the following example.
Note that the module boundary for modB has disappeared, and that the gates inside modB
are now inside topmod.

Compiling source file “test.v”
Highest level modules:
topmod

1 module topmod;
2 wire [4:0]
2 v; // = 5’hz, z (scalared)
3 wire
3 a, // = HiZ
3 b, // = HiZ
3 c, // = HiZ
3 w; // = HiZ

 17 tranif1
 17 \b1^g1 (v[0], v[3], \b1^cinvert);
 18 not #(2, 6)
 18 (\b1^cinvert , \b1^int);
 19 and #(6, 5)
 19 \b1^g2 (\b1^int , w, v[4]);
6 initial
6* $list;
8 endmodule
November 2008 218 Product Version 8.2

Verilog-XL Reference
Hierarchical Structures
3 simulation events
CPU time: 0 secs to compile + 0 secs to link + 0 secs in simulation

In the above screen display, notice the text \b1^ is prefixed to all identifiers in the macro
module. See “Macro Modules and Hierarchical Names” on page 231 for an explanation of this
convention.

Ports

Ports provide a means of interconnecting a hardware description consisting of modules,
primitives, and macro modules. For example, module A can instantiate module B, using port
connections appropriate to module A. These port names can differ from the names of the
internal nets and registers specified in the definition of module B, but the connection is still
made.

Port Definition

The syntax for a port is given below (this is the completion of the syntax presented in
“Modules” on page 210):

<port>
::=<port_expression>?
||=.<name_of_port>(<port_expression>?)

<port_expression>
::=<port_reference>
||={ <port_reference> <,<port_reference>>* }

<port_reference>
::= <name_of_variable>
||= <name_of_variable> [<constant_expression>]
||= <name_of_variable>

[<constant_expression> : <constant_expression>]

<name_of_port>
::= <IDENTIFIER>

The <port_expression> syntax item in the <port> definition can be one of the
following:

■ a simple identifier

■ a bit-select of a vector declared within the module

■ a part-select of a vector declared within the module

■ a concatenation of any of the above
November 2008 219 Product Version 8.2

Verilog-XL Reference
Hierarchical Structures
Bit-selects and part-selects result in the automatic expansion of the vector nets they
reference. Note that the <port_expression> is optional because ports can be defined
that do not connect to anything internal to the module.

Port Declarations

Each port listed in the module definition’s <list_of_ports> must be declared in the body
of the module as an input, output, or bidirectional inout. This is in addition to any other
declaration for a particular port— for example, a net, a reg, or a wire. The syntax for port
declarations is as follows:

<input_declaration>
::=input <range>? <list_of_variables> ;

<output_declaration>
::= output <range>? <list_of_variables> ;

<inout_declaration>
::= inout <range>? <list_of_variables> ;

Connecting Module Ports by Ordered List

One method of making the connection between the ports listed in a module instantiation and
the ports defined by the instantiated module is the ordered list—that is, the ports listed for the
module instance are in the same order as the ports listed in the module definition.

The following example illustrates a top-level module (topmod) that instantiates a second
module (modB). Module modB has ports that are connected by an ordered list. The
connections made are as follows:

■ Port wa in the modB definition connects to the bit-select v[0] in the topmod module.

■ Port wb connects to v[3].

■ Port c connects to w.

■ Port d connects to v[4].

module topmod;
wire [4:0] v;
wire a,b,c,w;

...
modB b1 (v[0], v[3], w, v[4]);

...
endmodule

module modB(wa, wb, c, d);
inout wa, wb;
input c, d;
November 2008 220 Product Version 8.2

Verilog-XL Reference
Hierarchical Structures
 tranif1 g1(wa, wb, cinvert);
 not #(2, 6) (cinvert, int);
 and #(6, 5) g2(int, c, d);
endmodule

In the modB definition, ports wa and wb are declared as inouts while ports c and d are
declared as input.

During simulation of the b1 instance of modb, the and gate activates first to produce a value
on int. This value triggers the not gate to produce output on cinvert, which then activates
the tranif1 gate g1.

Connecting Module Ports by Name

The second way to connect module ports consists of explicitly linking the two names for each
side of the connection—the name used in the module definition, followed by the terminal used
in the instantiating module. The terminal used in the instantiating module can be a reference
to a variable, an expression, or a blank. This compound name is then placed in the list of
module connections. The following is the syntax for connection by name:

.<name_of_port>(<expression>?)

.<name_of_port>

The .<name_of_port> is the name specified in the module definition for the module of
which you are making an instance. The .<name_of_port> must meet the following
conditions:

■ .<name_of_port> must be identical in both the module definition port list and the list
of port connections for the instances of the module.

■ .<name_of_port> cannot be a bit-select, a part-select, or a concatenation of ports,
with the exception of a method shown in the following explanation.

You cannot connect module ports by name for an instance of a module definition with a list of
ports that contains a range, such as a definition that begins with the following lines:

module modA (p1[7:0], p2[3:0]);
input [7:0] p1;
output [3:0] p2;

The following declarations are functionally identical to the preceding and differ only in the
absence of an explicit range in the port list. You can connect module ports by name for an
instance of a module definition that begins as shown in the following example:

module modA (p1, p2);
input [7:0] p1;
output [3:0] p2;
November 2008 221 Product Version 8.2

Verilog-XL Reference
Hierarchical Structures
To connect module ports by name for an instance of a module definition that has a bit-select,
part-select, or concatenation in its list of ports, you can define the module with a port list as
shown in the following example:

module modB (q, .p1({q[7:4], q[3:0]}), .p2({q, q[5]}), .p3(q[4:0]));
output [7:0] q;

The ports in the preceding definition’s list of ports have names, and as a result they can serve
as <port_name>s in instances. For example, the following instance uses the port names:

modB B1 (.p1({wirea[11:6], wirea[1:0]}), .p3(wireb[63:59]), .p2(wirec));

The wirec identifier in the last connection in the module instance above names a nine-bit
wire.

<expression>

The <expression> is the element in the instantiating module that connects to the port of
the instantiated module, and is one of the following:

■ a simple identifier

■ a bit-select of a vector declared within the module

■ a part-select of a vector declared within the module

■ a concatenation of any of the above

■ an expression

■ a blank ()— empty parentheses document the existence of the port without connecting
it to anything. The parentheses are required.

In the following example, the instantiating module connects its signals topA and topB to the
ports In1 and Out defined by the module ALPHA. At least one port provided by ALPHA is
unused; it is named In2. There may be other unused ports not mentioned in the instantiation.

ALPHA instance1 (.Out(topB),.In1(topA),.In2());

The following example defines the modules modB and topmod. and then topmod instantiates
modB using ports connected by name.

module topmod;
wire [4:0] v;
wire a,b,c,w;

 modB b1 (.wb(v[3]), .wa(v[0]), .d(v[4]), .c(w));

endmodule

module modB(wa, wb, c, d);
inout wa, wb;
input c, d;
November 2008 222 Product Version 8.2

Verilog-XL Reference
Hierarchical Structures
 tranif1 g1(wa, wb, cinvert);
 not #(6, 2) (cinvert, int);
 and #(5, 6) g2(int, c, d);
endmodule

Note: Because these connections are made by name, the order in which they appear is
irrelevant. Note also that the two types of module port connections cannot be mixed;
connections to the ports of a particular module instance must be made either all by position
or all by name. Syntax errors result from attempts to mix the two.

Real Numbers in Port Connections

The real data type cannot be directly connected to a port. Rather it must be connected
indirectly, as shown in the following example. The system functions $realtobits and
$bitstoreal are used for passing the bit patterns across the module ports.

module driver (net_r);
output net_r;
real r;
wire [64:1] net_r = $realtobits(r);

endmodule

module receiver (net_r);
input net_r;
wire [64:1] net_r;
real r;
initial assign r =$bitstoreal(net_r);

endmodule

Port Collapsing

A port of a module can be viewed as providing a link or connection between two items (nets,
registers, expressions, and so on)—one internal to the module instance and one external to
the module instance. Wherever it is possible, the Verilog-XL simulator collapses port
connections during processing—that is, the two items become one entity. Both names
continue to exist for reference purposes, but internally, the simulator eliminates one of the
items. This corresponds to the physical case in which a net described at two levels of a Verilog
HDL hierarchy is actually just one wire.

An examination of the port connection rules described below will show that the item receiving
the value of the port (the inside item for inputs, the outside item for outputs) must be a net.
The item that provides the value can be any expression, but port collapsing is only possible
if both items are nets. Using an expression such as (a+b) as the outside item in a module port
connection precludes the collapsing of that port.

The Verilog-XL simulator sometimes expands vector nets. This makes simulation more
efficient by allowing ports to be collapsed that otherwise could not be collapsed. This happens
when a bit-select or part-select of a vector net is connected to a module output or inout port.
November 2008 223 Product Version 8.2

Verilog-XL Reference
Hierarchical Structures
The expansion has no effect on simulation results and will only be observed when you
execute the $showvars system task. When the simulator expands a vector net, $showvars
lists each bit of the net separately, along with its strength.

A user will rarely need to know the details of port collapsing or vector net expansion. For
certain cases, such as when errors or warnings are issued by the compiler, the rules in the
following section will explain what has happened.

Port Connection Rules

The following rules govern the ways module ports are declared and the ways they are
interconnected:

Rule 1

An input or inout port must be declared as a net type.

Rule 2

Each port connection is a continuous assignment of source to sink—that is, where one
connected item is a signal source and the other is a signal sink. Only nets are permitted to
be the sinks in an assignment.

Both scalar and vector nets are permitted. The output ports of a module are by definition
connected to signal source items internal to the module. The following external items cannot
be connected to the output or inout ports of modules:

■ registers

■ expressions other than:

❑ a scalar net

❑ a vector net

❑ a constant bit-select of a vector net

❑ a part-select of a vector net

❑ a concatenation of the expressions listed above
November 2008 224 Product Version 8.2

Verilog-XL Reference
Hierarchical Structures
Rule 3

A constant bit- or part-select of a vector net that is specified as the external item connected
to an output or inout port of a module causes the expansion of the vector net.

It is legal to connect items of any size when making inter-module port connections. However,
a warning is issued whenever the sizes of the connected items are not the same.

In port collapsing, the two items that are connected through a module port—one being
external to the module, the other being internal to the module—are merged into a single item
with accompanying reduction in simulation events. Not every port can be collapsed. The
following rule defines when port collapsing occurs:

Rule 4

A module port is collapsed only if:

■ the port connects two nets, and

■ the connected nets are either both scalars or have the same vector size.

Vector nets must be expanded before they can be collapsed. Verilog-XL automatically
expands vector nets so that port collapsing can occur in a circuit. Splitting causes a vector
net to be internally represented as a collection of scalars, thus allowing this rule to be applied.
This occurs whenever the items on both sides of the port are nets, and either following
condition:

■ at least one of them is a bit-select or part-select of a vector net

■ the net is specified with the keyword scalared

Given Rule 4, it is clear that only ports that connect nets can be collapsed. But what happens
if the nets on either side of the port are of different net types—for example, when one is a
triand and the other is a tri? When different net types are connected through a module
port and the port can be collapsed, the resulting net type is determined based on Rule 6.

In Rule 6 for two net types with identical signal sources, net type A “dominates” net type B if
either of the following are true:

■ The state on B is the same as that on A.

■ The state on B is not completely known but does not conflict with the state on A (for
example, X does not conflict with 1 or 0; H does not conflict with Z or 1; and so on).
November 2008 225 Product Version 8.2

Verilog-XL Reference
Hierarchical Structures
Rule 5

Connections to inout ports must be collapsible onto lower-level nets.

Rule 6

When the two nets connected by a collapsed port are of different net type, the resulting single
net is assigned one of the following:

■ The dominating net type, if one of the two nets is “dominating”

■ The net type external to the module

When Verilog-XL applies this rule, it issues a warning message whenever a dominating net
type does not exist. When a dominating net type does not exist, the external net type is used.

The following table shows the net type dictated by Rule 6 as a result of collapsing a module
port that connects two nets.
November 2008 226 Product Version 8.2

Verilog-XL Reference
Hierarchical Structures
The simulated net takes the net type specified in the table plus the delay specified for that net.
If the simulated net selected is a trireg, any strength value specified for the trireg applies
to the simulated net.

Port Connections in Macro Modules

Combinations of net types across the module port connections of normal modules affect
whether the module port connections can be collapsed, as described in “Port Connection

I
N
T
E
R
N
A
L

N
E
T

wire &
tri

wand
&trian
d

wor &
trior

trireg tri0 tri1
supply
0

supply
1

wire &
tri

ext ext ext ext ext ext ext ext

wand &
triand

int ext warn warn warn warn ext ext

wor &
trior

int warn ext warn warn warn ext ext

trireg int warn warn ext ext ext ext ext

tri0 int warn warn int ext warn ext ext

tri1 int warn warn int warn ext ext ext

supply
0

int int int int int int ext warn

supply
1

int int int int int int warn ext

KEY ext The external net is used for merging

int The internal net is used for merging

warn A warning is issued and the external net type is used
November 2008 227 Product Version 8.2

Verilog-XL Reference
Hierarchical Structures
Rules” on page 224. Similarly, these combinations affect whether macro modules are
expanded, and whether a warning message is printed during compilation.

Using the table in Rule 6 of the previous section, you can determine the effect of various net
type combinations on macro module expansion. A macro module can be expanded only for
the net combinations that select the external type according to the table in Rule 6. Those
combinations for which the table dictates the internal net type do not allow the macro module
to be expanded; the instance is treated just as it would be if the module were not a macro
module. Those combinations that trigger a warning message for a normal module instance
also trigger a warning for a macro module instance. In cases where a warning is issued for a
normal module instance, the macro module is expanded.

Hierarchical Names

Every identifier in a Verilog description has a unique hierarchical path name. The hierarchy
of modules and the definition of items such as tasks and named blocks within modules define
these path names. The hierarchy of names can be viewed as a tree structure, in which each
module instance, task, function, or named begin-end or fork-join block defines a new
hierarchical level, (also known as a scope).

At the top of the scope are the names of modules for which no instances have been created.
The top of the scope is the root of the hierarchy. Inside any module, each module instance,
task definition, function definition, and named
begin-end or fork-join block defines a new branch of the hierarchy. Named blocks within
named blocks and within tasks and functions also create new branches.

Each node in the hierarchical name tree is a separate scope with respect to identifiers. A
particular identifier can be declared, at most, once in any scope. See “Scope Rules” on
page 234 for a discussion of scope rules.

You can reference any named Verilog object uniquely in its full form by concatenating the
names of the modules, tasks, functions, or blocks that contain it. Use the period character to
separate each of the names in the hierarchy. For example, wave.a.bmod.keep.hold
shows five levels. The complete path name to any object starts at a top-level module. You
can use this path name from any level in the description. The first node name in this path
name (wave, in the example) can also be the top of a hierarchy that starts at the level in which
the path is being used.

Note: Because the Verilog-XL system automatically generates names for unnamed
instances of primitives, you can reference those instances interactively by using the
system-generated names. See “Automatic Naming” on page 233 for information about
system-generated names.
November 2008 228 Product Version 8.2

Verilog-XL Reference
Hierarchical Structures
The code in the following example defines a hierarchy of module instances and named
blocks. “Hierarchy in a model” on page 230 illustrates the hierarchy implicit in this Verilog
code. Following the example is a list of the hierarchical forms of the names of all the objects
defined in the code.

module mod(in);
input in;

always @(posedge in)
begin :keep

reg hold;
hold = in;

end
endmodule

module cct(stim1, stim2);
input stim1, stim2;

// instantiate mod
mod amod(stim1), bmod(stim2);

endmodule

module wave;
reg stim1, stim2;

// instantiate cct
cct a(stim1, stim2);

initial
begin :wave1

#100
fork :innerwave

reg hold;
join

#150
begin

stim1 = 0;
end

end
endmodule

The following list gives the hierarchical path names for all the objects in the previous example:

wave wave.a.bmod
wave.stim1 wave.a.bmod.in
wave.stim2 wave.a.bmod.keep
wave.a wave.a.bmod.keep.hold
wave.a.stim1 wave.wave1
wave.a.stim2 wave.wave1.innerwave
wave.a.amod wave.wave1.innerwave.hold
wave.a.amod.in
wave.a.amod.keep
wave.a.amod.keep.hold
November 2008 229 Product Version 8.2

Verilog-XL Reference
Hierarchical Structures
Hierarchy in a model

Hierarchical name referencing allows free data access to any object from any level in the
hierarchy. If the unique hierarchical path name of an item is known, its value can be sampled
or changed from anywhere within the description. This feature is particularly powerful for
symbolic debugging.

The following example shows how a pair of named blocks can refer to items declared within
one another:

begin
fork :mod_1
reg x;

mod_2.x = 1;
...

join

fork :mod_2
reg x;

mod_1.x = 0;
...

join
end

wave1 a

amod bmod

keep keep

innerwave

wave
November 2008 230 Product Version 8.2

Verilog-XL Reference
Hierarchical Structures
Data Structures

Hierarchical path names enable you to define modules that logically group connected
variables together and separate them from other variables, which provides a way to define
abstract data structures.

The following example describes a data structure template and makes four copies of this
template:

module memory_control;
...
memory_template block1(), block2(), block3(),

 block4();
...
initial

begin
block1.read_flag = 0;
block1.write_flag = 1;
block2.read_flag = 0;
block2.write_flag = 1;

end
endmodule // memory_control

module memory_template;
parameter memsize = 1024;
reg [7:0] abyte, bbyte, data, memory[1:memsize];
reg [15:0] aword, bword;
reg write_flag, read_flag;

endmodule // memory_template

Macro Modules and Hierarchical Names

Using a macro module moves all of the internal elements up one level in the hierarchy; this
has a significant effect on the hierarchical path names of these elements. The names of the
module ports within macro modules disappear due to port collapsing. The internal names of
the ports simply cease to exist during simulation. These ports become unified with the nets
or registers connected to them in the instantiation.

To maintain the uniqueness of the names of gates and nets internal to the macro module, the
name of the scope that contains the instance of the macro module is appended to the internal
name. Thus, the hierarchical path names of these elements will be identical to what they
would be in a normal module instance, except for the following two differences:

■ A backslash (\) precedes the instance name.

■ The separator between the instance name and the net name or primitive instance name
is a carat (^) character instead of a period (.).
November 2008 231 Product Version 8.2

Verilog-XL Reference
Hierarchical Structures
For example, if module top creates a module instance called A, and the definition of A
contains a net called N, then in a normal module instance, the hierarchical name of N would
be as follows:

top.A.N

In a macro module instance, however, the hierarchical name of N would be as follows:

top.\A^N

Note: The backslash is an escape character. Also, you must terminate any escape
sequence with a space character. It is expected that the internal names in macro modules will
be referenced only in exceptional cases.

Upwards Name Referencing

The name of a module is sufficient to identify the module and its location in the hierarchy. A
lower-level module can reference items in a module above it in the hierarchy if the name of
the higher-level module is known. The syntax for an upward reference is as follows:

<name_of_module>.<name_of_item>

There can be no spaces within the reference. The following example demonstrates upward
referencing. In this example, there are four modules, mod_a, mod_b, mod_c, and mod_d.
Each module contains an integer x. The highest-level modules in this segment of the model
hierarchy are mod_a and mod_d. There are two copies of module mod_b.x because mod_a
and mod_d each instantiate a copy of mod_b.x. There are four copies of mod_c.x because
each of the two copies of mod_b.x instantiates mod_c.x twice.

module mod_a;
integer x;

mod_b inst_b1();
endmodule

module mod_b;
integer x;

mod_c inst_c1(), inst_c2();

initial #10 inst_c1.x = 2; // downward path — references 2
endmodule // copies of x: mod_a.inst_b1.inst_c1.x

// mod_d.inst_b1.inst_c1.x
module mod_c;
integer x;
initial begin

x = 1; // local name reference -each of the 4 instances
// of mod_c will modify its own x:

// mod_a.inst_b1.inst_c1.x mod_a.inst_b1.inst_c2.x
// mod_d.inst_b1.inst_c1.x mod_d.inst_b1.inst_c2.x

mod_b.x = 1; // upward path references 2 copies of x:
// mod_a.inst_b1.x mod_d.inst_b1.x

end
endmodule
November 2008 232 Product Version 8.2

Verilog-XL Reference
Hierarchical Structures
module mod_d;
integer x;
mod_b inst_b1();
initial begin

mod_a.x = 1; // full path name references each copy of x
mod_a.inst_b1.x = 2;
mod_a.inst_b1.inst_c1.x = 3;
mod_a.inst_b1.inst_c2.x = 4;
mod_d.x = 5;
mod_d.inst_b1.x = 6;
mod_d.inst_b1.inst_c1.x = 7;
mod_d.inst_b1.inst_c2.x = 8;

 end
endmodule

Automatic Naming

Verilog-XL can automatically generate system names for instances of standard primitives and
user-defined primitives that you have not named. You can specify that the system generate
names during debugging by using the +autonaming option. You can turn off automatic
naming for specific parts of your design by using the ‘remove_gatenames compiler
directive (see “Gate and Net Name Removal” on page 140).

System-generated names do not affect simulation results, but they do affect memory usage
and compile times. You may want to leave certain primitives unnamed to improve simulator
performance.

System generated names have the following format:

<primitive_type>$<sequence_number>

The <primitive_type> variable can be any of the Verilog-XL-supplied primitives or
UDPs. The <sequence_number> variable is a decimal number that Verilog-XL assigns to
the unnamed instance. Numbers start at 1 for each type within a module description and
increase sequentially for each instance.

If the system generates a name that is identical to a user-defined name, then Verilog-XL
assigns the next available sequence number that does not conflict.

Note: To avoid conflicts with system-generated names, Cadence recommends that you do
not use the dollar sign ($) within user-defined names.

The following are several ways to view system-generated names:

■ Call $list to decompile a source description.

■ Call $showvars to see the names of gates that drive nets.
November 2008 233 Product Version 8.2

Verilog-XL Reference
Hierarchical Structures
■ Call $settrace to see the names of gates that are contained in the source you are
tracing.

■ Use the -d command line option to decompile the entire description, including
system-generated names.

The latch description in the following example contains instances of nand and udpfunc that
are unnamed:

module latch (q, in1, in2, in3);
output q;
input in1, in2, in3;

nand #1 (q, nq, w), (nq, q, in3); // <-- unnamed gate instances
udpfunc (w, in1, in2); // <-- unnamed UDP instance

endmodule

primitive udpfunc (q,clk,d);
input clk,d;
output q;
reg q;
initial

q = 1’b1;

table
//clk d q q+

r 0 : ? : 0 ;
r 1 : ? : 1 ;
f ? : ? : - ;
? * : ? : - ;

endtable
endprimitive

Decompiling this description with $list produces the following output. The second and third
“20” lines, and the second “21” line, contain system generated names.

15 module latch(q, in1, in2, in3);
16 output
16 q; // = StX
17 input
17 in1, // = StX
17 in2, // = StX
17 in3; // = StX
20 nand #(1)
20 nand$1(q, nq, w),
20 nand$2(nq, q, in3);
21 udpfunc
21 udpfunc$1(w, in1, in2);
23 endmodule

Scope Rules

The following four elements define a new scope in Verilog:

■ modules

■ tasks
November 2008 234 Product Version 8.2

Verilog-XL Reference
Hierarchical Structures
■ functions

■ named blocks

Rule 1

You can use an identifier to declare only one item within a scope. For example, it is illegal to
do the following:

■ declare two variables that have the same name

■ name a task the same as a variable within the same module

■ give a gate the same instance name as the name of the net connected to its output

Rule 2

If an identifier is referenced directly (without a hierarchical path) within a task, function, or
named block, it must be declared either locally (within the task, function, or named block), or
within a module, task or named block that is higher in the same branch of the name tree that
contains the task, function, or named block that is referenced. If an identifier is declared
locally, then the local item is used; if it is not declared locally, then Verilog-Xl searches upward
until it finds an item by that name or until it finds a module boundary. Searching crosses
named-block, task, and function boundaries, but not module boundaries. This fact means
that tasks and functions can use and modify the variables within the containing module by
name, without going through their ports. If the identifier is not found in the upward search
path, the simulator generates an error at compile time.

In the following figure, each rectangle represents a local scope. The scope available to
upward searching extends outward to all containing rectangles—with the boundary of the
November 2008 235 Product Version 8.2

Verilog-XL Reference
Hierarchical Structures
module A as the outer limit. Thus, block G can directly reference identifiers in F, E, and A; it
cannot directly reference identifiers in H, B, C, and D.

Because of the upward searching, path names that are not strictly downward can be used
and will work. However, these should be avoided as they are confusing, and the compiler
generates a warning when it encounters one. This warning can be disabled with the -w
command-line option.

The following example shows an incompletely defined downward reference that compiles
correctly, but generates a compiler warning:

task t;
reg r;

begin :b
// redundant assignments to reg r
t.b.r = 0; // this is poorly defined but can find r by an upward search
t.r = 0; // this is a fully defined downward reference

end
endtask

block B

task C

func D

task E

block F

block G

block H

module A

Scopes available
to block G

Scopes not
available to
block G
November 2008 236 Product Version 8.2

Verilog-XL Reference
12
Using Specify Blocks and Path Delays

This chapter describes the following:

■ Understanding Specify Blocks on page 237

■ Understanding Path Delays on page 239

■ Describing Module Paths on page 247

■ Using State-Dependent Path Delays (SDPDs) on page 269

■ Working with Multiple Path Delays on page 275

■ Enhancing Path Delay Accuracy on page 279

Understanding Specify Blocks

In addition to gate-level or other distributed delays specified inside a module, you can assign
delays to paths across a module. A specify block adds timing specifications to paths across
a module and performs the following modeling tasks:

■ Describes various paths across the module

■ Assigns delays to those paths

■ Performs timing checks to ensure that events occurring at the module inputs satisfy the
timing constraints of the device described in the module

■ Defines pulse filtering limits

Specify block syntax is as follows:

<specify_block>
::= specify

<specify_item>*
endspecify
November 2008 237 Product Version 8.2

Verilog-XL Reference
Using Specify Blocks and Path Delays
<specify_item>
::= <specparam_declaration>
||= <path_declaration>
||= <level_sensitive_path_declaration>
||= <edge_sensitive_path_declaration>
||= <system_timing_check>

The following example illustrates a specify block:

specify

 specparam tRise_clk_q=150, tFall_clk_q=200;
 specparam tSetup=70; //two specparam_declarations
 (clk=>q)=(tRise_clk_q, tFall_clk_q); //path_assignment
 $setup(d, posedge clk, tSetup); //system_timing_check

endspecify

Specparam Declarations

The keyword specparam declares parameters within specify blocks—called specify
parameters or specparams, to distinguish them from module parameters. Unlike specify
parameters, module parameters are declared outside the specify block with the keyword
parameter. You cannot use module parameters in specify blocks.

The following demonstrates the syntax for declaring specify parameters:

<specparam_declaration>
::= specparam <list_of_param_assignments> ;

<list_of_param_assignments>
::=<param_assignment><,<param_assignment>>*

<param_assignment>
::=<<identifier> = <constant_expression>>

The following example illustrates specparam declarations:

specify

specparam tRise_clk_q=150, tFall_clk_q=200;
specparam tRise_control=40, tFall_control=50;

endspecify
November 2008 238 Product Version 8.2

Verilog-XL Reference
Using Specify Blocks and Path Delays
It is important not to confuse a specparam statement with a module parameter statement;
they are not interchangeable. The following table summarizes the differences between the
two types of parameter declarations:

Verilog-XL supports specify block constructs with the XL algorithm expressly disabled or
enabled (the default). Module path destination signals must always qualify as accelerated
nets by meeting the rules outlined in “Describing Module Paths” on page 247 and in
“Differences of parallel and full connections between equal-sized vectors” on page 251.

Specify blocks may not appear in macro modules in sources that are to be read by Verilog-XL
or Verifault-XL. Macro modules that contain specify blocks will not be expanded. See “Macro
Modules” on page 216 for more information about macro modules.

Switch-XL simulation and module path delays are incompatible. The Switch-RC algorithm
turns all switches subject to it into non-accelerated bidirectionals (inouts) which are
incompatible with module path delays.

Understanding Path Delays

In the Verilog hardware description language (HDL), a module path is the connection
between a source signal and a destination signal that is defined inside a specify block.

A module source signal can be either an input (unidirectional path) or an inout
(bidirectional path). A module destination signal can be either an output (unidirectional
path) or an inout.

Module path delay assignments can apply in all conditions, or only under specified conditions.

The Verilog HDL can describe two types of delays:

SPECPARAM
(Specify parameter)

PARAMETER
(Module parameter)

■ must be declared inside specify blocks

■ cannot use defparam to override values

■ save memory because they are not
replicated with each module

■ must be declared outside specify blocks

■ use defparam to override values

■ use memory because they are replicated
with each module instance
November 2008 239 Product Version 8.2

Verilog-XL Reference
Using Specify Blocks and Path Delays
■ A module path delay, which occurs for the whole module, specifies the time it takes an
event at a source (input or inout) to transmit to a destination (output or inout). See
“Describing Module Paths” on page 247 for more information about module path delays.

■ A distributed delay, which occurs on primitive instances within the module, specifies the
time it takes an event to transmit through gates and nets. See “Simulating Distributed
Delays as Inertial and Transport Delays” on page 244 for information about simulating
distributed delays. See “Working with Distributed Delays and SDPDs” on page 274 for
information about working with distributed delays and SDPDs.

The following figure illustrates module path delays. Note that more than one source (A, B, C,
and D) may have a module path to the same destination (Q).

Module path delays

The following figure shows distributed delays:

A

B

C

D

Q

Paths for Module X:
from A to Q

 from B to Q
 from C to Q
 from D to Q

= module path delay

12

18

22

10

n
Module X
November 2008 240 Product Version 8.2

Verilog-XL Reference
Using Specify Blocks and Path Delays
Distributed delays

The figure and the figure contrast module path delays and distributed delays on separate
modules to emphasize that you rarely mix module path delays and distributed delays.
However, there are situations when you do need both types of delays—for example, to set up
a feedback delay to prevent zero delay oscillation.

When one module requires both module path delays and distributed delays, the larger delay
prevails. If the distributed delays exceed the module path delay, the distributed delays are
used.

The following two figures illustrate mixed delay-type modules. In the following figure, the delay
on the module path from input D to output Q is 22, while the sum of the distributed delays is 1
(0+1=1). Therefore, it takes 22 time units for an event on D to cause an event on Q.
.

A

B

C

D

Q

= distributed delay

1

0

0

nModule X

A

B

C

D

Q

 = distributed delay

1

0

0

n

22

= module path delay
n

Module X
November 2008 241 Product Version 8.2

Verilog-XL Reference
Using Specify Blocks and Path Delays
In the next figure, the delay on the module path from D to Q is 22, but the distributed delays
along that module path now add up to 30 (10+20=30). Therefore, it takes 30 time units for an
event on D to cause an event on Q.

Driving Wired Logic Outputs

Module path output nets cannot have more than one driver within the module. Therefore,
wired logic is not allowed at module path outputs. The following two figures show illegal
module paths that illustrate violations of this rule. In the first figure, any module path to Q or
R is illegal.

Illegal module paths: Two module path outputs with multiple output drivers

In the following figure, any module path to S is illegal.

A

B

C

D

Q

 = distributed delay

20

10

10

n

22

= module path delay
n

Module X

A
B

C
D

R

Q

November 2008 242 Product Version 8.2

Verilog-XL Reference
Using Specify Blocks and Path Delays
Illegal module paths: One module path output with multiple output drivers

Assuming signal S in this figure is a wired AND, you can circumvent this limitation by replacing
wired logic with gated logic to create a single driver to the output. The following figure shows
how adding a third AND gate solves the problem for the module in previous figure.

Legal module paths: One output driver

Note: Although multiple output drivers are prohibited inside the module, they are allowed
outside the module, as in the next figure (where all module paths to R and all paths to Q are
legal).

E
F

G
H

S

E
F

G
H

S

November 2008 243 Product Version 8.2

Verilog-XL Reference
Using Specify Blocks and Path Delays
Legal module paths: Multiple output drivers outside the module

Simulating Distributed Delays as Inertial and Transport Delays

Verilog-XL simulates distributed delays as inertial delays, which means that the delaying
element does not pass a pulse of shorter duration than the element’s delay.

An element with transport delay functionality may pass pulses of shorter duration than the
element’s delay. However:

■ In Verilog-XL version 2.0 and earlier versions, module path delays might have limited
transport delay functionality. “Pulse Handling in Verilog-XL 2.0 and Earlier Versions” of
the Verilog-XL User Guide discusses this limited implementation of transport delay in
path delays.

■ In Verilog-XL version 2.1 and later versions, module path delays have unlimited transport
delay functionality when you invoke with the +transport_path_delays command-
line plus option. See “Pulse Filtering and Cancelled Schedule Dilemmas” on page 266
for the impact of the +transport_path_delays option on path pulse control.

Simulating Path Delays

The fact that path delays implement transport delay functionality does not mean that they
pass every transition. There are two cases in which transitions can be lost or filtered. One
case occurs when pulse control applies to the simulation. The other case is an event
cancellation due to an event being scheduled earlier than events already scheduled.

A
B

C
D

E
F

G
H

R

Q

November 2008 244 Product Version 8.2

Verilog-XL Reference
Using Specify Blocks and Path Delays
The following figure shows why an event cancellation policy that can lose transitions is
necessary. The module path delay has different delays specified for two types of output
transitions: a delay of 4 for rising transitions, and a delay of 7 for falling transitions. The
waveform named path_input represents the signal at the path input, and path_output is
the signal propagating from the end of the module path. The two versions of the
path_output signal show the signal propagating from the module with and without event
cancellation.

Transport delay cannot pass all transitions

As this figure shows, passing all transitions in transport delay makes an output transmit an
incorrect signal, so Verilog-XL deletes scheduled events that lead to such a result.

The following figure illustrates two plus options related to using transport delays on a pass
gate model:

■ +x_transport_pessimism

This plus option causes an X state to appear on the output when timing dilemmas are
caused by event cancellations that occur when using transport delays, or when using the
accu_path delay selection algorithm (see “Enhancing Path Delay Accuracy” on
page 279).

■ +alt_path_delays

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

path_input

Deleting the event scheduled due to the path_input
edge at 6 allows path_output to settle in a correct state.

Delays: rise = 4
 fall = 7

Correct: path_output is correct
if the scheduled transport to 0 is
cancelled due to path_input
transition to 1 at time 8.

Incorrect: path_output ends up
in the wrong state if the scheduled
output transition to 0 at time 13
is not cancelled because a 0=>1
transition at time 12 is attempted.
November 2008 245 Product Version 8.2

Verilog-XL Reference
Using Specify Blocks and Path Delays
This plus option changes the way in which certain path delays are calculated. If a new
transition on an output is scheduled while a scheduled transition is pending, then the new
schedule time is based on the transition from the current output value, rather than on the
transition from the most future schedule value.

Note: See “Specifying Global Pulse Control on Module Paths” on page 257 for information
about pulse reject limits.

Effects of plus options on a pass gate mode
l

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

path_input

Without +transport_path_delays

Schedule transition to Z at 5.
Transition to 1 calculated for 4.
Cancel transition to Z.
Schedule transition to 1 at 4.

With +transport_path_delays
Schedule transiton to Z at 5.
Transition to 1 calculated for 4.
Cancel transition to Z.
Recalculate delay from 0 to 1,
yielding schedule transition to
1 at time 13. With +transport_path_delays

and +x_transport_pessimism
Display X state on output for a
period of possible transitions to
and from Z to reflect uncertainty
that Z state would have occurred
in the actual circuit.

With +alt_path_delays
Transition to Z scheduled at 5.
Transition to 1 calculated based
on transition from current output
value (0). Transition to 1 is
scheduled at time 13.

Delays: 0 -> 1 = 10
 1 -> 0 = 10
 0 -> Z = 5
 Z ->1 = 1
Pulse reject limit: 0
November 2008 246 Product Version 8.2

Verilog-XL Reference
Using Specify Blocks and Path Delays
Describing Module Paths

To specify the delays that occur at the module outputs where paths terminate, you assign
delay values to the module path descriptions. Delay values can be constant expressions that
contain literals or specparams. The syntax of the module path declaration is as follows:

<path_declaration>
::= (<path_description>) = (<path_delay_value>);

<path_description>
::= (<specify_input_terminal_descriptor> =>

<specify_output_terminal_descriptor>)
||= (<list_of_path_inputs> *> <list_of_path_outputs>)

<path_delay_value>
::= <path_delay_expression>
||= (<path_delay_expression>, <path_delay_expression>)
||= (<path_delay_expression>, <path_delay_expression>,

<path_delay_expression>)
||= (<path_delay_expression>, <path_delay_expression>,

<path_delay_expression>, <path_delay_expression>,
<path_delay_expression>, <path_delay_expression>)
<path_delay_expression>

::= <constant_expression>

Note: Each delay defines either a single delay value or a triplet of minimum, typical, and
maximum (min:typ:max) delay values. For more information about transition delays on
module paths, see “Specifying Transition Delays on Module Paths” on page 251.

The following example shows module path delay assignments. Each specparam keyword
specifies one set of delays for the rising transitions and another set of delays for the falling
transitions. Each delay triplet specifies the minimum, typical, and maximum delay values.

specify
// the following are specify parameters
specparam tRise_clk_q=45:150:270, tFall_clk_q=60:200:350;
specparam tRise_control=35:40:45, tFall_control=40:50:65;

// the following are module path assignments
(clk=>q)=(tRise_clk_q,tFall_clk_q);
(clr,pre*>q)=(tRise_control,tFall_control);

endspecify

When you compile the code in the previous example, you assign the minimum delay to the
tRise_clk_q and tFall_clk_q identifiers by specifying the +mindelays plus option on
the command line; you specify +maxdelays for maximum delays and +typdelays (the
default) for typical delays. For example, If you compiled the code with the +maxdelays
option, the value for tRise_clk_q would be 270, and the value for tFall_clk_q would be
350; tRise_control would be 45, and tFall_control would be 65.

Module paths can connect any combination of vectors and scalars. However, there are two
restrictions:
November 2008 247 Product Version 8.2

Verilog-XL Reference
Using Specify Blocks and Path Delays
■ The module path source must be a net that is declared as a module input or inout
net, either of which must be scalar or vector.

■ The module path destination must be a net that is declared as a module output or
inout net, either of which must be scalar or vector and is driven only by a gate-level
primitive that is not a bidirectional transfer gate. A module path destination must qualify
for acceleration by the XL algorithm, even if the XL algorithm is disabled.

Signals that do not qualify as accelerated nets are as follows:

■ forced nets

■ nets with non-zero delays

■ vector nets or scalar nets that receive continuous assignments

■ signals driven by gates with an expression involving any operator on an input

■ signals driven by gates that have dynamic delay expressions

■ signals driven by buf and not gates with more than one output

■ signals driven by the following bidirectional primitives:

❑ tran

❑ tranif1

❑ tranif0

❑ rtran

❑ rtranif1

❑ rtranif0

During compilation, Verilog-XL flags as errors any module path destination signals that do not
qualify as accelerated nets.

Establishing Parallel or Full Connections

This section illustrates two ways to describe module paths, using the => and *> operators.
The following example shows the module path syntax for parallel and full connections.

<path_description>
::= (<specify_input_terminal_descriptor> =>

<specify_output_terminal_descriptor>)
||= (<list_of_path_inputs> *> <list_of_path_outputs>)

<specify_input_terminal_descriptor>
November 2008 248 Product Version 8.2

Verilog-XL Reference
Using Specify Blocks and Path Delays
::= <input_identifier>
||= <input_identifier> [<constant_expression>]
||= <input_identifier> [<constant_expression> :

<constant_expression>]

<specify_output_terminal_descriptor>
::= <output_identifier>
||= <output_identifier> [<constant_expression>]
||= <output_identifier> [<constant_expression> :

<constant_expression>]

<input_identifier>
::= the <IDENTIFIER> of a module input or inout terminal

<output_identifier>
::= the <IDENTIFIER>of a module input or inout terminal

In the following example, the module path from s to q uses *> because it connects a scalar
source—the 1-bit select line—to a vector destination—the
8-bit output bus. The module paths from both input lines In1 and In2 to q use => because
they set up parallel connections between two 8-bit buses.

module MUX8 (In1,In2,s,q);
input [0:7] In1,In2;
input s;
output [0:7] q;

...
specify

specparam In_to_q=40, s_to_q=45;

(In1 => q) = In_to_q; //parallel connection
(In2 => q) = In_to_q; //parallel connection
(s *> q) = s_to_q; //full connection

endspecify
endmodule

Establishing a Parallel Connection

The => operator establishes a parallel connection between source and destination. In a
parallel connection, each bit in the source connects to a corresponding bit in the destination.
You can create parallel module paths only between a source and destination that contain the
same number of bits.

Note: You must use the => operator for bit-to-bit connections to describe a module path
between two vectors of the same size.
November 2008 249 Product Version 8.2

Verilog-XL Reference
Using Specify Blocks and Path Delays
Important

You will not receive a compiler error if you use the operator => to establish a full
connection between one scalar and one vector, or between one scalar and multiple
sources or destinations. This practice is not recommended and may cause a
compiler error in releases beyond Verilog-XL 2.3.

Establishing a Full Connection

The *> operator establishes a full connection between source and destination. You can
define multiple module paths in a single statement by using the *> operator to connect a list
of sources, as shown in the following example:

(a, b, c *> q1, q2) = 10;

This statement is equivalent to the following six individual module path assignments:

(a *> q1) = 10;
(b *> q1) = 10;
(c *> q1) = 10;
(a *> q2) = 10;
(b *> q2) = 10;
(c *> q2) = 10;

When describing multiple module paths in one statement, the lists of sources and
destinations can contain a mix of scalars and vectors of any size. However, all sources must
be net inputs or inouts; and all destinations must be net outputs or inouts.

In a full connection, each bit in the source connects to every bit in the destination. The module
path source does not need to have the same number of bits as the module path destination.

The full connection will handle most types of module paths, since it does not restrict the size
or number of source signals and destination signals. However, you must use the full
connection operator (*>) to set up full connections in the following situations:

■ Describing a module path between one vector and one scalar

■ Describing a module path between vectors of different sizes

■ Describing a module path with multiple sources or multiple destinations in a single
statement

The following figure illustrates how a parallel connection differs from a full connection
between two 4-bit vectors:
November 2008 250 Product Version 8.2

Verilog-XL Reference
Using Specify Blocks and Path Delays
Differences of parallel and full connections between equal-sized vectors

Specifying Transition Delays on Module Paths

The following conditions apply to delays:

■ You can assign delay values independently for each of the six output transitions (0→1,
0→Z, 1→0, 1→Z, Z→0, and Z→1).

■ You specify delays as a list of one, two, three, or six path delay expressions separated
by commas.

■ You can specify a single delay value for all three delays, or a colon-separated list of
values for minimum, typical, and maximum delays.

Note: You can specify only one delay or a delay triplet. The format delay1:delay2 is illegal
in a module path delay assignment.

The left-to-right order in which you specify delays for all six transitions in a specify
statement is based on the following figure
.

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

Input bits

Output bits

Parallel module path Full module path

4 paths
Bit-to-bit connections
Use => to define path

16 paths
Bit-to-vector connections
Use *> to define path

0

1

z

0 1 z 01 zz 10 z1 0
November 2008 251 Product Version 8.2

Verilog-XL Reference
Using Specify Blocks and Path Delays
The following example shows the syntax and code for assigning one delay value for all
transitions:

// Syntax: (module_path)=delay;
// one delay value is assigned to all transitions:
// 0->1, 1->0, 0->Z, Z->1, 1->Z, z->0
//

// Examples:

(C=>Q)=20; // assigns a delay of 20 for all
// transitions from C to Q

(C=>Q)=10:14:20; // assigns min:typ:max delays to all
// transitions from C to Q

The following example shows the syntax and code for assigning different delays for rising and
falling transitions:

// Syntax: (module_path)=(rise_delay,fall_delay);
// transitions: 0->1 1->0
// 0->z 1->z
// z->1 z->0

// Examples:
specparam tPLH=12,tPHL=25;
(C=>Q)=(tPLH,tPHL);
specparam tPLH=12:16:22,tPHL=16:22:25;
(C=>Q)=(tPLH,tPHL);

Any transition delay associated with a module path can be triggered at run time by the
appropriate state change at the module path destination net. For instance, the previous
example assigns one set of minimum:typical:maximum delays for the rising transitions and
another set of minimum:typical:maximum delays for the falling transitions.

The following example shows the syntax and code for assigning different delays for rising,
falling, and z transitions:

// Syntax: (module_path)=(rise_delay, fall_delay, z_delay);
// 0->1 1->0 0->z
// z->1 z->0 1->z
// Examples:

specparam tPLH = 12, tPHL = 22, tPz = 34;
(C => Q) = (tPLH, tPHL, tPz);
specparam tPLH=12:14:30, tPHL=16:22:40, tPz=22:30:34;
(C => Q) = (tPLH, tPHL, tPz);

The following example shows the syntax and code for assigning six different transition delays:

// Syntax: (module_path)=(delay,delay,delay,delay,delay,delay);
// 0->1 1->0 0->z z->1 1->z z->0
// Examples:

specparam t01=12, t10=16, t0z=13, tz1=10, t1z=14, tz0=34;
(C => Q) = (t01, t10, t0z, tz1, t1z, tz0);
specparam t01=12:14:24, t10=16:18:20, t0z=13:16:30;
specparam tz1=10:12:16, t1z=14:23:36, tz0=15:19:34;
(C => Q) = (t01, t10, t0z, tz1, t1z, tz0) ;
November 2008 252 Product Version 8.2

Verilog-XL Reference
Using Specify Blocks and Path Delays
Calculating Delay Values for X Transitions

Calculating delay values for x transitions is based on the following two pessimistic rules:

■ Transitions from a known state (S) to X (S→X) occur as quickly as possible—that is, they
receive the shortest possible delay.

■ Transitions from X to a known state (S) (X→S) take as long as possible—that is, they
receive the longest possible delay.

The following table presents the general algorithm for calculating delay values for x
transitions, along with specific examples.

X TRANSITION DELAY VALUE

General Algorithm

S → X Minimum of (S →S)

X → S Maximum of (S →S)

Specific Transitions

0 → X Minimum of (0 → Z delay, 0 → 1 delay)

1 → X Minimum of (1 → Z delay, 1 → 0 delay)

Z → X Minimum of (Z → 1 delay, Z → 0 delay)

X → 0 Maximum of (Z → 0 delay, 1 → 0 delay)

X → 1 Maximum of (Z → 1 delay, 0 → 1 delay)

X → Z Maximum of (1 → Z delay, 0 → Z delay)

Usage: (C=>Q) = (5, 12, 17, 10, 6, 22)

0 → X Minimum of (17, 5) = 5

1 → X Minimum of (6, 12) = 6

Z → X Minimum of (10, 22) = 10

X → 0 Maximum of (22, 12) = 22

X → 1 Maximum of (10, 5) = 10

X → Z Maximum of (6, 17) =17
November 2008 253 Product Version 8.2

Verilog-XL Reference
Using Specify Blocks and Path Delays
Specifying Module Path Polarity

The polarity of a module path determines how a signal transition (at its source) passes to its
destination when there are no logic simulation events. A module path can exhibit unknown,
positive, or negative polarity. The polarities are described as follows:

■ Unknown polarity

❑ A rise at the source causes either a rise or a fall at the destination.

❑ A fall at the source causes either a rise or a fall at the destination.

■ Positive polarity

❑ A rise at the source always causes a rise at the destination.

❑ A fall at the source always causes a fall at the destination.

■ Negative polarity

❑ A rise at the source always causes a fall at the destination.

❑ A fall at the source always causes a rise at the destination.

By default, module paths have unknown polarity—that is, a transition at the path source
transmits to the destination in an unpredictable way.

Note: Polarity has no effect on the scheduling of simulation events; a timing analysis tool can
use polarity when performing path tracing. The Veritime timing analyzer uses polarity to
calculate module path delays.

Whether a rise or a fall transmits to the destination depends on the states of the module’s
other inputs and internal logic.

To set up module paths with positive polarity, add the plus sign (+) prefix to the connection
operators *> and =>. For negative polarity, add the minus sign (-) prefix. For unknown
polarity, add no prefix. The following example shows each type of path polarity.

(In1 +=> q) = In_to_q; // Positive Polarity
(s +*> q) = s_to_q; // Positive Polarity

(In1 -=> q) = In_to_q; // Negative Polarity
(s -*> q) = s_to_q; // Negative Polarity

(In1 => q) = In_to_q; // Unknown Polarity
(s *> q) = s_to_q; // Unknown Polarity

In addition, you can assign the same polarity to multiple module paths in a single statement,
as follows:
November 2008 254 Product Version 8.2

Verilog-XL Reference
Using Specify Blocks and Path Delays
(a, b, c +*> q1, q2) = 10; // Positive Polarity
(a, b, c -*> q1, q2) = 10; // Negative Polarity

In the previous example, (providing there are no vectors), the first line assigns positive polarity
to six different paths. The second line assigns negative polarity to six different paths.

Verilog-XL treats all module paths as if they contain no polarity operators. It chooses the delay
based only on the output transition and without regard to the input transition that initiates the
delay. For more information about how to use module path polarity for timing analysis, refer
to the Veritime Reference Manual and Veritime User Guide.

Using Path Delays in Behavioral Descriptions

To use module path delays on behavioral descriptions, a path destination signal must be a
net that is driven only by a gate-level primitive, qualifying it as an accelerated net. The
primitive must not be a bidirectional transfer gate. Whenever an error occurs because a
module path destination does not qualify as an accelerated net, you can recover from the
error condition by placing a zero delay buf gate between the module boundary and the
desired signal.

Consider the following module, adder. The signals sum and carry do not qualify as
accelerated nets because they are scalar nets that receive continuous assignments.

module adder (A, B, sum, carry);

 input A, B;
 output sum, carry ;

 wire sum = A + B ; //continuous assignment
 wire carry = A & B ; //continuous assignment

 specify
 //module path delays
 (A, B *> sum) = 10 ;
 (A, B *> carry) = 5 ;
 endspecify
endmodule

The following example shows that by adding zero delay buf gates between adder and the
signals sum and carry, you can create two new path destinations, sum_sig and
carry_sig that do follow acceleration guidelines.

module adder (A, B, sum_sig, carry_sig);
 input A, B;
 output sum_sig, carry_sig ;
 wire sum = A + B ; //continuous assignment
 wire carry = A & B ; //continuous assignment
 buf g1 (sum_sig, sum) ; //zero delay buf
 buf g2 (carry_sig, carry) ; //zero delay buf

 specify
 //module path delays
 (A, B *> sum_sig) = 10 ;
 (A, B *> carry_sig) = 5 ;
November 2008 255 Product Version 8.2

Verilog-XL Reference
Using Specify Blocks and Path Delays
 endspecify
endmodule

Simulating Path Outputs that Drive Other Path Outputs

If one module path output drives another module path output, the delay on the driving path
must be less than the delay on the driven path. Otherwise,
Verilog-XL schedules an event on the driven path output later than expected—at the time
when the driving path output occurs. Consider the following figure which shows module path
outputs driving other module path outputs.

In the previous figure, the output of module path (in => q) drives the output of module path
(in => qbar). Assuming the last in input occurred at time 0, Verilog-XL would schedule
a q output event at time 12 and a qbar output event at time 12—even though the desired
result is to schedule the qbar output at time 10.

The solution to problem is to place a buffer on the driving output, as shown in the following
figure, which creates an internal net to drive qbar so that any event on qbar caused by an
event on in occurs after 10 time units.

Pin-to-pin delays:

(in => q) = 12 ; DRIVING MODULE PATH
(in => qbar) = 10 ; DRIVEN MODULE PATH

UDP
in

qbar

q

UDP
in

qbar

q

Pin-to-pin delays:

(in => q) = 12 ; Driving module path

(in => qbar) = 10 ; Driven module path
November 2008 256 Product Version 8.2

Verilog-XL Reference
Using Specify Blocks and Path Delays
Understanding Strength Changes on Path Inputs

The strength is an implementation function of the internal module. When scheduling module
path output events, Verilog-XL does not consider the time of the strength change at the input.
Strength changes always propagate through a circuit using the gate and net delays, not the
module path delays.

Specifying Global Pulse Control on Module Paths

When you set global pulse control using the delay value and pulse limits, Verilog-XL
determines which of the following actions to take on all module path output and interconnect
pulses.

■ Reject the pulse (the output is unaffected by the pulse).

■ Flag the pulse as an error state (e).

■ Let the pulse pass through.

Note: Pulse widths are measured at the output and not at the input.

The following equations show how Verilog-XL calculates the level of acceptance from the
error and reject values that you supply as percentages of the module path delay:

error_limit = (error% / 100) * (module_path_delay)
reject_limit = (reject% / 100) * (module_path_delay)

Note: Calculated limits are truncated, not rounded.

After calculating the limits, Verilog-XL acts on the pulse according to the following rules:

REJECT if 0 < pulse < (reject_limit)
SET TO E if reject_limit <= pulse <(error_limit)
PASS if pulse >= error_limit

You can specify pulse limits for module paths and interconnect delays separately in the same
simulation by entering two pairs of plus options on the command line. The +pulse_e/n and
+pulse_r/m plus options set global module path pulse control in Verilog-XL.

For module path delays, use the following plus options on the command line:

+pulse_e/n
+pulse_r/m

For interconnect delays, use the following plus options on the command line:

+pulse_int_e/n
+pulse_int_r/m
+transport_int_delays

For example, the following command sets reject% to 50 and error% to 80:
November 2008 257 Product Version 8.2

Verilog-XL Reference
Using Specify Blocks and Path Delays
verilog source.v +pulse_r/50 +pulse_e/80

This command specifies the following:

■ A module path delay of 50 time units has a reject_limit of up to 25 time units (50%
of a delay of 50).

■ The error_limit is set at 40 time units (80% of a delay of 50).

■ Pulses smaller than 25 time units are rejected.

■ At 25 through 39 time units, the module path delays are set to e (error state).

■ At 40 time units and above, the module path delays pass through.

To generate an error whenever a module path pulse is less than a module path delay, use the
following command line:

verilog source.v +pulse_r/0 +pulse_e/100

The default values for reject% and error% are 100. However, Verilog-XL modifies the
default error% under the following conditions:

■ If you omit both the reject% and error%, both specifications are set to 100.

■ If you omit one of the pulse limits, the omitted specification is set to 100, but the next rule
can reset this value.

■ If the reject% exceeds the error% or if the reject% specification is not accompanied
by an error% specification, Verilog-XL issues a warning and resets the error% equal
to the reject%. For example, the error% in the following command line is reset to 100
because the reject% has the default value of 100.

verilog source.v +pulse_e/80

The following command line sets the error% equal to the reject% limit of 50, because
it does not include an error% specification.

verilog source.v +pulse_r/50

If you omit the +pulse_e/n, the +pulse_r/m and the +transport_path_delays plus
options, module path delays work the same way as gate delays because Verilog-XL rejects
all module path output pulses that are shorter than the module path delay. Note, however, that
gate delays are not affected by reject% and error%.

Signals with the error state (e) value generate warnings as follows:

Warning! Time = 180: Pulse flagged as an error at node
top.no1.output1, value = StE
Path: top.no1.input3 ---> top.no1.output1

[Verilog-PLSERR]
November 2008 258 Product Version 8.2

Verilog-XL Reference
Using Specify Blocks and Path Delays
The description Path: top.no1.input3 ---> top.no1.output1 identifies the path
that generated the pulse error.

These warning messages can be suppressed by specifying the +no_pulse_msg plus
option. Verilog-XL then treats the module output nets transmitting signals with the e value as
if their signals had the x value.

Specifying Local Pulse Control for Module Paths

You can provide individual control over path pulse limits, effectively overriding global pulse
control, by declaring specialized specparams that use the prefix PATHPULSE$. The
PATHPULSE$ specparam narrows the scope of module path pulse control to a specific
module or to particular paths within modules. The command line must include the
+pathpulse option for the PATHPULSE$ specparams to be effective.

Standard Delay Format (SDF) annotation provides new values for pulse limits of both specify
path delays and interconnect delays. This annotation method operates independently of the
PATHPULSE$ specparam construct, and the +pathpulse option is not needed when pulse
control values are provided by SDF annotation.

Note: The +pathpulse command-line option adds significant compilation overhead.

PATHPULSE$ syntax is as follows:

<pulse_control_specparam>
::=PATHPULSE$=(<reject>,<error>);
||=PATHPULSE$<module_path_source>$

<module_path_destination>=(<reject>,<error>);

If you supply the source and destination variables, Verilog-XL applies the indicated
pulse handling to the specific module path that you define between path and destination.
Otherwise, Verilog-XL applies the specified pulse handling characteristics to all paths
declared within the module. The sources and destinations in source and destination can
be scalar nets or vector nets, but cannot be bit-selects or part-selects. The pulse handling
characteristics you specify for paths beginning in a vector or list and ending in a vector or list
automatically apply to all module paths connecting the two vectors or lists.

The <reject> and <error> limit values assigned to the PATHPULSE$ specparam define
the pulse handling windows in time units—not percentages as in the global command line. If
you supply a value only for the <reject> variable, <reject> and <error> are set to the
same value. The following example shows how to use PATHPULSE$:

specify

(clk => q) = 12;
(data => q) = 10;
(clr, pre *> q) = 4;

specparam
November 2008 259 Product Version 8.2

Verilog-XL Reference
Using Specify Blocks and Path Delays
PATHPULSE$ = 3,
PATHPULSEclkq = (2, 9),
PATHPULSEclrq = 1;

endspecify

The path (clk=>q) acquires a <reject> value of 2 and an <error> value of 9, due to
the second PATHPULSE$ declaration. The path (data=>q) acquires <reject> and
<error> values of 3 in compliance with the first PATHPULSE$ declaration. The paths
(clr*>q) and (pre*>q) receive <reject> and <error> values of 1, following the last
PATHPULSE$ declaration.

The previous example specifies a pulse control limit for the first input signal clr in module
path (clr,pre => q), but does not explicitly specify a pulse control limit for pre, the
second signal in the path. The reason is because all signals in module paths with multiple
inputs or outputs must have the same delays and pulse handling. Therefore, the pulse
handling characteristics for one module path apply to all paths defined in the same
declaration.

Pulse Filtering for Module Path Delays

Verilog-XL provides two kinds of pulse filtering called on event and on detect. The following
figure shows the e states that each method of pulse filtering produces.

With a delay of 6, Verilog-XL schedules the delay for time 16 and 17 based on the pulse
edges. If you use the on event pulse filter, the e state region exists from time 16 to time 17. If
you use the on detect pulse filter, the e state region is extended from the ending edge of the
pulse at time 11 for the length of the entire delay factor (6) to time 17.

Either style of pulse filtering can work on a module or path output. You can specify the style
in specify blocks using the $pulsestyle_onevent and/or $pulsestyle_ondetect

in +pulse_r/0
+pulse_e/100

...10 11 12 13 14 15 16 17 ...

out

out

On Event

On Detect

Unfiltered

out

e state

e state

Schedule

delay: 6
November 2008 260 Product Version 8.2

Verilog-XL Reference
Using Specify Blocks and Path Delays
tasks. You can also specify the style from the command line using the
+pulse_e_style_onevent and/or +pulse_e_style_ondetect plus options. When
you use a pulse filtering plus option, Verilog-XL globally uses the specified style on all paths,
overriding any specify block tasks in the description. The syntax for the pulse-filtering styles
follows:

$pulsestyle_onevent[(<path_output>+)];

$pulsestyle_ondetect[(<path_output>+)];

Note: All paths that terminate at a particular output must use the same style of pulse filtering.

Examples of determining pulse-filtering styles follow:

specify
(in => outbar) = (2, 3); // on event (by default)
$pulsestyle_ondetect; // affects out
(in => out) = (5, 6); // on detect style
(clk => out) = (4); // on detect style
$pulsestyle_onevent; // affects synch and output
(in => sync) = (20, 30); // on event style
(in => output) = (7, 9); // on event style

endspecify

specify
$pulsestyle_ondetect(out); // affects out only
(in=>out)=(15,25); // on detect style
(clk=>q)=5; // on event style (by default)

endspecify

The pulse-filtering specifications in the following example produce an error because they are
incorrect pulse style specifications.

specify
$pulsestyle_ondetect(out); // affects out
$pulsestyle_onevent(out); // error by changing

// styles on out
endspecify

specify
$pulsestyle_ondetect; // sets on detect style
(in=>out)=(15,25); // on detect style for out
$pulsestyle_onevent(out); // error by changing

// styles on out
endspecify

The following warning message is displayed when an e state appears on a path output due
to the cancellation of a schedule:

Warning! Time = <simulation time>: Schedule cancel flagged as an error at node
<output>, value = StE
 Path: <path> [Verilog-CANERR]

These warning messages do not appear by default. To display warning messages, you need
to use the +show_cancelled_e plus option. This option displays the path that caused the
schedule cancellation to occur. To disable these warning messages, use the
+no_show_cancelled_e plus option. Using this option, however, suppresses the e state
November 2008 261 Product Version 8.2

Verilog-XL Reference
Using Specify Blocks and Path Delays
too. To disable warning messages without suppressing the e state, use the
+no_cancelled_e_msg plus option.

Note: The +no_show_cancelled_e and +no_cancelled_e_msg plus options work
only if warning messages are enabled using the +show_cancelled_e plus option.

Pulse Filtering and Cancelled Schedules

A schedule is cancelled when a delay schedules a transition to occur before a previously
scheduled transition. The following figure shows the e state that occurs with a cancelled
schedule for each method of pulse filtering.
.

The events in this figure occur as follows:

1. At time 10, a 1->0 transition on the input causes Verilog-XL to schedule event A at time
16 (based on adding the fall delay of 6 to time 10).

2. At time 11, a 0->1 transition on the input causes Verilog-XL to schedule event B at time
15 (based on adding the rise delay value of 4 to time 11).

3. Because event B is scheduled to occur before event A, the schedule for A is cancelled
and produces an e state region that is based on the pulse filtering method you use.

❑ The on event pulse filtering produces an e state region on out that begins at the
time of the second scheduled event B and ends at the time of the cancelled
scheduled event A, which is replaced with a scheduled event to the new logic state
(in this case, 1).

...10 11 12 13 14 15 16 17...
in

out

out

On Event

On Detect

Scheduling
for out

B A

delay: (trise = 4, tfall= 6)

scheduled events

e state

e state

in
+pulse_r/0
+pulse_e/100

out

tfall= 6 trise = 4
November 2008 262 Product Version 8.2

Verilog-XL Reference
Using Specify Blocks and Path Delays
❑ The on detect pulse filtering produces an e state region on out that begins at the
time of the trailing edge of the input and ends at the time of the cancelled scheduled
event A, which is replaced with a scheduled event to the new logic state (in this case,
1).

The figure “Module path delay pulse filtering” on page 264 shows a more complex example
of cancelled schedules using two inputs to out. The various combinations of plus options
affect the e state region differently for module path delays.

The following figure shows wave forms produced using various combinations of plus options.

Note: The tasks that correspond to the plus options also produce the same wave forms.
November 2008 263 Product Version 8.2

Verilog-XL Reference
Using Specify Blocks and Path Delays
Module path delay pulse filtering

The waveforms in the previous figure are explained as follows:

■ Wave a occurs because of pulse filtering. It indicates an inaccurate delay because
Verilog-XL is choosing a 0->Z delay (115) to schedule a 1->Z transition.

■ Wave b shows an e state from time 90 to time 115, which is the time from the final
schedule to the time of the cancelled schedule. After time 115, the output is in the Z state.

in

enb

out

in => out = (30, 30);
enable => out = 0->1 = 0

1->0 = 0
0->z = 15
z->1 = 0
1->z = 25
z->0 = 0

80 90 100 110 120 130

in

enb

A BC

A: 0->1 80+30
B: 1->0 90+30
C: 0->Z 100+15

a.

b.

c.

+pulse_e_style_onevent,

+pulse_e_style_onevent,

+pulse_e_style_ondetect,

+pulse_e_style_ondetect,

Plus Option Waveform Effect on Module Path Delays

80 90 100 110 120 130

e state

e state

+show_cancelled_e

+no_show_cancelled_e

+no_show_cancelled_e

+pulse_r/0
+pulse_e/100

 or

e state

+show_cancelled_e

a.

b.

c.

Scheduled events in and enb to out:

+show_cancelled_e,

+show_cancelled_e,
November 2008 264 Product Version 8.2

Verilog-XL Reference
Using Specify Blocks and Path Delays
■ Wave c shows an e state from time 90 to time 120, which is the time from the pulse that
caused the e state to the last output transition. After time 120, the output is in the Z state.
The wave at ime 90 to 100 is due to pulse filtering; time 100 to 120 is due to schedule
cancellation.

You can display cancelled schedules in specify blocks using the $showcancelled task. The
$noshowcancelled task disables the display of cancelled schedules.

You can also display cancelled schedules or disable the display of cancelled schedules from
the command line using the +show_cancelled_e or the +no_show_cancelled_e plus
option. When you use the plus option, Verilog-XL displays all or none of the cancelled
schedules, overriding any specify block tasks in the description.

The syntax to display or hide cancelled schedules is as follows:

$showcancelled[(<path_output>+)];

$noshowcancelled[(<path_output>+)];

The following example shows how to display or hide cancelled schedules:

specify

(in => outbar) = (2, 3); // not shown by default
$showcancelled; // $showcancelled affects out
(in => out) = (5, 6);
(clk => out) = (4);
$noshowcancelled; // affects sync and output
(in => sync) = (20, 30);
(in => output) = (7, 9);

endspecify

specify

$showcancelled(out); // affects out only
(in=>out)=(15,25);
(clk=>q)=5;

endspecify

The cancelled schedule specifications in the following example produces an error.

specify

$noshowcancelled(out); // sets no display on out
$showcancelled(out); // error by changing out state

endspecify

specify

$noshowcancelled; // sets no display
(in=>out)=(15,25);
$showcancelled(out); // error by changing out state

endspecify
November 2008 265 Product Version 8.2

Verilog-XL Reference
Using Specify Blocks and Path Delays
Pulse Filtering and Cancelled Schedule Dilemmas

Some cancelled schedules create a dilemma because Verilog-XL can recalculate a delay.
This may result in the original schedule not having to be cancelled. The following figures show
how cancelled schedule dilemmas occur and how various combinations of plus options affect
the e state region for transport path delays. The same waveforms are produced when you use
the tasks that correspond to the plus option ($pulsestyle_ondetect,
$pulsestyle_onevent, $showcancelled, and $noshowcancelled).
November 2008 266 Product Version 8.2

Verilog-XL Reference
Using Specify Blocks and Path Delays
Note: The following figures show waveforms that apply to transport path delays (using the
+transport_path_delays plus option) and transport interconnect delays (using the
+transport_int_delays plus option).

in

enb

out

80 90 100 110 120 130

in

enb

A BC D

+pulse_r/0
+pulse_e/100

in => out = (30, 30);
enable => out = 0->1 = 0

1->0 = 0
0->z = 15
z->1 = 0
1->z = 25
z->0 = 0

Scheduled events in and enb to out:
A: 0->1 80+30
B: 1->0 90+30
C: 0->Z 100+15
D: 1->Z 100+25
November 2008 267 Product Version 8.2

Verilog-XL Reference
Using Specify Blocks and Path Delays
The wave forms in the previous figures are explained as follows:

■ Wave d occurs on transport path delays for the following reasons:

❑ Case d1 produces wave d because the on-detect style schedules an e state at the
edge of the event that caused the pulse to occur, which is the transition on enb at
time 100. (Note that the outcome of setting +x_transport_pessimism makes
the +show_cancelled_e plus option redundant.)

❑ Case d2 produces the same wave as d1 because the outcome of setting
+x_transport_pessimism makes the +no_show_cancelled_e plus option
irrelevant.

❑ Case d3 produces wave d because the display of cancelled events causes the x
state to appear on the output, beginning at time 100, because the pulse filtering style
is set to on-detect, which is the time of the input transition that caused the cancelled
schedule.

■ Wave e occurs on transport path delays for the following reasons:

❑ Case e1 produces wave e because the transport delay algorithm is being used, and
the 0->Z delay is recalculated based on a 1->Z transition. This changes the time of

e.

d.

f.

+pulse_e_style_onevent,

80 90 100 110 120 130

e state

e state

+show_cancelled_e,
+x_transport_pessimism

+pulse_e_style_onevent,
+ no_show_cancelled_e,
+x_transport_pessimism

+pulse_e_style_onevent,
 +show_ cancelled_e

+pulse_e_style_ondetect,
+show_cancelled_e,
+x_transport_pessimism

+pulse_e_style_ondetect,
+ no_show_cancelled_e,
+x_transport_pessimism

+pulse_e_style_ondetect ,
+show_cancelled_e

+pulse_e_style_ondetect,
+no_show_cancelled_e,

+pulse_e_style_onevent,
+ no_show_cancelled_e

d1.

d2.

d3.

e1.

e2.

e3.

f1.

f2.

Plus Option Waveform Effects on Transport Path Delays
November 2008 268 Product Version 8.2

Verilog-XL Reference
Using Specify Blocks and Path Delays
the transition to Z on the output to time 125. However, if that is done, then the 1->0
transition at time 120 no longer needs to be cancelled, producing a cancelled
schedule dilemma (CSD). Because +x_transport_pessimism is set, the CSD
causes an x to appear on the output from time 115 to 125. (Note that the outcome
of setting +x_transport_pessimism makes the +show_cancelled_e plus
option redundant.)

❑ Case e2 produces the same wave as e1 because the outcome of setting
+x_transport_pessimism makes the +no_show_cancelled_e plus option
irrelevant.

❑ Case e3 produces wave e because even though there is no
+x_transport_pessimism, the display of cancelled schedules causes an x state
to appear on the output due to the 1->0 schedule at time 120 being cancelled. (The
only difference from case d1 is the time of the final transition to Z, which is due to
the delay recalculation that is part of the transport delay algorithm.)

■ Both cases f1 and f2 produce wave f because neither +x_transport_pessimism
nor +show_cancelled_e is set. Therefore, no x state appears in the output regardless
of the setting of
on-event or on-detect.

Using State-Dependent Path Delays (SDPDs)

An SDPD is a conditional module path delay; it assigns a delay to a module path when
specific conditions are true. An SDPD includes the following items:

■ a conditional expression

■ a module path description

■ a delay expression that applies to the module path

The syntax for an SDPD is as follows:

<sdpd>
::= if(<sdpd_conditional _expression>)(<path_description>)=
(<path_delay_value>)
||= <ifnone_path>

<sdpd_conditional_expression>
::=<expression>

<path_description>
::= (<path_input> => <path_output>)
||= (<list_of_path_inputs> *> <list_of_path_outputs>)
||= (<edge_identifier> <path_input> => (<path_output>
November 2008 269 Product Version 8.2

Verilog-XL Reference
Using Specify Blocks and Path Delays
<polarity_operator>?:<data_source_expression>))
||= (<edge_identifier> <path_input> *> (<list_of_path_outputs>

<polarity_operator>?:<data_source_expression>))

<path_delay_value>
::= (<path_delay_expression>)
||= (<path_delay_expression>,<path_delay_expression>)
||= (<path_delay_expression>,<path_delay_expression>,

<path_delay_expression>)
||= (<path_delay_expression>,<path_delay_expression>,

<path_delay_expression>,<path_delay_expression>,
<path_delay_expression>,<path_delay_expression>)

(Parentheses in <path_delay_value> are optional.)

<ifnone_path>
::= ifnone(<path_description>)=(<path_delay_value>)

Evaluating SDPD Expressions

An SDPD expression must evaluate to one bit. In Verilog-XL, SDPD expressions that evaluate
to 0 are false, and SDPD expressions that evaluate to 1, X, or Z are true.

Note: Evaluating SDPD expressions is different from evaluating other Verilog HDL
constructs. For example, in the behavioral language, if statements that evaluate to x or z
are false. The SDPD expression is consistent with VeritimeTM path selection.

If multiple SDPDs are specified for a path, Verilog-XL looks at the delays for all statements
whose conditions are true, determines which source has had the most recent transition, and
selects the smallest delay. See “Working with Multiple Path Delays” on page 275 for details
on how Verilog-XL selects a delay when multiple delays are specified for a path.

Unconditional path delays are always considered true. The ifnone construct allows you to
specify a delay for cases in which all of the SDPD expressions are false.

The operands in an SDPD expression must be one of the following:

■ A scalar or vector module input, output, or inout port—in its entirety or in bit-select or
part-select form.

■ A compile time constant—an expression whose value can be computed at compile time.
Its value does not change during simulation.

■ A parameter—an expression that can be changed after compile time, even though the
updated value is not used. The parameter value that Verilog-XL uses is only the compile-
time value.
November 2008 270 Product Version 8.2

Verilog-XL Reference
Using Specify Blocks and Path Delays
■ A net or register (subject to restrictions)—declared within the module containing the
SDPD description.

The nets or registers in an SDPD conditional expression are subject to the same limitations
as the right-hand sides of accelerated continuous assignments.

The prohibited nets and registers in an SDPD expression are the following:

■ expanded vector nets that contain more than 127 bits

■ unexpanded vector nets

■ bit-selects of unexpanded vector nets

■ part-selects of unexpanded vector nets

■ vector registers

■ bit-selects of vector registers

■ part-selects of vector registers

■ specparams, the parameters declared in specify blocks

■ integers or real numbers

The SDPD expression can have any number of operators. The following table shows the valid
operators in SDPD expressions. The valid operators in SDPD expressions are the same
ones supported by accelerated continuous assignments.

The following table shows the operators that are invalid in SDPD expressions:

Bit-wise & and, | or, ^ xor, ~^ xnor, ~ negation

Reduction & and, | or, ^ xor, ~^ xnor, ~& nand, ~| nor

Logical && and, || or, == equality, != inequality, ! not

Other {} concatenation, {{}} duplicate concatenation,
=== case equality, !== case inequality, ?: conditional

Arithmetic + - * /

Relational > >= < <=

Left shift <<

Right shift >>
November 2008 271 Product Version 8.2

Verilog-XL Reference
Using Specify Blocks and Path Delays
In the following example, you use SDPDs to describe a pair of output rise and fall delay times
when the XOR inverts a changing input. When the XOR buffers a changing input, SDPDs
allow you to describe another pair of output rise and fall delay times.

module sdpdexample (a,b,out);

input a,b;
output out;
xor (out,a,b);

specify

specparam noninvrise = 1, noninvfall = 2;
specparam invertrise = 3, invertfall = 4;

 if(a) (b=>out)=(invertrise,invertfall); // SDPD
 if(~a)(b=>out)=(noninvrise,noninvfall); // SDPD
 if(b) (a=>out)=(invertrise,invertfall); // SDPD
 if(~b)(a=>out)=(noninvrise,noninvfall); // SDPD
endspecify

endmodule

In the next example, SDPDs specify different sets of path delays for different ALU operations.
The first three path declarations declare paths extending from the operand inputs to the o1
output. The delays on these paths are assigned to operations based on the operation
specified by the inputs on opcode. The last path declaration declares a path from the
opcode input to the o1 output.

‘timescale 1ns/100ps

module ALU(o1,i1,i2,opcode);

input [7:0] i1,i2;
input [2:1] opcode;
output [7:0]o1;

...
specify

// add operation
if (opcode == 2’b00)

(i1,i2 *> o1) = (25.0,25.0);

// pass-through i1 operation
if (opcode == 2’b01)

(i1 => o1) = (5.6,8.0);

// pass-through i2 operation
if (opcode == 2’b10)

(i2 => o1) = (5.6,8.0);

// delays on opcode changes
(opcode *> o1) = (6.1,6.5);

endspecify
endmodule

Modulus %
November 2008 272 Product Version 8.2

Verilog-XL Reference
Using Specify Blocks and Path Delays
Using Edge Keywords in SDPDs

SDPDs in Verilog-XL permit edge keywords (posedge and negedge) in module path
descriptions, but ignore their meaning. See “Using Edge-Control Specifiers” on page 291 for
more information about edge-control specifiers.

The following example shows how Verilog-XL interprets the edge keywords. The upper
specify block contains module path descriptions that Verilog-XL interprets as if they were the
module path descriptions in the lower specify block.

specify
specparam trise=2, tfall=3;
if(in1&&in2)(posedge clock=>(out1-:in3))=(trise,tfall);
if(~in1)(negedge clock=>(out2+:in3))=(trise,tfall);

endspecify

specify
specparam trise=2, tfall=3;
if(in1&&in2)(clock=>out1)=(trise,tfall);
if(~in1)(clock=>out2)=(trise,tfall);

endspecify

You can implement edge conditions, however, using the ‘ifdef compiler directive.

The following examples illustrate a problem in using edge keywords in SDPD expressions,
and show how you can have the functionality of edge keywords in SDPDs.

/* The following lines are an unsuccessful attempt to impose
 different edge-conditioned delays on a path, because Verilog-XL
 does not use the edge information. */
(posedge clk => (q_out +: d_in)) = 15;
(negedge clk => (q_out +: d_in)) = 9;

/* Verilog-XL interprets the preceding lines to have the meaning
 of the following lines, and it chooses 9, the lesser of the delays,
 in all conditions. */
(clk => q_out) = 15;
(clk => q_out) = 9;

/* The following lines implement the intended edge conditions.
 Their syntax makes it possible for both Verilog-XL and Veritime
 to use the same library. */
‘ifdef verilog if(clk == 1) ‘endif

(posedge clk => (q_out +: d_in)) = 15;
‘ifdef verilog if(clk == 0) ‘endif

(negedge clk => (q_out +: d_in)) = 9;

Both lines in the previous example contain conditions that ensure that the SDPDs apply only
to a specific edge transition. The first line results in a path delay of 15 for signals with a
positive edge propagating from clk to q_out. The second line results in a path delay of 9 for
signals with a negative edge propagating from clk to q_out.
November 2008 273 Product Version 8.2

Verilog-XL Reference
Using Specify Blocks and Path Delays
Making SDPDs Function as Unconditional Delays

To simulate SDPDs as unconditional delays while performing Verilog-XL simulations, use the
+pre_16a_paths plus option on the command line.

You can also enable and disable the conditional path functionality with the ‘pre_16a_paths
and the ‘end_pre_16a_paths compiler directives, which are described as follows:

■ ‘pre_16a_paths

Treats conditional paths as if their conditional expressions are always true, as in Verilog-
XL versions prior to 1.6a.

■ ‘end_pre_16a_paths

Simulates SDPDs as conditional delays.

Note: The ‘resetall compiler directive also turns off the functionality of conditional paths.

The ‘pre_16a_paths compiler directive remains in effect, even across multiple Verilog
files, until the ‘end_pre_16a_paths or ‘resetall compiler directive is specified. If you
specify the +pre_16a_paths plus option on the command line, the ‘pre_16a_paths and
the ‘end_pre_16a_paths compiler directives are disabled.

Simulating SDPDs as unconditional paths can introduce the following variations in a
simulation:

■ suppression of some error-checking introduced in Verilog-XL 1.6a

■ different results when multiple paths connect an input and an output

Working with Distributed Delays and SDPDs

When a distributed delay and a path delay apply to a path, the larger of the two delays
schedules an output change.

For realistic modeling, larger modules require gate and net delays, and behavioral models
require procedural delays. These delays can have an undesirable impact on the choice of
path delays. In larger cells and modules that require distributed delays and SDPDs, inputs
should not change before an edge has passed to the outputs so that Verilog-XL can choose
an appropriate path delay based on the input state that generates the output change.
November 2008 274 Product Version 8.2

Verilog-XL Reference
Using Specify Blocks and Path Delays
Working with Multiple Path Delays

The following table summarizes how Verilog-XL selects a delay from multiple path delay
specifications.

Delay Types and Examples Verilog-XL Delay Choice

Two edge-sensitive delays with different
edges

(posedge in => (out:d1)) = 10;
(negedge in => (out:d2)) = 9;

Select min delay

delay = min(9, 10)

Multiple SDPDs

if (c1) (in => out) = 10;
if (c2) (in => out) = 9;

Select min of all true conditions

if (c1 && c2) delay = min(10, 9)
 else if (c1) delay=10
 else if (c2) delay=9
 else delay=0;

Multiple SDPDs and an unconditional path
delay

if (c1) (in => out) = 10;
if (c2) (in => out) = 9;
(in => out) = 8;

Unconditional path delay is always true.
Select min of all true conditions

if (c1 && c2) delay = min(10,9,8)
else if (c1 && !c2) delay=min(10,8)
else if (!c1 && c2) delay=min(9,8)
else delay=8;

Multiple SDPDs and ifnone delay

if (c1) (in => out) = 10;
if (c2) (in => out) = 9;
ifnone (in => out) = 8;

Select min of all true conditions.
Select ifnone delay if no true conditions

if (c1 && c2) delay=min(10,9)
 else if (c1 && !c2) delay=10
 else if (!c1 && C2) delay=9)
 else delay = 8;

Multiple unconditional path delays

(in => out) = 10;
(in => out) = 9;

Error

Multiple unconditional path delays, one of
which redefines an input or output as a bit-
or part-select

(in => out) = 10;
(in[1] => out[1]) = 9;

Error

Unconditional edge-sensitive delay and
unconditional level-sensitive delay

(posedge in => (out:d)) = 10;
(in => out) = 9;

Error
November 2008 275 Product Version 8.2

Verilog-XL Reference
Using Specify Blocks and Path Delays
Effects of Unknowns on SDPDs

With the typical implementation of level-sensitive qualifiers, Verilog-XL handles unknowns
properly. The following example shows a level-sensitive path delay.

if (flag == 1) (in => out) = 7,9;
if (flag == 0) (in => out) = 10,5;

When flag is 1, the out signal rises 7 time units and falls 9 time units after the in signal
changes. When flag is 0, the out signal rises 10 time units or falls 5 time units after the in
signal changes. But when flag is unknown, the output rises in min(7,10) time units and falls
in min(9,5) time units.

When an SDPD expression has an unknown value as an operand, Verilog-XL treats the
resulting delay as an SDPD whose condition is true. The following table shows all possible
conditional expressions, using flag, for a path from in to out. The table also shows the
delays that Verilog-XL selects when flag is 1, 0, X, or Z.

Note: The examples in the previous table are used only to help you understand how each
statement is handled by Verilog-XL. They are not recommended modeling practice.

The condition (flag == X) has no effect because this path delay will always be selected.
If you do not care about the value of flag, specify an unconditioned path using the delay by
itself (d) or a complete set of conditional path delays (a and b).

The case equality operator (===) and the case inequality operator (!==) have different effects
than the logical equality operator. The condition
if (flag === 1) is true if flag is 1, but false if flag is X.

Verilog-XL uses the minimum delays because the only time when multiple paths should be
selected is when unknowns are introduced into conditional expressions. When unknowns are
in the conditional expression, then it is likely that the output value will be corrupted by the
unknown signal. This results in the output signal going to an unknown value after the minimal
delay.

SDPD expression: path selected when... flag is
 1

flag is
 0

flag is
X or Z

if (flag == 1) (in => out) = a; Yes No Yes

if (flag == 0) (in => out) = b; No Yes Yes

if (flag == X) (in => out) = c; Yes Yes Yes

(in => out) = d; Yes Yes Yes

Delay selected for path from in to out min (a,c,d) min (b,c,d) min (a,b,c,d)
November 2008 276 Product Version 8.2

Verilog-XL Reference
Using Specify Blocks and Path Delays
Effects of Unknowns on Edge-Sensitive Delays

To specify edge-sensitive delays with unknowns, you can specify a conditional expression
similar to the D-type flip-flop shown in the following example

if (clk == 1) (posedge clk => (q_out +: d_in)) = 15;

When clk makes a 1→X or X→0 transition, Verilog-XL evaluates the model and determines
that the output does not change. Therefore, it will not use the path delay for these transitions.
The output changes only when clk makes a 0→X or X→1 transition. In this case, Verilog-XL
uses the path delay for positive transitions of the clk signal.

When a model has different edge qualifiers for the same path, as in the following example,
Verilog-XL ignores the edge information and selects both path delays.

‘ifdef verilog if(clk==1) ‘endif (posedge clk=>(q_out +: d_in)) = 9;

‘ifdef verilog if(clk==0) ‘endif (negedge clk=>(q_out -: d_in)) = 15;

To specify edge-sensitive conditional expressions in Verilog-XL, see “Using Edge Keywords
in SDPDs” on page 273.

The following table shows the effects in Verilog-XL when clk from the previous example
makes various transitions:

Possible Effects of Internal Logic

When the same output terminates multiple paths, some combinations of module path
declarations that include that output can cause unexpected modeling results. The following
figure shows this with a module that has one output port designated out and two input ports
designated A and B.

The module contains zero delay logic. Input A has a delay of 5 to the output. Input B has a
delay of 30 to the output. At simulation time 10, Verilog-XL evaluates the gate and determines

clk Effect in Verilog-XL

0→X Ignores the edge information, uses
level-sensitive qualifiers, and
selects both path delays:
min(9,15).

X→1 Selects the first path delay.

1→X Selects both paths: min(9,15).

X→0 Selects the second path delay.
November 2008 277 Product Version 8.2

Verilog-XL Reference
Using Specify Blocks and Path Delays
a change in out to 0. It schedules the change to appear at time 40, based on the path delay
from B to out. When input A changes to 0 at time 15, Verilog-XL does not reschedule the
change in out to time 20, because Verilog-XL schedules output changes when edges
transmit to module outputs. The change in A to 0 at time 15 does not transmit an edge to out
because the net named out, which is internal to the module, already has the value 0, due to
the change in B at time 10.

The 25 time unit difference between the two path delays is significant for the following
reasons:

■ It is the length of the period that follows the change on the input of the longer delay path
during which a change on the input of the shorter delay path can introduce the
unexpected behavior.

■ It is the maximum possible deviation from the expected timing for the change in the
module output signal.

5

30

A

B
out

5 10 15 20 25 30 35 40 45 50 55 60 650

A

B

signal at AND
gate output

signal that
passes from

module output
named out
November 2008 278 Product Version 8.2

Verilog-XL Reference
Using Specify Blocks and Path Delays
Enhancing Path Delay Accuracy

The default module path delay algorithm in Verilog-XL selects path delays without
considering circuit logic. Therefore, Verilog-XL may select a delay that cannot cause a
transition.

You can use an alternative accu_path delay algorithm to affect the choice of delay paths.
You can also use SDPDs to affect the choice of delay paths, but accu_path generally
produces the least complicated source code. See “Using State-Dependent Path Delays
(SDPDs)” on page 269 for information about SDPDs.

Invoking the accu_path Algorithm

You can enable the accu_path algorithm in two ways:

■ Specify the +accu_path_delay plus option on the command line to apply the
accu_path algorithm to any module output for which there is a path delay specification.

■ Specify the $eventcond system task in a specify block to apply either the accu_path
algorithm to all paths in a module or to selected paths in a module. (Specify the
$noeventcond system task to re-apply the default delay selection algorithm.)

The following example shows how to use the $eventcond system task:

specify
 $eventcond; // Use accu_path algorithm
 (a => out) = 5;
 (b => q) = 10;
 $noeventcond; // Use default algorithm
 (c => out) = 5;
 (d => q) = 10;
endspecify

You should use $eventcond and $noeventcond for the following reasons:

■ Model vendors can enable accu_path in specific cells or for paths within a cell where
necessary or appropriate.

■ Using the accu_path algorithm selectively usually results in better performance than
using it all the time with the +accu_path_delay plus option.

If you specify the name of a path output as a parameter to $eventcond, Verilog-XL applies
the accu_path algorithm to paths terminating with that output and uses the default algorithm
for other paths.

However, when you specify the +accu_path_delay plus option, the accu_path algorithm
is in effect for all paths. Then, if you specify the name of a path output as a parameter to
November 2008 279 Product Version 8.2

Verilog-XL Reference
Using Specify Blocks and Path Delays
$noeventcond, Verilog-XL applies the default algorithm only to paths terminating with that
output.

The following examples show how to use a parameter with $eventcond and with
$noeventcond. The specified algorithm is the accu_path algorithm if you specified the
+accu_path_delay plus option on the command line. Otherwise, the specified algorithm is
the default.

specify
 $eventcond (out);
 (a => out) = 5; // Use accu_path algorithm
 (b => q) = 10; // Use specified algorithm
endspecify
specify
 (a => o) = 3; // Use specified algorithm
 $noeventcond (out);
 (i => out) = 5; // Use default algorithm
 (i => q) = 10; // Use specified algorithm
 (b => out) = 5; // Use default algorithm
endspecify

All paths to the same output must use the same algorithm. If you set paths to the same output
to two different settings, a warning is issued and the first setting is used. For instance, in the
following example, Verilog-XL uses the accu_path algorithm.

specify
 $eventcond;
 (i => out) = 5; // Use accu_path
 $noeventcond;
 (a => out) = 10; // Use older
endspecify

To use the accu_path algorithm, Verilog-XL determines how the logic of the circuit affects
the choice of delay paths. If Verilog-XL finds a condition that prevents it from making this
determination, Verilog-XL uses the default path delay algorithm.

The following conditions prevent Verilog-XL from using the accu_path algorithm:

■ A circuit loop between the path input and the path output

■ A distributed delay on a net or gate in the module on the path between the path input and
the path output

■ Bidirectional switches on the path between the path input and the path output

■ An expression driving a net on the path between the path input and the path output

■ A register driving a net on the path between the path input and the path output

■ A net on the path between the path input and the path output that has no driver in the
module
November 2008 280 Product Version 8.2

Verilog-XL Reference
Using Specify Blocks and Path Delays
■ A net on the path between the path input and the path output that is driven by a
sequential user defined primitive

■ A net on the path between the path input and the path output that is driven by an internal
primitive used for SWITCH-XL, CAXL, or TURBO

Comparing the Default and accu_path Delay Selection Algorithms

This section compares the default delay selection algorithm with the accu_path algorithm.
It includes several examples to help you decide when to use the performance optimizations
of the default algorithm or the greater accuracy of the accu_path algorithm.

Summary of the default delay selection algorithm

To simulate module path delays, Verilog-XL schedules events at module path outputs. When
Verilog-XL detects an event at a module path output, the default algorithm:

1. Examines each input that has a module path to the output when its event occurred.

2. Determines the time of the most recent input event (T1).

3. Determines the delay of the module path connecting the output to the input with the most
recent event (T2).

4. Adds T1 and T2 to determine the time for scheduling the output event. If two or more of
the most recent events are simultaneous, Verilog-XL selects the shortest of the path
delays. If internal delays cause the sum of T1 and T2 to be less than the current time,
then Verilog-XL schedules the output event at the current time.

5. Schedules the output event.

Examples of choices by the two algorithms

The following figure shows how the default delay selection algorithm causes the selection of
the nonlogical shorter path when a multiplexer’s inputs experience simultaneous transitions.
In this example, the default algorithm groups all inputs connected to the output by
unconditional paths, and the path in that group with the shortest delay (B=>OUT) cannot
November 2008 281 Product Version 8.2

Verilog-XL Reference
Using Specify Blocks and Path Delays
logically control any transition at OUT. By contrast, the accu_path algorithm evaluates only
the input that can affect OUT.

The next figure shows how the default algorithm does not correctly evaluate a path when an
earlier input event should control the output event delay. The zero-delay logic of the AND gate
delivers a change to OUT at time 10, and the default algorithm determines a time for
scheduling the event on OUT by evaluating only the path with the latest input event (A=>OUT).

A

B

C = 0

OUT

(A => OUT) = 10

(B => OUT) = 5

0 5 10 15 20 25 30 35 40

A

B

OUT

The multiplexer is
set to respond to
input A, and should
use the delay of 10.

In the default algorithm
the shorter delay of 5
controls the output.

The accu_path algorithm
perceives that the transition
must originate at A and
chooses the delay of 10.
November 2008 282 Product Version 8.2

Verilog-XL Reference
Using Specify Blocks and Path Delays
By contrast, the accu_path algorithm schedules the event on OUT at the earliest time that OUT
can change, which is 10 units after the transition on B in this case.

The following figure shows how a selection does not model hardware in the manner
suggested by the path delay specifications because the default algorithm selects the shorter
path delay when two inputs transition simultaneously. When both inputs A and B transition at
time 10, the zero-delay logic immediately delivers an output change to OUT. The default
algorithm schedules the transition at OUT by selecting the shorter delay of 5 on the path from

5

10

A

B
OUT

0 5 10 15 20 25 30 35 40

A

B

OUT

The accu_path algorithm
correctly selects the
time at which both inputs
can affect OUT.

time 18
The default algorithm schedules
the transition on OUT too early
because it does not evaluate the
delay on the path from B to OUT.
It evaluates only the delay on the
path from A to OUT, because that
path has had the most recent
input event.

time 8
November 2008 283 Product Version 8.2

Verilog-XL Reference
Using Specify Blocks and Path Delays
A to OUT. By contrast, the accu_path algorithm schedules the change on OUT because the
transition at input B transmits to OUT at time 20.

The following figure shows how an input transition, that occurs after a previous input transition
has already scheduled an output event, can cause the accu_path algorithm to reschedule

5

10

A

B
OUT

0 5 10 15 20 25 30 35 40

A

B

OUT

The default algorithm
schedules the transition
on OUT earlier than it
should appear, because
it selects the shorter of
the two delays on paths
with simultaneous input
events.

The accu_path algorithm
correctly selects the
time at which both inputs
can affect OUT.
November 2008 284 Product Version 8.2

Verilog-XL Reference
Using Specify Blocks and Path Delays
the output event. If the later input event indicates that the output is to occur earlier than
previously scheduled, then the output event is rescheduled.

Limits of the accu_path Algorithm

The accu_path algorithm can exhibit unexpected behavior when the following conditions
exist:

■ Inputs change simultaneously or before the time difference between the two inputs.

■ User-defined primitives (UDPs) are written in such a way that not all inputs have explicit
table entries

■ When there are multiple declarations of gates and continuous assigns in a design

Examples of the Limits of the accu_path Algorithm

Consider the nand gate with the delays on the left side of the following figure. The right side
shows potential waveforms at the inputs and output of the gate. The accu_path algorithm
selects the shorter delay and produces the expected output only if input B makes the
transition first, because only that situation can cause a change at the output. If the inputs

5

15

A

B
OUT

0 5 10 15 20 25 30 35 40

The accu_path algorithm
reschedules the output event
to an earlier time, correctly
reflecting its origin in a later
input event on a path that has
a short delay.

A

B

OUT

The default algorithm cannot
reschedule an output event
to an earlier time.
November 2008 285 Product Version 8.2

Verilog-XL Reference
Using Specify Blocks and Path Delays
make the transition simultaneously, or if A makes the transitions first, no change is scheduled
on the NAND gate output, and so no transition is delivered to OUT for delay selection and
scheduling.

The following figure shows the input of the longer path making a transition first. Because the
inputs never simultaneously have values of 1, no output event on the NAND gate is delivered
to OUT so that the accu_path algorithm can select a delay.

0 5 10 15 20 25 30 35 40

A

B
OUT expected

output

likely
output

A

B
OUT

(A => OUT) =10

(B => OUT) = 5

0 5 10 15 20 25 30 35 40

A

B
OUT

possible
output

actual
output

time 11

time 16
November 2008 286 Product Version 8.2

Verilog-XL Reference
Using Specify Blocks and Path Delays
A bufif1 or bufif0 with an enable to output delay that exceeds its input to output
delay may not show an expected pulse when the enable and the input transition is
simultaneous, as the following figure shows for a bufif1.
:

The accu_path algorithm can behave differently for logically equivalent but differently
written UDPs. Listing all the possible input patterns results in the most pessimistic, or latest,
scheduling of output changes. A logically equivalent, but shorter, description including the ?
and b symbols can result in less pessimistic or earlier, appearances of values at outputs. The
reduction in pessimism occurs because inputs with non-explicit UDP table entries do not
affect the output delay for all input vectors described by the table entries.

Using the accu_path algorithm can result in timing dilemmas caused by event cancellation.
Use the +x_transport_pessimism plus option to cause an X state to appear on the
output. See “Understanding Path Delays” on page 239 for more information and an example.

Using the accu_path algorithm when there are multiple declarations of gates and
continuous assignments in the design can cause problems. For example, when bit selects of
signals figure in both gate declarations and continuous assignments and there is a
corresponding path delay associated with them in a specify block, the following warning is
flagged while processing the continous assignments:

Eventcond derivation not possible for bit_selects in continuous
assigns

Alternatively, to process the same continuous assignments, you can replace them with their
equivalent gate declarations. The processing of other gate declarations, however, remains
normal in the design.

(enable => out) =15; (input => out) = 10;

enable

input

output

possible
output

actual
output

0 5 10 15 20 25 30 35 40
November 2008 287 Product Version 8.2

Verilog-XL Reference
Using Specify Blocks and Path Delays
November 2008 288 Product Version 8.2

Verilog-XL Reference
13
Timing Checks

This chapter describes the following:

■ Overview on page 289

■ Using Timing Checks on page 289

■ Using the Timing Check System Tasks on page 295

■ Using Negative Timing Check Limits in $setuphold and $recrem on page 313

Overview

A timing check is a system task that performs the following steps:

1. Determines the time between two events.

2. Compares the elapsed time to specified minimum or maximum time limits.

3. Reports a timing violation whenever the elapsed time occurs outside the specified time
limits.

Timing checks can contain edge-control specifiers (see “Using Edge-Control Specifiers” on
page 291), notifiers (see “Using Notifiers for Timing Violations” on page 292), and conditions
(see “Enabling Timing Checks with Conditioned Events” on page 293).

Note: If you do not want to check timing data, you can improve processing performance by
disabling timing checks by compiling with the +notimingchecks plus option on the
command line, as follows. Module path delays remain active.

verilog source.v +notimingchecks

Using Timing Checks

To verify the timing characteristics of your design, you can invoke the following timing check
system tasks in specify blocks:
November 2008 289 Product Version 8.2

Verilog-XL Reference
Timing Checks
$hold(<clk_event>, <data_event>, <hold_limit>{, <notifier>});

$nochange(<clk_event>, <data_event>, <start_offset>, <end_offset>);

$period(<clk_event>, <period_limit> {, <notifier>});

$recovery(<control_event>, <clk_event>,
<recovery_limit>, {<notifier>});

$recrem(<control_event>, <clk_event>,
<recovery_limit>, <removal_limit>,
{<notifier>}, {<tstamp_cond>}, {<tcheck_cond>},
{<delayed_ctrl>}, {<delayed_clk>});

$removal(<control_event>, <clk_event>,
<removal_limit>, {<notifier>});

$setup(<data_event>, <clk_event>, <setup_limit>{, <notifier>});

$setuphold(<clk_event>, <data_event>, <setup_limit>, <hold_limit>,
{<notifier>}, {<tstamp_cond>}, {<tcheck_cond>},
{<delayed_clk>}, {<delayed_data>});

$skew(<clk_1>, <clk_2>, <skew_limit> {, <notifier>});

$width(<edge_clk>, <min_limit> {,<threshold>{, <notifier>}});

Understanding Timing Violation Messages

When a system timing check encounters a timing violation, Verilog-XL reports the following
information:

■ File, line number, and instance name of the module in which the violation occurred

■ Time of the second event (which is the violation)

■ Time of the first event

■ Value of the timing check limit

Timing check violation messages have one of two different formats depending upon whether
the ‘timescale compiler directives control the modules containing them. In both of the
examples, a timing violation occurred on line 16 of the Verilog source description file
"source.v" in module top.ff.

The following message shows that without the ‘timescale directive the $setup system
task reports the violation that has occurred at time 405 with a clk time of 410 and a timing
check limit of 6.

“source.v”, 16: Timing violation in top.ff
$setup(data:405, posedge clk:410, 6);
November 2008 290 Product Version 8.2

Verilog-XL Reference
Timing Checks
The following example shows that with the ‘timescale directive, the $setup system task
reports the violation that has occurred at time 4050 with a clk time of 4100 and a timing
check limit of 60. The 6.0 in the violation message is the unscaled value that appears in the
timing check code; the 60 is the scaled value that the timing check tests.

“source.v”, 16: Timing violation in top.ff
$setup(data:4050, posedge clk:4100, 6.0 : 60);

The values of time limits in timing violation messages are always current, reflecting any
changes made by PLI and SDF annotation.

Note: When a timing violation occurs due to a vector, system timing checks report one
violation for each bit that changed.

Using Edge-Control Specifiers

You can control timing check events using specific edge transitions between 0, 1, and x.
Verilog-XL treats edge transitions involving z the same way as edge transitions involving x.

To use edge-control specifiers, type the edge keyword followed by a square-bracketed list of
from one to six edge specifiers separated by commas (01, 10, 0x, x1, 1x, x0), as shown in the
following syntax:

edge[<edge_specifier_list>]

You can also specify the posedge and negedge keywords for edge transitions, as follows:

■ The posedge keyword is equivalent to edge[01,0x,x1].

■ The negedge keyword is equivalent to edge[10,x0,1x].

The following example shows how to use edge-control specifiers using the $setup, $hold,
and $width system tasks. Timing checks for the $setup and $hold system tasks occur
only when the clk transitions 0->1 or x->1. Timing checks for the first $width system task
occurs when clk transitions 0->1 or x->1.Timing checks for the second $width system
task occur when clk transitions 1->0 or x->0.

module DFF2(clk, d, q, qb);
input clk, d;
output q,qb;

...
specify

specparam tSetup=60:70:75, tHold=45:50:55;
specparam tWpos=180:600:1050,tWneg=150:500:880;
$setup(d,edge[01,x1]clk,tSetup); // edge
$hold(edge[01,x1]clk,d,tHold); // control
$width(edge[01,x1]clk,tWpos); // specifiers:
$width(edge[10,x0]clk,tWneg); // edge[...,...]

endspecify
endmodule
November 2008 291 Product Version 8.2

Verilog-XL Reference
Timing Checks
Using Notifiers for Timing Violations

A notifier is a register that you specify as an optional argument to all system timing checks
(except $nochange, which is ignored by Verilog-XL). A timing violation toggles the value of
the notifier as shown in the following table:

Timing check notifiers let you detect timing check violations behaviorally, and take an action
that you specify as soon as they occur. For example, you may print an informative error
message describing the violation, or you may propagate an x value at the output of the device
that reported the violation.

Note: Do not initialize notifier registers because this could affect the behavior of the circuit.
For example, initializing a notifier could cause a sequential UDP to go to the X state
depending on the order in which the UDP received its inputs
at time 0.

The following examples show timing checks with notifier arguments:

$setup(data, posedge clk, 10, notify_reg) ;
$width(posedge clk, 16, notify_reg) ;

The following is a more complex example of how to use notifiers in a behavioral model. A
notifier is used to set the D flip-flop output to x when a timing violation occurs in an
edge-sensitive user-defined primitive (UDP). This model applies to edge-sensitive UDPs
only; for level-sensitive models, you must generate an additional UDP for x propagation.

primitive posdff_udp(q, clock, data, preset, clear, notifier);

output q; reg q;
input clock, data, preset, clear, notifier;

table

// clock data p c notifier state q
//---

r 0 1 1 ? : ? : 0 ;
r 1 1 1 ? : ? : 1 ;

p 1 ? 1 ? : 1 : 1 ;
p 0 1 ? ? : 0 : 0 ;

n ? ? ? ? : ? : - ;
? * ? ? ? : ? : - ;

? ? 0 1 ? : ? : 1 ;
? ? * 1 ? : 1 : 1 ;

 Time Notifier Value

Before Violation X 0 1 Z

After Violation 1 1 0 Z
November 2008 292 Product Version 8.2

Verilog-XL Reference
Timing Checks
? ? 1 0 ? : ? : 0 ;
? ? 1 * ? : 0 : 0 ;
? ? ? ? * : ? : x ;

// At any notifier event, output to x

endtable
endprimitive

module dff(q, qbar, clock, data, preset, clear);

output q, qbar;
input clock, data, preset, clear;

reg notifier;

and (enable, preset, clear);
not (qbar, ffout);
buf (q, ffout);
posdff_udp (ffout, clock, data, preset, clear, notifier);

specify

// Define timing check specparam values
specparam tSU = 10, tHD = 1, tPW = 25, tWPC = 10, tREC = 5;

// Define module path delay rise and fall specparam
// min:typ:max values

specparam tPLHc = 4:6:9 , tPHLc = 5:8:11;
specparam tPLHpc = 3:5:6 , tPHLpc = 4:7:9;

// Specify module path delays
(clock *> q,qbar) = (tPLHc, tPHLc);
(preset,clear *> q,qbar) = (tPLHpc, tPHLpc);

// Setup time : data to clock, only when
// preset and clear are 1

$setup(data, posedge clock &&& enable, tSU, notifier);

// Hold time : clock to data, only when preset and clear are 1
$hold(posedge clock, data &&& enable, tHD, notifier);

// Clock period check
$period(posedge clock, tPW, notifier);

// Pulse width : preset, clear
$width(negedge preset, tWPC, 0, notifier);
$width(negedge clear, tWPC, 0, notifier);

// Recovery time: clear or preset to clock
$recovery(posedge preset, posedge clock, tREC, notifier);
$recovery(posedge clear, posedge clock, tREC, notifier);

endspecify
endmodule

Enabling Timing Checks with Conditioned Events

A conditioned event allows a timing check to occur only when a signal with a specific value
exists, instead of whenever a clock event occurs to trigger a timing check. A conditioned event
is a scalar expression of one of the following forms:

<controlled_timing_check_event>
::= <timing_check_event_control> <specify_terminal_descriptor>

< &&& <timing_check_condition>?
November 2008 293 Product Version 8.2

Verilog-XL Reference
Timing Checks
<timing_check_condition>
::= <scalar_expression>
||= ~<scalar_expression>
||= <scalar_expression>==<scalar_constant>
||= <scalar_expression>===<scalar_constant>
||= <scalar_expression>!=<scalar_constant>
||= <scalar_expression>!==<scalar_constant>

The comparisons used in the condition may be deterministic, as in ===, !==, ~, or no
operation; or non-deterministic as in ==, or !=. When comparisons are deterministic, an x
value on the conditioning signal will not enable the timing check except (signal===‘1bx).
When comparisons are non-deterministic, an x on the conditioning signal enables the timing
check.

The following constraints apply when using conditioned events:

■ The conditioning signal must be a scalar net; the conditioning signal cannot be a vector
or an expression.

■ Because conditioning signals cannot be expressions, you may use only one conditioning
signal per event.

The following example shows unconditional and conditional timing checks. In the conditional
timing checks, a timing check occurs only when a positive edge of clk occurs and the clr
signal is high (in the second timing check) or low (in the third and fourth timing checks).

// Unconditional timing check
$setup(data, posedge clk, 10);

// Conditional timing check where clr is high
$setup(data, posedge clk &&& clr, 10);

// Two conditional timing checks where clr is low
$setup(data, posedge clk &&& (~clr), 10);
$setup(data, posedge clk &&& (clr===0), 10);

Multiple conditioning signals

You can allow a timing check to occur using values of multiple signals that serve as fanin to
a gate whose output is the conditioning signal. For example, to invoke $setup on the positive
clk edge only when clr and set are high, perform the following steps:

1. Specify the following declaration outside the specify block:

and(clr_and_set, clr, set);

2. Specify the condition to the timing check using the signal clr_and_set as follows:

$setup(data, posedge clk &&& clr_and_set, 10);
November 2008 294 Product Version 8.2

Verilog-XL Reference
Timing Checks
Using the Timing Check System Tasks

This section describes the following timing check system tasks.

■ “$hold” on page 295

■ “$nochange” on page 297

■ “$period” on page 298

■ “$recovery” on page 299

■ “$recrem” on page 301

■ “$setup” on page 305

■ “$setuphold” on page 307

■ “$skew” on page 310

■ “$width” on page 311

Event signals must be module inputs or module inouts, and they must be scalar or expanded
vector nets. When event signals are vectors, Verilog-XL generates a timing check for each bit
of the vector, although each bit’s timing check has the same limits

The $setuphold and $recovery system tasks allow negative time specifications to
generate delayed signals as inputs to other devices. For more information about negative
timing checks, see “Using Negative Timing Check Limits in $setuphold and $recrem” on
page 313.

$hold

The $hold system task determines whether a data signal remains stable for a minimum
specified time after a transition in an enabling signal, such as a clock signal that latches data
November 2008 295 Product Version 8.2

Verilog-XL Reference
Timing Checks
in a memory. The following figure shows the violation region specified by the $hold system
task:

The $hold system task has the following syntax:

$hold(<clk_event>, <data_event>, <hold_limit> {, <notifier>});

The $hold system task arguments are as follows:

<clk_event> Module input or inout transition at a control signal that
establishes the reference time

<data_event> Module input or inout transition at a data signal that initiates a
timing check against the value in <hold_limit>

<hold_limit> Positive constant expression or specparam that specifies the
interval between the clock and data events (that is, after clock
transition). Any change to the data signal within this interval
results in a timing violation. If <hold_limit> is 0, a timing
check does not occur.

<notifier> (optional) Register that changes value when a timing violation occurs. You
can use notifiers to define responses to timing violations. See
“Using Notifiers for Timing Violations” on page 292 for details.

Note: The $hold timing check reports a violation when the <clk_event> and
<data_event> occur simultaneously.

The following example illustrates how to use the $hold system task:

specify
specparam hold_param=11;
$hold(posedge clk, data, hold_param);
$hold(posedge clk, data, hold_param, flag) ;

endspecify
November 2008 296 Product Version 8.2

Verilog-XL Reference
Timing Checks
In this example, $hold reports a violation if the time that elapses from posedge clk to a
change in data is smaller than hold_param (which is 11). The optional register, flag,
toggles to report a violation in the second $hold system task.

$nochange

The $nochange system task is supported by Veritime. The $nochange system task reports
a timing violation if an event occurs during the specified time of the control signal.

Note: Verilog-XL does not support the $nochange system task, but will compile source
descriptions containing calls to $nochange inside specify blocks.

The following figure shows the violation regions for the $nochange system task:

The $nochange system task has the following syntax:

$nochange(<clk_event>, <data_event>, <start_offset>, <end_offset>);

The $nochange system task arguments are as follows:

<clk_event> Module input or inout transition at a control signal that
establishes the start time

<data_event> Module input or inout transition at a control signal that
establishes the end time

<start_offset> Any constant expression or specparam that defines the violation
region

<end_offset> Any constant expression or specparam that defines the violation
region. A positive value in <start_offset> starts the region
earlier; a negative value starts it later. A positive value in
<end_offset> ends the region later; a negative value ends it
earlier.
November 2008 297 Product Version 8.2

Verilog-XL Reference
Timing Checks
The following example shows how to use the $nochange system task to report a timing
violation if the <data_event> occurs while clk is high:

$nochange(posedge clk, data, startoff, endoff);

Note: You can specify the edge event with posedge or negedge, but you cannot use edge-
control specifiers, which are described in “Using Edge-Control Specifiers” on page 291. For
more information about using the $nochange system task for timing analysis, see the Timing
Checks chapter of the Veritime User Guide.

$period

The $period system task issues a violation when a clock event of the same edge occurs
within a specified time. The following figure shows how a violation occurs with the $period
system task:

The $period system task has the following format:

$period(<clk_event>, <period_limit> {, <notifier>});

The $period system task arguments are as follows:

<clk_event> Edge-triggered event

<period_limit> Positive constant expression or specparam that specifies the
minimum period for complete signal cycle

<notifier> (optional) Register that changes value when a timing violation occurs. You
can use notifiers to define responses to timing violations. See
“Using Notifiers for Timing Violations” on page 292 for details.

Because of the way Verilog-XL derives the <data_event> for $period, you must pass an
edge-triggered event as the <clk_event>. A compilation error occurs if the
<clk_event> is not an edge specification.
November 2008 298 Product Version 8.2

Verilog-XL Reference
Timing Checks
If you use an edge specifier, the edge must be either all positive (01, 0X, X1) or all negative
(10,1X, X0).

The following example shows how to use the $period system task:

specify
 specparam period_param=13;
 $period(negedge clk, period_param) ;
 $period(negedge clk, period_param, flag) ;
endspecify

In this example, the <data_event> for both $period specifications is negedge clk. The
$period system task reports a violation if the time between a negedge clk and the next
negedge clk is less than period_param (which is 13). The optional register, flag, toggles
to report a violation in the second $period system task.

$recovery

The $recovery system task specifies a time constraint between an asynchronous control
signal and a clock signal (for example, between the clearbar signal and the clock signal for a
flip-flop). A violation occurs when either signal changes within the specified time constraint.

The $recovery system task has the following two syntax formats:

$recovery(<reference_event>, <data_event>, <recovery_limit>
{, <notifier>});

or

$recovery(<reference_event>, <data_event>,
<removal_limit>, <recovery_limit>,
{<notifier>}, {<tstamp_cond>}, {<tcheck_cond>},
{<delayed_clk>}, {<delayed_data>});

The $recovery system task arguments are as follows:

<reference_event> Asynchronous control signal, which normally has an edge
identifier associated with it to indicate the transition that
corresponds to the release from the active state

<data_event> A clock (flip-flops) or gate (latches) signal, which normally has an
edge identifier to indicate the active edge of the clock or the
closing edge of the gate.

<removal_limit> Minimum interval between the active edge of the clock event and
the release of the asynchronous control signal. Any change to a
signal within this interval results in a timing violation.
November 2008 299 Product Version 8.2

Verilog-XL Reference
Timing Checks
<recovery_limit> Positive minimum interval between the release of the
asynchronous control signal and the next active edge of the clock
or gate event. The simulator uses the recovery limit for
deterministic comparisons and does not admit x values.

<notifier> (optional) Register that changes value when a timing violation occurs. You
can use notifiers to define responses to timing violations. See
“Using Notifiers for Timing Violations” on page 292 for details.

<tstamp_cond> (optional)
Places a condition on the reference_event and the
data_event, if both removal_limit and recovery_limit
are positive values. Places a condition only on the
reference_event if the removal_limit is negative.
Places a condition only on the data_event if the
recovery_limit is negative.

<tcheck_cond> (optional)
Places a condition on the reference_event and the
data_event if both removal_limit and recovery_limit
are positive values. Places a condition only on the
data_event if the removal_limit is negative. Places a
condition only on the reference_event if the
recovery_limit is negative.

<delayed_clk> (optional)
Delayed signal value for <reference_event> when one of
the limits is negative.

<delayed_data> (optional)
Delayed signal value for <data_event> when one of the limits
is negative.

Note: $recovery records the new reference event time before performing the timing check,
so if a data event and a reference event occur at the same simulation time, a violation occurs.

The following example shows the $recovery system task:

specify
 specparam recovery_param=3;
 $recovery(posedge set, posedge clk, recovery_param);
 $recovery(posedge set, posedge clk, recovery_param, flag);
endspecify
November 2008 300 Product Version 8.2

Verilog-XL Reference
Timing Checks
In this example, $recovery specifies a positive value (3) for <recovery_param>. The
second $recovery specification shows the optional notifier, flag, which toggles to report a
violation.

The following figure shows the violation region of 3 time units created when
<recovery_limit> is specified alone with a value of 3:

$recrem

The $recrem system task combines the functionality of $removal and $recovery into one
system task. It defines a time period relative to an asynchronous control signal during which
another control signal (often a clock) must be stable. A violation occurs when either signal
changes during this time constraint.

The following figure shows the violation region when you specify two positive time limits with
the $recrem system task:

The $recrem system task has the following syntax:

$recrem(<reference_event>, <data_event>,
<recovery_limit>, <removal_limit>,
{<notifier>}, {<tstamp_cond>}, {<tcheck_cond>},
{<delayed_clk>}, {<delayed_data>});

Note: You must indicate absent optional parameters as null parameters by using commas.
Do not add one or more commas after the $recrem system task’s last argument because
you can truncate the syntax after any argument.

The $recrem system task arguments are as follows:

control

violation region

<recovery_limit>

<reference_event>

(3)

signal

control

violation region

<removal_limit> <recovery_limit>

<reference_event>

(2) (3)
November 2008 301 Product Version 8.2

Verilog-XL Reference
Timing Checks
<reference_event> Asynchronous control signal, which normally has an edge
identifier to indicate which transition corresponds to the release
from the active state.

<data_event> Data signal, which normally has an edge identifier associated
with it to indicate which transition corresponds to the release
from the active state.

<recovery_limit> Minimum interval between the release of the asynchronous
control signal and the active edge of the clock event. Any change
to a signal within this interval results in a timing violation.

<removal_limit> Minimum interval between the active edge of the clock event and
the release of the asynchronous control signal. Any change to a
signal within this interval results in a timing violation.

<notifier> (optional) Register that changes value when a timing violation occurs. You
can use notifiers to define responses to timing violations. See
“Using Notifiers for Timing Violations” on page 292 for details.

<tstamp_cond> (optional)
Places a condition on the stamp_event. For the removal
check of $recrem, this argument places a condition on the
transition of the data signal. For the recovery check of
$recrem, this argument places a condition on the transition of
the reference signal.

<tcheck_cond> (optional)
Places a condition on the check_event. For the removal
check of $recrem, this argument places a condition on the
transition of the reference signal. For the recovery check of
$recrem, this argument places a condition on the transition of
the data signal.

<delayed_clk> (optional)
Delayed signal value for <reference_event> when one of
the limits is negative. See “Using Negative Timing Check Limits
in $setuphold and $recrem” on page 313 for more information.

<delayed_data> (optional)
Delayed signal value for <data_event> when one of the limits
is negative. See “Using Negative Timing Check Limits in
$setuphold and $recrem” on page 313 for more information.
November 2008 302 Product Version 8.2

Verilog-XL Reference
Timing Checks
The following example shows how the $recrem system task includes the functions of a
$removal system task with a positive <removal_limit>, and the functions of a
$recovery system task with a positive <recovery_limit>. The first system task in the
example is equivalent to both of the subsequent system tasks if <recovery_limit> and
<removal_limit> are positive values.

$recrem(posedge ctrl, clk, <recovery_limit>, <removal_limit>);

$removal(posedge ctrl, clk, <removal_limit>);
$recovery(posedge ctrl, clk, <recovery_limit>);

The next example illustrates $recrem with positive specifications:

specify
specparam tSU=16, tHLD=17;
$recrem(posedge ctrl, clk, tSU, tHLD) ;
$recrem(posedge ctrl, clk, tSU, tHLD, flag) ;

endspecify

In this example, $recrem reports a violation if the interval between posedge ctrl and clk
is less than the value of tSU (which is 16), enacting its $removal component. It also reports
a violation if the interval between posedge ctrl and clk is less than the value of tHLD
(which is 17), enacting its $recovery component. The second statement in the example
shows an optional notifier, flag, which toggles to report a violation.

You can specify negative times for either the <recovery_limit> or
<removal_limit> arguments. The sum of the two arguments must be greater than 0.

A negative <recovery_limit> value specifies a time period preceding a change in the
control signal as shown in the following example:

$recrem(posedge ctrl, clk,-2, 4, notifier);

A negative <removal_limit> value specifies a time period following a change in the
control event signal as shown in the following example:

control
violation

<removal_limit> (4)

negative
<recovery_limit>region (-2)

<reference_event>
November 2008 303 Product Version 8.2

Verilog-XL Reference
Timing Checks
$recrem(posedge ctrl, clk, 4, -2, notifier);

Note: You must specify the +neg_tchk plus option on the command line to make Verilog-
XL accept negative timing check arguments. If you do not specify the +neg_tchk plus option,
negative limits are set to 0 in the description or annotation, and a warning is issued.

A violation of $recrem in signals passing from a vector port to a vector port generates an
identical message for each bit that experiences a violation.

Note: You cannot condition a $recrem timing check with both the &&& conditioned event
symbol and the inclusion of the <tstamp_cond> or <tcheck_cond> in the syntax. If you
attempt to use both methods, only the parameters in the <tstamp_cond> and
<tcheck_cond> positions in the syntax are effective, and the attempt generates a warning
similar to that shown in the following example.

Warning! Conditions for timecheck input specified both on
 argument and as explicit condition, argument condition ignored [Verilog-SPAMCN]
 “/net/machine/home/willy/1.8/code/cond8.18.525”,
 31: $recrem(ckin &&& cond2in, datin, su, hl, flag, , cond1in);

$removal

The $removal system task specifies a time constraint between an asynchronous control
signal and a clock signal (for example, between the clearbar signal and the clock signal for a
flip-flop). A violation occurs when either signal changes within the specified time constraint.

The $removal system task has the following syntax format:

$removal(<reference_event>, <data_event>, <removal_limit> {, <notifier>});

The $removal system task arguments are as follows:

<reference_event> Asynchronous control signal, which normally has an edge
identifier associated with it to indicate which transition
corresponds to the release from the active state

<data_event> A clock (flip-flops) or gate (latches) signal, which normally has an
edge identifier to indicate the active edge of the clock or the
closing edge of the gate

control
violation

<removal_limit>
negative

<recovery_limit> (4)

(-2)
region

<reference_event>
November 2008 304 Product Version 8.2

Verilog-XL Reference
Timing Checks
<removal_limit> Positive minimum interval between the release of the
asynchronous control signal and the next active edge of the clock
or gate event. The simulator uses the removal limit for
deterministic comparisons and does not admit x values.

<notifier> (optional) Register that informs Verilog-XL when a timing violation occurs.
You can use notifiers to define responses to timing violations.
See “Using Notifiers for Timing Violations” on page 292 for
details.

Note: If the <data_event> and <reference_event> occur simultaneously,
$removal performs the timing check before it records the new <reference_event>
time. Therefore, no violation is reported.

The following example shows the $removal system task:

specify
 specparam recovery_param=3;
 $removal(posedge set, posedge clk, removal_param);
 $removal(posedge set, posedge clk, removal_param, flag);
endspecify

In this example, $removal specifies a positive value (3) for <removal_param>. The
second $removal specification shows the optional notifier, flag, which toggles to report a
violation.

The following figure shows the violation region of 3 time units when <removal_limit> is
specified alone with a value of 3:

$setup

The $setup system task determines whether a data signal remains stable before a transition
in an enabling signal, such as a clock signal that latches data in memory. A violation occurs

control

violation region

<removal_limit>

<reference_event>

(3)

signal
November 2008 305 Product Version 8.2

Verilog-XL Reference
Timing Checks
when a change in the signal occurs within a specified time limit before the clock event. The
following figure shows the violation region specified by the $setup system task.

The $setup system task has the following format:

$setup(<data_event>, <clk_event>, <setup_limit> {, <notifier>});

Transitions in the data signal that occur at the beginning or end of the period that the task
evaluates do not generate a timing violation.

The $setup system task arguments are as follows:

<data_event> Module input or inout transition at a data signal that initiates a
timing check against the value in <setup_limit>.

<clk_event> Module input or inout transition at a control signal that
establishes the reference time.

<setup_limit> Positive constant expression or specparam that specifies the
minimum interval between the data and the clock event (that is,
before clock transition). Any change to the data signal within
these intervals results in a timing violation.

<notifier> (optional) Register that changes value when a timing violation occurs. You
can use notifiers to define responses to timing violations. See
“Using Notifiers for Timing Violations” on page 292 for details.

Note: If the <clk_event> and <data_event> occur simultaneously, $setup performs
the timing check before it records the new <data_event> value. Therefore, no violation is
reported.

In the following example, the $setup system task reports a violation if the interval from
<data_event> to <clk_event> is less than <setup_limit> (10). The second
specification of the $setup system task uses an option notifier, flag, to indicate a timing
violation.

specify
 specparam setup_param=10;
 $setup(data, posedge clock, setup_param) ;

clock
violation region

<setup_limit>

<clk_event>
November 2008 306 Product Version 8.2

Verilog-XL Reference
Timing Checks
 $setup(data, posedge clock, setup_param, flag) ;
endspecify

$setuphold

The $setuphold system task combines the functionality of $setup and $hold into one
system task. It also offers additional functionality in the form of negative time specifications.
A violation occurs when a change in one of the signals causes a violation of this constraint.

The following figure shows the violation region when you specify two positive time limits with
the $setuphold system task.:

The $setuphold system task has the following format:

$setuphold(<clk_event>, <data_event>, <setup_limit>, <hold_limit>,
{<notifier>}, {<tstamp_cond>}, {<tcheck_cond>},
{<delayed_clk>}, {<delayed_data>});

Note: Absent optional parameters must be indicated as null parameters by using commas.
Do not add one or more commas after the $setuphold system task’s last argument because
the syntax can be truncated after any argument.

The $setuphold system task arguments are as follows:

<clk_event> Clock (flip-flops) or gate (latches) signal, which normally has an
edge identifier to indicate the active edge of the clock or the
closing edge of the gate.

<data_event> Data signal, which normally has an edge identifier associated
with it to indicate which transition corresponds to the release
from the active state.

<setup_limit> Minimum interval between the next active edge of the clock or
gate event and the release of the asynchronous control signal.

clock

violation region

<setup_limit> <hold_limit>

<clk_event>

(2) (3)
November 2008 307 Product Version 8.2

Verilog-XL Reference
Timing Checks
Any change to the clock signal within these intervals results in a
timing violation.

<hold_limit> Minimum interval between the release of the asynchronous
control signal and the next active edge of the clock or gate event.

<notifier> (optional) Register that changes value when a timing violation occurs. You
can use notifiers to define responses to timing violations. See
“Using Notifiers for Timing Violations” on page 292 for details.

<tstamp_cond> (optional)
Places a condition on the stamp event. For the setup check of
$setuphold, this argument places a condition on the transition
of the data signal. For the hold check of $setuphold, this
argument places a condition on the transition of the reference
signal.

<tcheck_cond> (optional)
Places a condition on the check event. For the setup check of
$setuphold, this argument places a condition on the transition
of the reference signal. For the hold check of $setuphold,
this argument places a condition on the transition of the data
signal.

<delayed_clk> (optional)
Delayed signal value for <clk_event> when one of the limits
is negative. See “Using Negative Timing Check Limits in
$setuphold and $recrem” on page 313 for more information.

<delayed_data> (optional)
Delayed signal value for <data_event> when one of the limits
is negative. See “Using Negative Timing Check Limits in
$setuphold and $recrem” on page 313 for more information.

The following example shows how the $setuphold system task includes the functions of a
$setup system task with a positive <setup_limit>, and the functions of a $hold
system task with a positive <hold_limit>. The first system task in the example is
equivalent to both of the subsequent system tasks if <setup_limit> and
<hold_limit> are positive values.

$setuphold(posedge clk, data, <setup_limit>, <hold_limit>);

$setup(data, posedge clk, <setup_limit>);
$hold(posedge clk, data, <hold_limit>);

The next example illustrates $setuphold with positive specifications:
November 2008 308 Product Version 8.2

Verilog-XL Reference
Timing Checks
specify
 specparam tSU=16, tHLD=17;
 $setuphold(posedge clk, data, tSU, tHLD) ;
 $setuphold(posedge clk, data, tSU, tHLD, flag) ;
endspecify

In this example, $setuphold reports a violation if the interval from <data_event> to
<clk_event> is less than the value of tSU (which is 16), enacting its $setup component.
It also reports a violation if the interval from <clk_event> to <data_event> is less than
the value of tHLD (which is 17), enacting its $hold component.

The second statement in the example shows an optional notifier, flag, which toggles to
report a violation.

You can specify negative times for either the <setup_limit> or <hold_limit>
arguments. The sum of the two arguments must be greater than 0.

A negative <setup_limit> value specifies a period following a change in the clock signal
as shown in the following example:

$setuphold(posedge clk, data, -2, 4, notifier);

A negative <hold_limit> value specifies a period preceding a change in the clock event
signal as shown in the following example:

$setuphold(posedge clk, data, 4, -2, notifier);

Note: You must specify the +neg_tchk plus option on the command line to make Verilog-
XL accept negative timing check arguments. If you do not specify the +neg_tchk plus option,
negative limits are set to 0 in the description or annotation, and a warning is issued.

clock
violation

<setup_limit>
negative

<hold_limit> (4)

(-2)
region

<clk_event>

clock
violation

<setup_limit> (4)

negative
<hold_limit>region (-2)

<clk_event>
November 2008 309 Product Version 8.2

Verilog-XL Reference
Timing Checks
Violation messages for $setuphold differ from violation messages for other timing checks.
The following example shows a typical $setuphold violation message:

A violation of $setuphold in a signal passing from one vector port to another vector port
generates an identical message for each bit that experiences a violation.

Note: You cannot condition a $setuphold timing check with both the &&& conditioned event
symbol and the inclusion of the <tstamp_cond> or <tcheck_cond> in the syntax. If you
attempt to use both methods, only the parameters in the <tstamp_cond> and
<tcheck_cond> positions in the syntax are effective, and the attempt generates a warning
similar to that shown in the following example:

Warning! Conditions for timecheck input specified both on
 argument and as explicit condition, argument condition ignored [Verilog-SPAMCN]
 “/net/machine/home/willy/1.8/code/cond8.18.525”,
 31: $setuphold(ckin &&& cond2in, datin, su, hl, flag, , cond1in);

$skew

The $skew system task specifies the maximum delay allowable between two signals. A
violation occurs when signals are too far apart. The following figure shows how a violation
occurs with the $skew system task:

The $skew system task has the following format:

$skew(<clk_1>, <clk_2>, <skew_limit> {, <notifier>});

“source.v”, 16: Timing violation in top.m1

 $setuphold<setup>(i1:10, i2:8, 3, 10);

violated component of
$setuphold

times of transitions
causing the violation

Current limits in effect for
$setuphold check that was
violated
November 2008 310 Product Version 8.2

Verilog-XL Reference
Timing Checks
The $skew system task arguments are as follows:

<clk_1> Module input or inout transition at a control signal that
establishes the reference time

<clk_2> Module input or inout transition at a data signal that initiates a
timing check against the value in <skew_limit>

<skew_limit> Positive constant expression or specparam that specifies the
delay allowed between the two signals

<notifier> (optional) Register that changes value when a timing violation occurs. You
can use notifiers to define responses to timing violations. See
“Using Notifiers for Timing Violations” on page 292 for details.

Note: The $skew system task records the new time of <clk_1> before it performs the
timing check. If the <clk_1> and <clk_2> events occur at the same time, $skew does not
report a timing violation.

The following example shows how to use the $skew system task to report a violation if the
interval from <clk_1> to <clk_2> exceeds <skew_limit> (which is 14). The second
$skew statement uses the notifier, flag, to report a violation.

specify
 specparam <skew_limit>=14;
 $skew(posedge clk_1, negedge clk_2, <skew_limit>);
 $skew(posedge clk_1, negedge clk_2, <skew_limit>, flag);
endspecify

$width

The $width system task specifies the duration of signal levels from one clock edge to the
opposite clock edge. A violation occurs when signals are too close together. If you use edge
specifiers, all edges must be of the same direction. The following figure shows how a violation
occurs with the $width system task.
November 2008 311 Product Version 8.2

Verilog-XL Reference
Timing Checks
The syntax for the $width system task is as follows:

$width(<edge_clk>, <min_limit> {, <threshold>{, <notifier>}});

The $width system task arguments are as follows:

<edge_clk> Edge-triggered event. A compilation error occurs if the
<edge_clk> is not an edge specification.

<min_limit> Positive constant expression or specparam that specifies the
maximum time for the positive or negative phase of each cycle

<threshold> (optional) Largest ignored pulse width, used for timing analysis by Veritime.
Verilog-XL ignores <threshold>, but compiles system calls
to $width that contain this argument.

<notifier> (optional) Register that changes value when a timing violation occurs. You
can use notifiers to define responses to timing violations. See
“Using Notifiers for Timing Violations” on page 292 for details.

The following example shows how to use the $width system task to report a violation if the
interval from <edge_clk> (negedge clr) to the implicit <data_event> (posedge clr)
is less than <min_limit> (which is 12). Note that the <data_event> and the
<clk_event> will never occur simultaneously because they are triggered by opposite
transitions. The optional notifier, flag, in the second $width statement toggles to report a
violation.

specify
 specparam width_param=12;
 $width(negedge clr, width_param) ;
 $width(negedge clr, width_param, 0, flag) ;
endspecify

Note: Verilog-XL does not accept null arguments for $width. Therefore, if you pass a
<notifier> to $width, you must also supply the <threshold> argument. However, you
do not have to specify the <threshold> and <notifier> arguments when invoking
$width in Verilog-XL. The following example shows legal and illegal calls:

$width(negedge clr, lim); // legal
$width(negedge clr, lim, thresh, notif); // legal
$width(negedge clr, lim, 0, notif); // legal
$width(negedge clr, lim, , notif); // illegal call
$width(negedge clr, lim, notif); // illegal call
November 2008 312 Product Version 8.2

Verilog-XL Reference
Timing Checks
Using Negative Timing Check Limits in $setuphold and
$recrem

If you are using a negative limit in a $setuphold or $recrem timing check, you need to use
the +neg_tchk option when invoking the simulator. This will ensure that the negative limit
values are used. If you ignore this option, all negative values are converted to 0.

Using negative limits in $setuphold or $recrem timing checks can affect the evaluation of
timing checks. For each timing check with a negative limit, the reference or data event may
be delayed, thereby delaying the execution of the timing check. When either the reference or
data signal of a check is delayed, the limits of the check are appropriately modified to verify
the same constraint using the delayed signals. See “Effects of Delayed Signals on Timing
Checks” on page 314 for more information on delayed signals and on how timing check limits
are modified.

The delayed version of a signal generated by a $setuphold or $recrem timing check with
a negative limit does not only apply to that specific $setuphold or $recrem check. Once a
delayed version of a signal is calculated, it is also used when evaluating other checks, such
as $setup, $hold, $recovery, $width, and $period. All timing checks are considered
together. For example, if multiple timing checks are driven with the signal CLK, then one delay
is calculated for CLK, and each timing check is evaluated using this single delayed version of
CLK. See “Calculation of Delayed Signals and Limit Modification” on page 316 for details on
how delay values are calculated and on how limits are adjusted.

In some cases, you may want to drive your functional model using the delayed version of
signals. To do this, you can explicitly define the delayed versions of signals in the
$setuphold and $recrem timing checks using the delayed_reference and
delayed_data arguments. See “Explicitly Defining Delayed Signals” on page 318 for
details.
November 2008 313 Product Version 8.2

Verilog-XL Reference
Timing Checks
Effects of Delayed Signals on Timing Checks

When a negative limit value is specified in a $setuphold or $recrem timing check, the
violation region is offset from the reference signal. The following figures illustrate the violation
region that is offset from the reference signal for the $setuphold task.

Because the violation region no longer extends from the reference signal, the constraints
cannot be verified when the check events occur in the same way that they can be without
negative limits. In the case of $hold, only the stamp events that occur after the value of the
time offset (2 in the case of our example) should be considered. In the case of $setup, the
check should be triggered before the actual check event is to occur, which cannot be
predicted.

To solve this dilemma, the reference or data signals are delayed such that the violation region
once again encloses the reference signal. The check can then be evaluated as if only positive
limits were encountered. To accomplish this, signals must be delayed, and limits must be
appropriately modified to verify the same constraint, as initially specified with negative limits.

For example, the following figure shows the violation region for a $setuphold timing check
with a negative setup limit of -2 and a hold limit of 4. To verify the negative setup constraint

hold limit (4)reference event

clock

negative
setup limit (-
2)

violation
region

setup limit (4)

reference event

clock

violation
region

negative
hold limit (-
2)
November 2008 314 Product Version 8.2

Verilog-XL Reference
Timing Checks
shown in this example, the “equivalent constraint”, shown at the bottom of the figure, is
verified.

In this example, clock is delayed 3 time units, producing d_clock, which is used to verify the
same constraint with a setup limit of 1 and a hold limit of 1. This constraint is equivalent to the
original one.

3

1 1

setup hold

reference event
hold limit
(4)

clock

negative
setup limit (-
2)

violation
region

clock

d_clock
violation
region
November 2008 315 Product Version 8.2

Verilog-XL Reference
Timing Checks
Notice that d_clock was produced by delaying clock by 3 time units, and not by 2 time
units, the value of the negative setup limit. The reason for this is best illustrated by the
following diagram:

The above modified constraint implies that a data change at t(d_clock) is not a violation.
This implies that a change on the data signal at t(d_clock) should be clocked in by a
storage element in the model. However, if the data signal can change at the same time as
d_clock, then it is not certain which value will be clocked in. Hence, d_clock has been
delayed by an additional time unit. Verilog-XL uses the smallest simulation precision to
determine this additional increment.

See “Calculation of Delayed Signals and Limit Modification” on page 316 for more details
about how signals are delayed and limits adjusted.

Calculation of Delayed Signals and Limit Modification

This section contains more details about how signals are delayed and limits adjusted. This
information is useful to the model developer and to someone designing a delay calculation
algorithm that may compute negative timing check limits.

All timing checks are considered together. When a signal is delayed for a specific check, and
that signal drives another timing check, the delayed version of the signal is used to trigger the
other check, and the other check’s limits are appropriately modified, even when the other

t = t(d_clock)

2

2

reference event
hold limit (4)

clock

negative
setup limit
(-2)

violation
region

d_clock

data
November 2008 316 Product Version 8.2

Verilog-XL Reference
Timing Checks
check does not have negative limits. For example, if multiple timing checks are driven with the
signal CLK, then one delay is calculated for CLK, and each timing check is evaluated using
this single delayed version of CLK.

The reason for not considering all checks independently is illustrated by the following
example.

Consider the following set of timing checks:

$setuphold(posedge clk, d, 12.2, 4.3, ...);
$recrem(posedge clr, posedge clk, 5.1, -2.1, ...);

As a result of the second timing check, the clk signal is delayed by 2.1 time units. If this
delayed signal was not used to perform the first timing check, the following figure shows a set
of inputs that could cause inaccurate results.

If the original, undelayed signal in the first timing check is used, the violation occurs at the
edge on d. At the time of this violation, any notifier associated with the timing check will toggle,
and the output of the device will be set to x. However, the device will not detect the edge on
the delayed clk until after this has happened. This edge on the delayed clk will clock the
device, and the output will incorrectly go to a known value, even though a violation has
occurred.

If the delayed signal in the first timing check is used, Verilog-XL ensures that any violation and
any functional evaluation of the device occur at the same time. Therefore, the functional
evaluation cannot override the violation.

This requirement applies to any other timing check in the module, (for example $setup or
$width checks). Therefore, when negative timing checks are being used, any timing check
in the module being affected will use delayed signals. However, this implies that timing checks
that have multiple signals need to have their limits adjusted accordingly. This adjustment is
performed at the same time as the delays on the signals themselves are calculated.

clk

d

clk(delayed)

violation region limits
November 2008 317 Product Version 8.2

Verilog-XL Reference
Timing Checks
The adjustment of limit values is performed such that a limit will never go to 0. The reason for
this is to prevent a race condition when an explicit delayed signal drives the functional model.
If, for example, a delayed clock signal were to change at the same time as a data signal, and
the delayed clock feeds the functional model, the new value should be clocked. Hence, limits
are adjusted by adding a delta value to ensure this situation never occurs.

The process of calculating the delay values and adjusting limits can be summarized with the
following pseudo-code description:

count = 1;
while (any timing check limit is < 0) {

if (count > number of checks)
convergence error - delays cannot be calculated given current limit

values (see #1, below);
count = count + 1;

for each setuphold/2 limit recovery check:

if (((setup limit is == 0) and has been modified) or (setup limit < 0))
reference delay = 0 - setup limit;
hold limit -= ((reference delay) + delta); (see #2, below)
setup limit = delta;

for every other timing check with the same reference signal:
setup limit += (reference delay + delta);
hold limit -= (reference delay + delta);

for every other timing check with this reference signal as the data signal:
hold limit += (reference delay + delta);
setup limit -= (reference delay + delta);
total delay for reference signal += (reference delay + delta);

else if (((hold limit == 0) and has been modified) or (hold limit < 0))
data delay = 0 - hold limit;
setup limit -= ((data delay) + delta);
hold limit = delta;

for every other timing check with the same data signal:
hold limit += (data delay + delta);
setup limit -= (data delay + delta);

for every other timing check with this data signal as the reference signal:
setup limit += (data delay + delta);
hold limit -= (data delay + delta);
total delay for data signal += (data delay + delta);

#1: The whole process is repeated after the next setup limit of smallest magnitude
is set to zero. If there are no negative setup limits left, then the next hold limit
is set to zero.

#2: delta is the smallest simulation precision in the design.

Explicitly Defining Delayed Signals

The delayed versions of signals can be explicitly defined in the $setuphold and $recrem
timing checks using the delayed_reference and delayed_data arguments, which are
the delayed version of the reference and data signals, respectively. You may want to explicitly
define the delayed signals in order to drive the functional model using the delayed version of
these signals. The following example illustrates this. The negative timing check value causes
November 2008 318 Product Version 8.2

Verilog-XL Reference
Timing Checks
Verilog-XL to generate a delayed signal to use as input to the functional part of the UDP
circuit. This ensures that the correct value for the data signal is present at the UDP input when
the clock edge occurs.

module dff (q, d, clk);
output q;
input d, clk;

dff_prim p1(q, dd, dclk, notfy);
specify

$setuphold(posedge clk, d, 12, -5, notfy, , , dclk, dd);
endspecify
endmodule

If the delayed signals dclk and dd, were not explicitly defined, delayed versions of clk and/
or d would still be used to evaluate the timing check. However, the functional model would
utilize the undelayed signals.

The following is a slightly more complex example, which uses several delayed signals.

module device(q, d, clk, set, clr);
output q;
input d, clk, set, clr;

prim p1(q, dd, dclk, dset, dclr);

specify
 $setuphold(posedge clk, d, 12, -3, , , , dclk, dd);
 $recrem(posedge clr, posedge clk, 10, -7, , , , dclr, dclk);
 $recrem(posedge set, posedge clk, 13, -4, , , , dset, dclk);
endspecify

endmodule

Verilog-XL iteratively analyzes the entire set of timing checks to generate a correct set of
delay values for a device. The generated delay values for the model in the previous example
are as follows:

clk 7
set 0
clr 0
d 10

Verilog-XL takes the limits from the entire set of timing checks into account when choosing a
limit. You must list the delayed signal in each timing check that makes a contribution to the
final delay generated for each signal.

Non-Convergence in Timing Checks

In some cases, when negative values are specified in $setuphold or $recrem timing
checks (two limit), or in SDF SETUPHOLD or RECREM constructs, there is no overlap and
negative values are set to zero with the +neg_tchk option, unexpected timing violations are
reported.
November 2008 319 Product Version 8.2

Verilog-XL Reference
Timing Checks
This problem is resolved with the new relaxation algorithm. The two limit timing checks, with
negative limits specified for $setuphold or $recrem timing checks, with the same data and
reference limits (with or without different edge specifications), will converge without having to
reset the negative time limits to zero.

Here is an example of a non-converging timing check pair:

(1) (SETUPHOLD (posedge td) (posedge clk) (145) (-5))

(2) (SETUPHOLD (negedge td) (posedge clk) (6) (-4))

Because these two timing checks rely on the same delayed signals, the algorithm must make
the most negative timing value (-5) positive. It will make it positive by one base simulation time
unit. The new setup and hold limits are:

(1) setup = 139
hold = 1
data_signal_delay = 5

(2) setup = 0 (6 - (data_signal_delay + delta))
hold = 2 (-4 + (data_signal_delay + delta))

As the values cannot be negative or zero, the algorithm does not converge and non-
convergence error messages such as the following are generated:

Warning! Non-convergence of NTC values in [Verilog-NTCNNC]
<design_file>, <line_no>: module <module_name>;

The algorithm then forces convergence by setting one negative value in the timing checks to
zero and then checking to see if the timing converged. The process is repeated until the timing
converges or until all of the negative values are set to zero.

In this example, both negative hold values are set to zero, and after annotation the timing
checks are as follows:

$setuphold(posedge clk, posedge td, 145, 0);
$setuphold(posedge clk, negedge td, 6, 0);

Note that the posedge/negedge have no bearing on convergence.

Another situation that results in non-convergence, and that is fairly common in deep
submicron designs, is to have two different constraints for posedge and negedge of data with
respect to the reference signal (as in the example above), and in which the constraints do not
overlap. Because the violation regions created by the timing checks do not overlap each
other, the negative timing check algorithm does not converge. This results in both of the
negative limits being set to zero, thus underestimating the actual speed of the design.
November 2008 320 Product Version 8.2

Verilog-XL Reference
Timing Checks
For example, consider the timing checks in the following example of module test in the file
test.v:

1 ‘timescale 1ns/1ps
2
3 module test;
4 reg data, clock;
5 wire q;
6
7 initial
8 begin
9 $monitor($realtime,"%b %b %b %b %b",clock,data,q,u1.d_del,u1.d_clk);
10 fork
11 #10 data = 0;
12 #10 clock = 0;
13 #13 data = 1’b1;
14 #14 clock = 1’b1;
15 #30 clock = 1’b0;
16 #38.5 data = 1’b0;
17 #40 clock = 1’b1;
18 join
19 #10 $finish;
20 end
21
22 dEdgeFF u1 (q,clock, data);
23
24 endmodule
25
26 module dEdgeFF(q, clock, data);
27 output q;
28 reg q;
29 input clock, data;
30
31 initial
32 #10 q = 0;
33
34 always
35 @(negedge clock)#10 q=data;
36
37 specify
38 $setuphold(posedge clock, posedge data, 4, -3,,,,d_clk,d_del);
39 $setuphold(posedge clock, negedge data, 2, -1,,,,d_clk,d_del);
40 endspecify
November 2008 321 Product Version 8.2

Verilog-XL Reference
Timing Checks
The first timing check establishes a violation region from 10 to 11 before the reference event
(posedge clock). The second check establishes a violation region from 12 to 13 before the
reference event. These violation regions do not overlap, as shown in the following figure:

This situation, where multiple timing checks use the same signals and where the timing
violation regions do not overlap in time, prevents the negative timing check algorithm from
converging. The delayed signals cannot be resolved because the value of the hold time for
one check is greater than the setup for another. The violation regions for the posedge of data
and the negedge of data must overlap to enable the tool to correctly place the delayed clock
(that is, converge). Otherwise, it must set the negative value to 0.

When you use this model, non-convergence warning messages such as the following are
generated:

Warning! Non-convergence of NTC values in [Verilog-NTCNNC]
“test.v”, 38: module test (q,data,clock);

Also, both negative hold values are set to zero. The two timing checks, in effect, are now as
follows:

$setuphold(posedge clock, posedge data, 4, 0);
$setuphold(posedge clock, negedge data, 2, 0);

reference event

hold limit
(-3)

clock

 setup limit (4)

violation
region

121110 1413 15 16

reference event
hold limit
(-1)

clock

 setup limit (2)

violation
region

121110 1413 15 16
November 2008 322 Product Version 8.2

Verilog-XL Reference
Timing Checks
In the example, the data input is changed to 1 at time 13, one ns before the positive edge of
clock, and then to 0 at time 38.5, 1.5 ns before the next positive edge of clock. Therefore,
the following two timing check violations are reported:

"test.v", 38: Timing violation in test.u1
$setuphold<setup>(posedge clock:14000, posedge data:13000, 4.000 : 4000,

0.000 : 0);

"test.v", 39: Timing violation in test.u1
$setuphold<setup>(posedge clock:40000, negedge data:38500, 2.000 : 2000,

0.000 : 0);

You can avoid this non-convergence problem in two ways:

■ By hand editing the values in the timing checks (or in the SDF file) so that the violation
regions overlap by more than two delta simulation time units.

For example, you could hand edit the timing checks in the example to change the -2 hold
time on the positive edge to -1.998. This makes the violation regions overlap by two delta
simulation time units (the timescale is 1 ns / 1 ps).

You could also create some overlap in the violation regions by changing the setup time
in the second timing check from 2 to 3.002.

■ By using the verilog +extend_tcheck_data_limit/<percentage_limit>
or +extend_tcheck_reference_limit/<percentage_limit> command-line
options with the +neg_tchk option.

The +extend_tcheck_data_limit/<percentage_limit> or
+extend_tcheck_reference_limit/<percentage_limit> command-line
options automatically extend the violation regions by a specified percentage so that they
overlap.

Syntax:

+extend_tcheck_data_limit/<percentage_limit>
+extend_tcheck_reference_limit/<percentage_limit>

The +extend_tcheck_data_limit option changes the hold or recovery limit in the
timing checks and the +extend_tcheck_reference_limit option changes the
setup or removal limit in the timing checks so that the violation regions overlap by at least
two units of simulation precision.

The percentage_limit argument is the maximum percentage increase that is
allowed in the timing violation window to achieve an overlap of at least two units of
simulation precision.

However, the use of the +extend_tcheck_data_limit and the
+extend_tcheck_reference_limit command-line options does not mean that
there will be an overlap of atleast two units of simulation precision in the violation region.
November 2008 323 Product Version 8.2

Verilog-XL Reference
Timing Checks
The overlap (whether or not it happens) and the extent of overlap depends on the
following:

❑ The original timing check limits:

The values specified in the SETUPHOLD and RECREM constructs determine whether
or not there will be an overlap in the violation region and the extent of overlap (at
least two units of simulation precision) of the specified timing check pair. For
example, the following timing check pair will give a non-convergence warning if you
use the default timescale or a timescale of 1ns/1ns:

$setuphold(posedge clock, posedge data, 4, -3);
$setuphold(posedge clock, negedge data, 2, -1);

❑ The timescale used:

The timescale specified before the module also determines whether or not there will
be an overlap in the violation region and the extent of overlap (at least two units of
simulation precision) of the specified timing check pair. If you use the default
timescale, the timing check pair will give a non-convergence warning. For example,
if you use a timescale of 1ns/1ns in Example 1 on page 324, you wil get a non-
convergence warning.

❑ The limits specified by the user:

The limit specified by you in <percentage_limit> also determines whether or
not there will be an overlap in the violation region and the extent of overlap (at least
two units of simulation precision) of the specified timing check pair. For more
information, see Example 2 on page 325.

You cannot use the +extend_tcheck_data_limit/<percentage_limit> or
+extend_tcheck_reference_limit/<percentage_limit> command-line
options simultaneously. If you do, the
Verilog-XL simulator ignores both the options, the relaxation algorithm is not
implemented and a warning message such as the following is generated:

Warning! Cannot stretch both the limits,relaxation algorithm not used. Specify
any one limit. [Verilog-CNSBL]

If a decimal value is specified as the limit in the +extend_tcheck_data_limit/
<percentage_limit> or +extend_tcheck_reference_limit/
<percentage_limit> command-line options, the Verilog-XL simulator automatically
truncates the value of the specified limit. For example, both 10.2 and 10.9 are considered
as 10, by the Verilog-XL simulator.

Example 1

In the example used above, the timescale used is 1ns/1ps and the timing checks are:
November 2008 324 Product Version 8.2

Verilog-XL Reference
Timing Checks
$setuphold(posedge clock, posedge data, 4, -3);
$setuphold(posedge clock, negedge data, 2, -1);

You could extend the hold time of the first timing check up to 1 ns (that is, 100% of the width
of the violation region) plus two units of precision with the following command:

% verilog +extend_tcheck_data_limit/100 +neg_tchk test.v

This command extends the violation region created by the first timing check by 1.002 to create
some overlap. The new setup and hold limits are:

$setuphold(posedge clock, posedge data, 4, -1.998);
$setuphold(posedge clock, negedge data, 2, -1);

Alternatively, you could extend the violation region created by the second timing check to
create some overlap by extending the setup time of the second window up to 1.002 ns with
the following command:

% verilog +extend_tcheck_reference_limit/100 +neg_tchk test.v

Then the new setup and hold limits are:

$setuphold(posedge clock, posedge data, 4, -3);
$setuphold(posedge clock, negedge data, 3.002, -1);

Example 2

Suppose you have the following pair of timing checks, where there are two non-overlapping
violation windows, each with a width of 2 ns and the timescale used is 1ns/1ps .

$setuphold(posedge clock, posedge data, 7, -5);

$setuphold(posedge clock, negedge data, 3, -1);

The following command extends the setup time of the second window up to 2 ns (100% of the
width of the violation region) plus two units of precision. In other words, the setup time is
changed to 5.002.

% verilog +extend_tcheck_reference_limit/100 +neg_tchk test.v

The following command extends the hold time of the first window up to 1 ns (50% of the width
of the violation region) plus two units of precision:

% verilog +extend_tcheck_data_limit/50 +neg_tchk test.v

Note that, because the region between the two violation regions is 2 ns, extending the hold
time by 1.002 ns will not cause the timing violation regions to overlap, and you will get
non-convergence warnings.

When you use the +extend_tcheck_data_limit/<percentage_limit> option, and
if the specified relaxation percentage allows the timing checks to converge, the Verilog-XL
simulator generates a warning message (Verilog-DLSS) that informs you that a pair of
November 2008 325 Product Version 8.2

Verilog-XL Reference
Timing Checks
signals had non-overlapping two limit constraints for different edges, that this situation
caused non-convergence, and that the limits are being relaxed to make the constraints
overlap.

When you use the +extend_tcheck_reference_limit/<percentage_limit>
option, and if the specified relaxation percentage allows the timing checks to converge, the
Verilog-XL simulator generates a warning message (Verilog-RLSS) that informs you that a
pair of signals had non-overlapping two limit constraints for different edges, that this situation
caused non-convergence, and that the limits are being relaxed to make the constraints
overlap.

Explicitly Defining Delayed Signals

The delayed versions of signals can be explicitly defined in the $setuphold and $recrem
timing checks using the delayed_reference and delayed_data arguments, which are
the delayed version of the reference and data signals, respectively. You may want to explicitly
define the delayed signals in order to drive the functional model using the delayed version of
these signals. The following example illustrates this. The negative timing check value causes
Verilog-XL to generate a delayed signal to use as input to the functional part of the UDP
circuit. This ensures that the correct value for the data signal is present at the UDP input when
the clock edge occurs.

module dff (q, d, clk);
output q;
input d, clk;

dff_prim p1(q, dd, dclk, notfy);
specify

$setuphold(posedge clk, d, 12, -5, notfy, , , dclk, dd);
endspecify
endmodule

If the delayed signals dclk and dd, were not explicitly defined, delayed versions of clk and/
or d would still be used to evaluate the timing check. However, the functional model would
utilize the undelayed signals.

The following is a slightly more complex example, which uses several delayed signals.

module device(q, d, clk, set, clr);
output q;
input d, clk, set, clr;

prim p1(q, dd, dclk, dset, dclr);

specify
 $setuphold(posedge clk, d, 12, -3, , , , dclk, dd);
 $recrem(posedge clr, posedge clk, 10, -7, , , , dclr, dclk);
 $recrem(posedge set, posedge clk, 13, -4, , , , dset, dclk);
endspecify

endmodule
November 2008 326 Product Version 8.2

Verilog-XL Reference
Timing Checks
Verilog-XL iteratively analyzes the entire set of timing checks to generate a correct set of
delay values for a device. The generated delay values for the model in the previous example
are as follows:

clk 7
set 0
clr 0
d 10

Verilog-XL takes the limits from the entire set of timing checks into account when
choosing a limit. You must list the delayed signal in each timing check that makes
a contribution to the final delay generated for each signal.

Effects of Delayed Signals on Path Delays

Delayed signals may affect path delays. When you specify a negative timing check,
Verilog-XL chooses a path delay that may be different from the path delay that is chosen
without negative timing checks.

To illustrate this, consider the following set of timing checks and path delays and the input
waveforms (with delayed signals) in the following figure.

If only undelayed signals are used, the output transition is scheduled at 2.2 ns because the
functional part of the circuit immediately detects the clk transition at 1 ns and schedules the
output at q 1.2 ns later.

clk => q = 1.2;

clr => q = 0.33;

$setuphold(posedge clk, d, -0.23, 1.1, ...);

$recrem(posedge clr, posedge clk, -0.39, 0.77, ...);

clk

clr

clk(delayed)

clr(delayed)

1 ns

1.1 ns

1.23 ns

1.49 ns
November 2008 327 Product Version 8.2

Verilog-XL Reference
Timing Checks
If the delayed signals are used, the functional part of the circuit does not detect a transition
(and a corresponding output change) until 1.23 ns. Because the path delay algorithm
determines the path delay from the input with the most recent transition, it picks the path delay
from clr, and the output transition is scheduled at time 1.43 ns (1.1 + 0.33).

To restore the original behavior, the delayed signals would need to be used as the input to the
path delay algorithm in addition to the functional part of the circuit. However, the original
behavior does not exactly represent the silicon Verilog-XL uses the undelayed signals as the
inputs to the path delays because the output results depend on whether the delayed or
undelayed signals are used, and the path delay may not be any less accurate than when
using the delayed signals.

The delay calculated for a delayed signal should not be longer than a path delay with that
signal as a source. After the delays for the delayed signals are calculated, all path delays in
a module are scanned, and if any are longer than the delayed signal for their source, a
warning is issued if the +ntc_warn option is provided to the elaborator. Furthermore, when
this condition is detected (regardless of the presence of +ntc_warn), the entire process of
calculating delays is started again, just as when a convergence error is detected, as
described in “Calculation of Delayed Signals and Limit Modification” on page 316.

Restrictions

The delayed signal algorithm for negative timing check values cannot resolve the following
situations for nonconverging timing check limits or signal delays that are bigger than the path
delay for any signal:

■ A signal that has a relationship to other signals where the other signals have no
relationship to each other. For example, see the following figure where MC between Q1
and SLC, where there is no relationship between Q1 and SLC.
November 2008 328 Product Version 8.2

Verilog-XL Reference
Timing Checks
■ Multiple timing checks that are based on relations that have no correlation with each
other. For example, see the following figure where the relationship between MC and D has
no correlation with the relationship between MC and SLC.

You cannot use a single delayed signal to simultaneously model two different relationships.
In the previous figure, the $setuphold timing check shows that the MC signal needs to be
delayed by 9.4 to maintain the functional relationship between the SLC and MC signals.
However, because you can create only one delayed version of MC, the effect of MC on Q1 is
also delayed by 9.4., but this delay is longer than the needed path delay between MC and Q1.

A similar situation can arise between sets of timing checks. Consider the following set of
timing checks, using the model in the previous figure.

$setuphold(negedge MC, D, 0.18, 0.03, ...);
$setuphold(negedge SLC, D, 1.28, -0.69, ...);
$setuphold(posedge MC, negedge SLC, -0.13, 0.21, ...);

Even though all timing check limits are valid by themselves, you cannot have a single delay
value to satisfy all of the timing checks because the functional relationship between sets of
signals (MC and D, and MC and SLC) are independent of each other. The timing check value
between MC and SLC has no effect on the timing check value between MC and D, and vice
versa. Therefore the two cannot be modeled simultaneously.

Q1

Q2QD

EN

D

MC

SLC

D

EN

Q

MC => Q1 = (4.2);

$setuphold(negedge SLC, posedge MC, 10.2, -9.4, ...);
November 2008 329 Product Version 8.2

Verilog-XL Reference
Timing Checks
Exception Handling

When delayed signals cannot be resolved exactly, or when a signal delay is longer than a path
delay, Verilog-XL approximates the set of delay values by setting the setup limit with the
smallest magnitude to 0 then reapplying the algorithm. If the signals do not converge, the
process is repeated on successive setup limits from smallest to largest. If delayed signals still
do not converge, the process begins with hold limits. This method is guaranteed to eventually
succeed because eventually all negative limits are set to 0.

You can display a warning message when Verilog-XL uses this approximation algorithm by
specifying the +ntc_warn option on the command line. By default, a warning is not printed.
November 2008 330 Product Version 8.2

Verilog-XL Reference
14
System Tasks and Functions

This chapter describes the following:

■ Filename Parameters on page 332

■ Display and Write Tasks on page 333

■ Strobed Monitoring on page 340

■ Continuous Monitoring on page 341

■ Monitoring Interconnect Delay Signal Values on page 342

■ File Output on page 343

■ Default Base on page 345

■ Signed Expressions on page 346

■ Simulation Time on page 346

■ Stop and Finish on page 347

■ Random Number Generation on page 347

■ Tracing on page 348

■ Saving and Restarting Simulations on page 352

■ Command History on page 355

■ Command Input Files on page 356

■ Log File on page 356

■ Key File on page 357

■ Setting the Interactive Scope on page 358

■ Showing the Hierarchy on page 358

■ Showing Variable Status on page 358
November 2008 331 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
■ Showing Net Expansion Status on page 359

■ Showing Module Port Status on page 360

■ Showing Number of Drivers on page 360

■ Displaying the Delay Mode on page 362

■ Storing Interactive Commands on page 362

■ Interactive Source Listing—Decompilation on page 363

■ Disabling and Enabling Warnings on page 365

■ Loading Memories from Text Files on page 368

■ Setting a Net to a Logic Value on page 369

■ Fast Processing of Stimulus Patterns on page 370

■ Incremental Pattern File Tasks on page 372

■ Functions and Tasks for Reals on page 380

■ Functions and Tasks for Timescales on page 380

■ Protecting Data in Memory on page 381

■ Value Change Dump File Tasks on page 382

■ Running the Behavior Profiler on page 383

■ Resetting Verilog-XL—Starting Simulation Over Again on page 384

■ SDF Annotation on page 392

■ Using the $dlc System Task on page 403

■ Using the $system System Task on page 404

■ Using the $simvision System Task on page 404

Filename Parameters

Many of the Verilog-XL system tasks and functions take filenames as parameters. Each
filename must adhere to the conventions of the host platform. Any filename that is not
acceptable to the host platform results in run-time errors. You may use string variables instead
of parameters to specify filenames to system tasks and functions. For example:
November 2008 332 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
//string variable to pass in filename
reg [50*8 : 1] mem_file;

integer memory_dump;

initial
begin

case ($reset_count)
0 : mem_file = "./test_1/stimuli/boot_file";
1 : mem_file = "./test_2/stimuli/boot_file";
2 : mem_file = "./test_3/stimuli/boot_file";

endcase
end

initial
begin

memory_dump = $fopen(mem_file); // open memory output file
end

This technique permits dynamic file selection under the control of the Verilog-XL language.

Display and Write Tasks

The $display and $write tasks are the main system task routines for displaying
information. The two tasks are identical except that $display automatically adds a new line
character to the end of its output, whereas $write does not. Thus, if you want to print several
messages on a single line, use $write.

The $display and $write tasks display their parameters in the same order that they
appear in the parameter list. Each parameter can be a quoted string, an expression that
returns a value, or a null parameter. The syntax for these tasks is as follows:

$display(P1, P2, ... , Pn);
$write(P1, P2, ... , Pn);

The contents of string parameters are output literally, except when certain escape sequences
are inserted to display special characters or to specify the display format for a subsequent
expression.

Escape sequences are inserted into a string in two ways:

■ The backslash character (\) indicates that the character to follow is a literal or non-
printable character (see “Escape Sequences for Special Characters” on page 334).

■ The percentage character (%) indicates that the next character is a format specification
that establishes the display format for a subsequent expression parameter (see the table
in “Format Specifications” on page 334). For each % character that appears in a string, a
corresponding expression parameter must be supplied after the string.

Two percentage characters (%%) indicate the display of the percentage character % (see
Escape Sequences for Special Characters).
November 2008 333 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
A null parameter produces a single space character in the display. (A null parameter is
characterized by two adjacent commas in the parameter list.)

The $display task, when invoked without parameters, prints a new line character. A
$write task invoked without parameters prints nothing.

Note: Because $write does not produce a new line character after outputting its text, most
operating systems simply buffer the text rather than flush it directly to the output. For these
operating systems, to ‘see’ the text in the output immediately, use the $display instead of
$write, or include an explicit new line character (\n) in the $write task.

Escape Sequences for Special Characters

The following escape sequences, when included in a string parameter, cause special
characters to be displayed:

\n is the new line character
\t is the tab character
\\ is the \ character
\" is the " character
\o is a character specified in 1-3 octal digits
%% is the percent character

The following example shows these escape sequences in a string parameter:

module disp;
initial
begin

$display("\\\t%%\n\"\123");
end

endmodule

The following are the results of the above example. Here S is the octal equivalent of 123:

Highest level modules:
disp

\ %
"S

Format Specifications

The following table shows the escape sequences used for format specifications.

%h or %H Display in hexadecimal format

%d or %D Display in decimal format
November 2008 334 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
The %t format specification works with the $timeformat system task to specify a uniform
time unit, time precision, and format for reporting timing information from various modules
that use different time units and precisions. The $timeformat task and %t format
specification are described in Chapter 17, “Timescales.”

Each escape sequence, when included in a string parameter, specifies the display format for
a subsequent expression. For each % character (except %m) that appears in a string, a
corresponding expression must follow the string in the parameter list. The value of the
expression replaces the format specification when the string is displayed. Any expression
parameter that has no corresponding format specification is displayed using the default
decimal format.

The following example shows how escape sequences are used to provide format
specifications:

module disp;
reg [31:0] rval;
pulldown (pd);
initial
begin

rval = 101;
$display("rval = %h hex %d decimal",rval,rval);
$display("rval = %o octal %b binary",rval,rval);
$display("rval has %c ascii character value",rval);
$display("pd strength value is %v",pd);
$display("current scope is %m");
$display("%s is ascii value for 101",101);
$display("simulation time is %t", $time);

end
endmodule

The following are the results of the above example:

Highest level modules:
disp

rval = 00000065 hex 101 decimal
rval = 00000000145 octal 00000000000000000000000001100101 binary
rval has e ascii character value
pd strength value is StX

%o or %O Display in octal format

%b or %B Display in binary format

%c or %C Display in ASCII character format

%v or %V Display net signal strength

%m or %M Display hierarchical name

%s or %S Display as a string

%t or %T Display in current time format
November 2008 335 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
current scope is disp
e is ascii value for 101

simulation time is 0

The format specifications in the following table are used with real numbers and have the full
formatting capabilities available in the C language. For example, the format specification
%10.3g specifies a minimum field width of 10, with 3 fractional digits.

Size of Displayed Data

For expression parameters, the values written to the output file (or terminal) are usually sized
automatically. Verilog-XL reserves just enough characters to hold the largest possible value
that can be returned by the expression, given the expression’s bit length and specified display
format.

For instance, the result of a 12-bit expression would be allocated three characters when
displayed in hexadecimal format and four characters when displayed in decimal format since
the largest possible value the expression is FFF in hexadecimal format and 4095 in decimal
format.

When displaying decimal values, leading zeros are suppressed and replaced by spaces. In
other radices, leading zeros are always displayed.

You can override the automatic sizing of displayed data by inserting a zero between the %
character and the letter that indicates the radix, as shown below:

$display("d=%0h a=%0h", data, addr);

In response, Verilog-XL allocates the exact number of characters required to display the
current expression result, instead of the number of characters in the expression’s largest
possible value. Consider the following Verilog-XL description and results:

module printval;
reg [11:0] r1;
initial
begin

r1 = 10;
$display("Printing with maximum size - :%d: :%h:",r1,r1);
$display("Printing with minimum size - :%0d: :%0h:",r1,r1);

end
endmodule

%e or %E Display real number in an exponential format.

%f or %F Display real number in a decimal format.

%g or %G Display real number in exponential or decimal format, whichever format
results in the shorter printed output.
November 2008 336 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
The following are the results of the above example:

Highest level modules:
printval
Printing with maximum size - : 10: :00a:
Printing with minimum size - :10: :a:
6 simulation events

In this example, the result of a 12-bit expression is displayed. The first call to $display uses
the standard format specifier syntax and produces results requiring four and three columns
for the decimal and hexadecimal radices, respectively. The second $display call uses the
%0 form of the format specifier syntax and produces results requiring two and one column,
respectively.

Unknown and High-Impedance Values

When the result of an expression contains an unknown or high-impedance value, the
following rules apply to displaying that value:

In decimal (%d) format:

■ If all bits are at the unknown value, a single lowercase x character is displayed.

■ If all bits are at the high-impedance value, a single lowercase z character is displayed.

■ If some but not all bits are at the unknown value, the uppercase X character is displayed.

■ If some but not all bits are at the high-impedance value, the uppercase Z character is
displayed.

■ Decimal numerals always appear right-justified in a fixed-width field. (The fixed-width
format is used so that the output produced is consistent with the $monitor task output,
which requires a fixed columnar format.)

In hexadecimal (%h) and octal (%o) formats:

■ Each group of 4 bits is represented as a single hexadecimal digit; each group of 3 bits is
represented as a single octal digit.

■ If all bits in a group are at the unknown value, a lowercase x is displayed for that digit.

■ If all bits in a group are at a high-impedance state, a lowercase z is printed for that digit.

■ If some but not all bits in a group are unknown, an uppercase X is displayed for that digit.

■ If some but not all bits in a group are at a high-impedance state, then an uppercase Z is
displayed for that digit.

In binary (%b) format, each bit is printed separately using the characters 0, 1, X, and Z.
November 2008 337 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
Some of these rules are illustrated in the following example:

Strength Format

The %v format specification is used to display the strength of scalar nets. For each %v
specification that appears in a string, a corresponding scalar reference must follow the string
in the parameter list. The parameter must be an explicit scalar reference; that is, it cannot be
an expression or a bit-select.

The strength of a scalar net is reported in a three-character format. The first two characters
indicate the strength. The third character indicates the scalar’s current logic value and may
be any one of the following:

The first two characters—the strength characters—are either a two-letter mnemonic or a pair
of decimal digits. Usually, a mnemonic is used to indicate strength information; however, in
less typical cases, a pair of decimal digits may be used to indicate a range of strength levels.

The following table shows the mnemonics used to represent the various strength levels:

STATEMENT RESULT

$display("%d", 1’bx); x

$display("%h", 14’bx01010); xxXa

$display("%h %o", 12’b001xxx101x01,
12’b001xxx101x01);

XXX 1x5X

0 for a logic 0 value

1 for a logic 1 value

X for an unknown value

Z for a high impedance value

L for a logic 0 or high impedance value

H for a logic 1 or high impedance value

Mnemonic Strength Name Strength Level

Su Supply drive 7

St Strong drive 6
November 2008 338 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
Note that there are four driving strengths and three charge storage strengths. The driving
strengths are associated with gate outputs and continuous assignment outputs. The charge
storage strengths are associated with the trireg type net. “Logic Strength Modeling” on
page 114 provides information on strength modeling.

For the logic values 0 and 1, a mnemonic is used when there is no range of strengths in the
signal. Otherwise, the logic value is preceded by two decimal digits, which indicate the
maximum and minimum strength levels.

For an unknown value, a mnemonic is used when both the 0 and 1 strength components are
at the same strength level. Otherwise, the unknown value X is preceded by two decimal digits,
which indicate the 0 and 1 strength levels respectively.

The high-impedance strength cannot have a known logic value; the only logic value allowed
for this level is Z.

For the values L and H, a mnemonic is always used to indicate the strength level.

Consider the following call to $monitor:

$monitor($time,,"group=%b signals=%v %v %v",
{sig1,sig2,sig3}, sig1, sig2, sig3);

The following example shows the output that might result from such a call.

0 group=111 signals=St1 Pu1 St1
15 group=011 signals=Pu0 Pu1 St1
30 group=0xz signals=520 PuH HiZ
31 group=0xx signals=Pu0 65X StX
45 group=000 signals=Me0 St0 St0

The table given below explains the various strength formats that appear in the output.

Pu Pull drive 5

La Large capacitor 4

We Weak drive 3

Me Medium capacitor 2

Sm Small capacitor 1

Hi High impedance 0

St1 Means a strong driving 1 value.

Mnemonic Strength Name Strength Level
November 2008 339 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
Hierarchical Name Format

The %m format specifier does not accept a parameter. Instead, it causes Verilog-XL to print
the hierarchical name of the module, task, function, or named block that invokes the system
task containing the format specifier. This is very useful when there are many instances of the
module that calls the system task. One obvious application is timing check messages in a flip-
flop or latch module; the %m format specifier will pinpoint the module instance responsible for
generating the timing check message.

String Format

You can use the %s format specifier to print ASCII codes as characters. For each %s
specification that appears in a string, a corresponding parameter must follow the string in the
parameter list. Verilog-XL interprets the associated parameter as a sequence of 8-bit
hexadecimal ASCII codes, with each 8 bits representing a single character. If the parameter
is a variable, you should right-justify its value so that the right-most bit of the value is the least-
significant bit of the last character in the string. No termination character or value is required
at the end of a string, and leading zeros are never printed.

Strobed Monitoring

When Verilog-XL encounters the $strobe system task, it displays the specified information
at the end of the time unit. The parameters for this task are specified in exactly the same
manner as for the $display system task—including the use of escape sequences for
special characters and format specifications (see “Display and Write Tasks” on page 333).
The syntax is as follows:

$strobe(P1, P2, ..., Pn);

Pu0 Means a pull driving 0 value.

HiZ Means the high impedance state.

Me0 Means a 0 charge storage of medium capacitor strength.

StX Means a strong driving unknown value.

PuH Means a pull driving 1 or high impedance.

65X Means an unknown value with a strong driving 0 component and a pull driving 1
component.

520 Means a 0 value with a range of possible strength from pull driving to medium
capacitor.
November 2008 340 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
The following example shows how the $strobe system task is used:

forever @(negedge clock)
$strobe ("At time %d, data is %h",$time,data);

In this example, $strobe writes the time and data information to the standard output and to
the log file at each negative edge of the clock. The action occurs just before simulation time
is advanced, after all other events at that time have occurred, so that the data written is sure
to be the correct data for that simulation time.

The strobe tasks produce output when they are executed, and there is no on/off control
necessary.

Continuous Monitoring

The $monitor task provides the ability to monitor and display the values of any variables or
expressions specified as parameters to the task. The parameters for this task are specified
in exactly the same manner as for the $display system task—including the use of escape
sequences for special characters and format specifications. See “Display and Write Tasks”
on page 333. The syntax is as follows:

$monitor(P1, P2, ..., Pn);
$monitor;
$monitoron;
$monitoroff;

When you invoke a $monitor task with one or more parameters, the simulator sets up a
mechanism whereby each time a variable or an expression in the parameter list changes
value, with the exception of the $time, $stime, or $realtime system functions, the entire
parameter list is displayed at the end of the time step, as if reported by the $display task.
If two or more parameters change value at the same time, however, only one display is
produced that shows all of the new values.

Note that only one $monitor display list can be active at any one time; however, you can
issue a new $monitor task with a new display list any number of times during simulation.

The $monitoron and $monitoroff tasks control a monitor flag that enables and disables
the monitoring, so that you can easily control when monitoring should occur. Use
$monitoroff to turn off the flag and disable the monitoring. Use $monitoron to turn on
the flag so that monitoring is enabled and the most recent call to $monitor can resume its
display.

A call to $monitoron always produces a display immediately after it is invoked, regardless
of whether a value change has taken place; this is used to establish the initial values at the
beginning of a monitoring session. By default, the monitor flag is turned on at the beginning
of simulation.
November 2008 341 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
If you use the $monitor command with no parameters, monitoring is turned off. Using
$monitor with no parameters differs from using $monitoroff. If you turn off monitoring
using $monitoroff, you can restart monitoring using $monitoron. If you turn off
monitoring using $monitor with no parameters, you must execute a new $monitor task
with a new display list to restart monitoring.

For $monitor tasks issued interactively, there is an alternative method for controlling when
monitoring occurs. The method involves using the disable command to turn off a $monitor
command and then re-executing the command to turn monitoring back on. The following
example illustrates this technique in which monitoring is allowed to occur for the first 100 time
units of the simulation before the disable command is issued at C5. The disable command is
issued by identifying the command number of the interactive command you wish to disable
and then typing a minus sign before it. Here, by typing -3, we disable command 3, which
invokes the $monitor task.

C3> $monitor($time,,"rxd=%b txd=%b",rxd,txd);
C4> #100 $stop;.

0 rxd=1 txd=1
20 rxd=0 txd=1
60 rxd=0 txd=0
80 rxd=0 txd=1

C4: $stop at simulation time 100
C5> -3

Later in the simulation, by typing a 3 at the interactive command prompt, we can re-execute
command 3 to resume monitoring.

Monitoring Interconnect Delay Signal Values

The $post_int_delay system task provides monitoring for a specified signal value after
an interconnect delay. For more information about interconnect delays, see Chapter 16,
“Interconnect Delays.”

The syntax for $post_int_delay is as follows:

$post_int_delay(<input_port_name>)

Note: You can only specify the $post_int_delay system task as an argument to the
following system tasks:

$display and derivatives ($fdisplay, for example)
$monitor and derivatives ($fmonitor, for example)
$write and derivatives ($fwrite, for example)
$strobe and derivatives ($fstrobe, for example)

Also, $post_int_delay is activated only when you specify the
+transport_int_delays plus option on the command line.
November 2008 342 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
The following $monitor system task uses the $post_int_delay system task:

$monitor(“%0t: net source = %b net destination = %b”,
 $realtime, U1.clk, $post_int_delay(U1.clk));

File Output

Each of the four formatted display tasks—$display, $write, $monitor, and $strobe—
has a counterpart that writes to specific files as opposed to the log file and standard output.
These counterpart tasks—$fdisplay, $fwrite, $fmonitor, and $fstrobe—accept the
same type of parameters as the tasks they are based upon, with one exception: The first
parameter must be a multichannel descriptor that indicates where to direct the file output. A
multichannel descriptor is either a variable or the result of an expression that takes the form
of a 32-bit unsigned integer value. This value determines the open files to which the task
writes. The syntax is as follows:

$fdisplay(<multi_channel_descriptor>, P1, P2, ... , Pn);
$fwrite(<multi_channel_descriptor>, P1, P2, ... , Pn);
$fstrobe(<multi_channel_descriptor>, P1, P2, ..., Pn);
$fmonitor(<multi_channel_descriptor>, P1, P2, ..., Pn);
$fopen("<name_of_file>")
$fclose(<multichannel_descriptor>);

The function $fopen opens the file specified as a parameter and returns a 32-bit unsigned
multichannel descriptor that is uniquely associated with the file. It returns 0 if the file could not
be opened for writing.

Think of the multichannel descriptor as a set of 32 flags, where each flag represents a single
output channel. The least significant bit (bit 0) of a multichannel descriptor always refers to
the standard output—that is, the log file and the screen (unless it has been redirected to a
file).

The standard output is also called channel 0. The other bits refer to channels that have been
opened by the $fopen system function.

The first call to $fopen opens channel 1 and returns a multichannel descriptor value of 2—
that is, bit 1 of the descriptor is set. A second call to $fopen opens channel 2 and returns a
value of 4—that is, only bit 2 of the descriptor is set. Subsequent calls to $fopen open
channels 3, 4, 5, and so on and return values of 8, 16, 32, and so on, up to a maximum of 31
channels. Thus, a channel number corresponds to an individual bit in a multichannel
descriptor.

The advantage of multichannel descriptors is that they allow a single system task to write the
same information to multiple outputs simultaneously. This is accomplished by setting more
than one bit in the multichannel descriptor, which is done by combining the values returned
by $fopen in a bit-wise OR operation. Another advantage of multichannel descriptors is that
November 2008 343 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
it is easy to set up descriptions where the channels that receive diagnostic information can
be dynamically altered during simulation, and even controlled with interactive commands.

Note: The number of simultaneous output channels that may be active at any one time is
dependent on the operating system and is not determined by Verilog-XL.

Verilog-XL does not buffer writes via the $fwrite or $fdisplay system tasks. However, it
is good programming practice to use $fclose to assure that all data has been written to the
file. The $fclose system task closes the channels specified in the multichannel descriptor,
and does not allow any further output to the closed channels. The $fopen task will reuse
channels that have been closed.

The following example shows how to set up multichannel descriptors. In this example, three
different channels are opened using the $fopen function. The three multichannel descriptors
that are returned by the function are then combined in a bit-wise OR operation and assigned
to the integer variable messages. The messages variable can then be used as the first
parameter in a file output task to direct output to all three channels at once. To create a
descriptor that directs output to the standard output as well, the messages variable is bit-wise
ORed with the constant 1, which effectively enables channel 0.

integer
messages,
broadcast,
cpu_chann,
alu_chann,
mem_chann;

initial
begin

cpu_chann = $fopen("cpu.dat"); if(cpu_chann == 0) $finish;
alu_chann = $fopen("alu.dat"); if(alu_chann == 0) $finish;
mem_chann = $fopen("mem.dat"); if(mem_chann == 0) $finish;
messages = cpu_chann | alu_chann | mem_chann;
broadcast = 1 | messages; // includes standard output

end

The following file output tasks show how the channels opened in the previous example can
be used:

$fdisplay(broadcast, "system reset at time %d", $time);

$fdisplay(messages, "Error occurred on address bus at time %d, address = %h",
$time, address);

forever @(posedge clock)
 $fdisplay(alu_chann, "acc= %h f=%h a=%h b=%h",acc, f, a, b);

The following interactive dialog is a further example of the use of multichannel descriptors:

C6 > $display($fopen("debug.lis"));
 16
C7 > forever @(negedge clock)
 > $fdisplay(17, "At time %h, data is %h", $time, data);
November 2008 344 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
In this dialog, $fopen opens the file debug.lis and returns a value of 16. Then $fdisplay
uses a multichannel descriptor of 17 to direct its output to both the standard output and the
newly opened file.

Another way to control file output interactively is to dynamically alter multichannel descriptors.
For example, the multichannel descriptor called messages in the previous example could be
altered to include the standard output as follows:

C8 > messages[0]=1;

Later in the simulation, the messages descriptor could be restored to its original form with
the following command:

C13 > messages[0]=0;

The $fstrobe and $fmonitor system tasks work just like their counterparts, $strobe and
$monitor, except that they write to files using the multichannel descriptor for control. Unlike
$monitor, you can set up any number of $fmonitor tasks to be simultaneously active.
Thus, if you need to have more than one monitor task report to the standard output, then use
a $fmonitor system task with a multichannel descriptor of 1.

Default Base

To avoid an excessive use of format specifiers, you can change the default format
specification from decimal to either hexadecimal, binary, or octal. To do so, simply append
one of the letters h, b, or o to the name of any of the formatted output system tasks. Consider
the following example:

$displayh(var,,a,,b);

With the letter h appended to its name, this task displays each of its three variables in
hexadecimal format.

The complete list of formatted output system tasks is as follows:

$display $fdisplay $write $fwrite
$displayh $fdisplayh $writeh $fwriteh
$displayb $fdisplayb $writeb $fwriteb
$displayo $fdisplayo $writeo $fwriteo
$strobe $fstrobe $monitor $fmonitor
$strobeh $fstrobeh $monitorh $fmonitorh
$strobeb $fstrobeb $monitorb $fmonitorb
$strobeo $fstrobeo $monitoro $fmonitoro
November 2008 345 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
Signed Expressions

The $signed() and $unsigned() system tasks evaluate the input expression and return
a value with the same size and value as the input expression with the type defined by the
function.

Simulation Time

The $time, $stime, and $realtime system functions return the current simulation time.
The function $time returns a 64-bit integer value, while $stime returns a 32-bit integer, and
$realtime returns a real number. Each function returns a value that is scaled to the time
unit of the module that invoked it. If the value of the simulation time is greater than the decimal
4294967295, then $stime returns a value expressed in modulus 232. The syntax is as
follows:

$time
$stime
$realtime

These functions are useful when used as parameters to the formatted output tasks for
establishing simulation time along with the display output. Consider the following example:

$monitor($time,, "areg=%h", areg);

The above call to $monitor produces a continuous display similar to the following:

 0 abus=01
1000 abus=2f
1010 abus=1f
1013 abus=10
2000 abus=8a

Note that the $time parameter does not trigger monitoring whenever its value changes; time
values are only displayed when one of the other parameters changes value. The same is true
for $stime and $realtime.

Note also that $time and its relatives do not trigger event controls; to wait for a particular
time, use a delay control, as in the following example. This delay control delays the
assignment statement until simulation time reaches the desired time.

begin
#(desired_time - $time) n=0;

end
November 2008 346 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
Stop and Finish

The $stop system task puts the simulator into a halt mode, issues an interactive command
prompt, and passes control to the user. This task takes an optional expression parameter that
determines what type of diagnostic message is printed before the interactive command
prompt is issued. If no parameter is supplied, then the task defaults to a parameter value of
1. The syntax is as follows:

$stop;
$stop(n);
$finish;
$finish(n);

The following table shows the valid parameter values and the diagnostic information they
produce:

The $finish system task causes the simulation to end and passes control back to the post
processing environment (ppe) mode of the GUI, if it is connected. The $finish task accepts
the same optional parameter as $stop and produces the same type of diagnostic
information.

Random Number Generation

The system function $random provides a mechanism for generating random numbers. The
function returns a new 32-bit random number each time it is called. The random number is a
signed integer; it can be positive or negative. For further information on random number
generators, see Appendix D, Stochastic Analysis The syntax is as follows:

$random;
$random(<seed>);

The <seed> parameter controls the numbers that $random returns. The <seed>
parameter must be either an integer or a register type and must be defined prior to calling
$random.

Parameter Value Diagnostic Message

0 Prints nothing.

1 Prints simulation time and location.

2 Prints simulation time, location, and statistics about the memory
and CPU time used in simulation.
November 2008 347 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
The random numbers generated are the same across all machines and operating systems,
and are reproduced correctly when $save and $restart are used to save and restart the
simulation data structure (see “Saving and Restarting Simulations” on page 352).

Where b > 0, the expression ($random % b) gives a number in the range: [(-b+1):
(b-1)]. The following code fragment shows an example of random number generation:

reg [23:0] rand;
rand = $random % 60;

The preceding example gives rand a value between -59 and 59. The following example
shows how adding the concatenation operator to the preceding example gives rand a
positive value from 0 to 59:

reg [23:0] rand;
rand = {$random} % 60;

Tracing

The $settrace system task enables the tracing of simulation activity. This trace consists of
various information, including the current simulation time, the location in the source file
description of the active statement, a full decompilation of the statement, and the result of the
execution of the statement. The syntax is as follows:

$settrace;
$cleartrace;

You can turn off the trace using the $cleartrace system task and then turn it back on using
$settrace any number of times during the simulation. For example, the following interactive
command enables a trace for 20 time units after each change of the variable s85.i85.acc:

C8 > forever begin
> @s85.i85.acc $settrace;
> #20 $cleartrace;
> end

The following example is a source file that invokes $settrace:

module settrace;
reg [23:0] cond1, cond2;

initial
begin

$settrace;
cond1=0;
cond2=0;
#200 $finish;

end
always #5
begin

cond1=~cond1;
#5;
cond2=~cond2;

end
November 2008 348 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
always @cond1
if(cond1)
$display("cond1-->true");

always @cond2
if(cond2)
$display("cond2-->true");

else
$display("cond2-->false");

endmodule

Note that the first conditional statement in this example has no else; the second conditional
statement does have an else.

The following example shows some of the results of simulating the code in the example just
shown. The strings such as L15 and L16 that begin the lines of the $settrace output
indicate the lines of source code that Verilog-XL executes. The word CONTINUE indicates that
simulation activity begins again after a timing control. The output for L14 and L16 show the
values as both 32-bit hexadecimal values and decimal values.

SIMULATION TIME IS 180
L15 "settrace": #5 >>> CONTINUE
L15 "settrace": ;
L16 "settrace": cond2 = ~cond2; >>> cond2 = 24’h0, 0;
L17 "settrace": end
L12 "settrace": always
L12 "settrace": #5
L23 "settrace": @cond2 >>> CONTINUE
L24 "settrace": if(cond2) >>> FALSE
L27 "settrace": $display("cond2-->false");
cond2-->false
L23 "settrace": always
L23 "settrace": @cond2
SIMULATION TIME IS 185
L12 "settrace": #5 >>> CONTINUE
L13 "settrace": begin
L14 "settrace": cond1 = ~cond1; >>> cond1 = 24’hffffff, 16777215;
L15 "settrace": #5
L19 "settrace": @cond1 >>> CONTINUE
L20 "settrace": if(cond1) >>> TRUE
L21 "settrace": $display("cond1-->true");
cond1-->true
L19 "settrace": always
L19 "settrace": @cond1
SIMULATION TIME IS 190
L15 "settrace": #5 >>> CONTINUE
L15 "settrace": ;
L16 "settrace": cond2 = ~cond2; >>> cond2 = 24’hffffff, 16777215;
L17 "settrace": end
L12 "settrace": always
L12 "settrace": #5
L23 "settrace": @cond2 >>> CONTINUE
L24 "settrace": if(cond2) >>> TRUE
L25 "settrace": $display("cond2-->true");
cond2-->true
L23 "settrace": always
L23 "settrace": @cond2
SIMULATION TIME IS 195
L12 "settrace": #5 >>> CONTINUE
November 2008 349 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
L13 "settrace": begin
L14 "settrace": cond1 = ~cond1; >>> cond1 = 24’h0, 0;
L15 "settrace": #5
L19 "settrace": @cond1 >>> CONTINUE
L20 "settrace": if(cond1) >>> SKIPPING
L19 "settrace": always
L19 "settrace": @cond1
SIMULATION TIME IS 200

When the L21 or L24 conditional statement evaluates cond1 or cond2 as TRUE because it
is nonzero, Verilog-XL executes the L21 or L25 $display statement. The $settrace data
shows the standard output. When the L24 conditional statement evaluates cond2 as FALSE,
Verilog-XL executes the L27 $display statement. The case of a FALSE value for cond1 has
a different result: $settrace generates the message SKIPPING. This SKIPPING message
is the result of a false conditional statement with no else.

The following example includes a task, a function, and named blocks. The task,
delay_task, (line 18) and the function, delay_func, (line 28) control the value of temp2
(line 13). The value of temp2 increases in a nonlinear fashion to a maximum of 10 as the
value of the for loop variable temp (line 10) increments to a maximum of 5. The delay
implemented with the value of temp2 (line 14) affects the iteration of the for loop (line 10)
that makes an assignment to the register value. The wire delayed_value receives the
value of register value immediately in a net declaration assignment (line 5).

1 module top;
2 reg [3:0] value;
3 reg [3:0] temp;
4 reg [3:0] temp2;
5 wire [3:0] delayed_value=temp;
6
7 initial
8 begin :assign_block
9 $settrace;
10 for (temp=0; temp<6; temp=temp+1)
11 begin
12 value=temp;
13 delay_task(temp,temp2);
14 #temp2;
15 end
16 end
17
18 task delay_task;
19 input [3:0] a;
20 output [3:0] b;
21 begin :delay_block
22 if ((5>a)&&(a>2)) b=5;
23 else if (a >= 5) b=10;
24 else b=delay_func(a);
25 end
26 endtask
27
28 function [3:0] delay_func;
29 input [3:0] data;
30 begin :func_block
31 if (data<=1)delay_func=1;
32 else delay_func=data;
November 2008 350 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
33 end
34 endfunction
35
36 endmodule

Execution begins with the for loop on line 10 and proceeds line by line until the
delay_task invocation on line 13. Execution of the delay_task begins in the named block
delay_block on line 21. The conditional statement on lines 22 and 23 proves FALSE, and
line 24 invokes the delay_func function.

Execution of the delay_func function begins in the named block func_block on line 30.
The if component of the conditional statement on line 30 proves TRUE, which finishes
significant activities in func_block. The trace moves to the end of the func_block on line
33 and then to the beginning of the func_block on line 28 and issues the message
>>>RETURNING to indicate that the function has executed.

Execution returns to line 24 which invoked the delay_func function, and the delay_task
output b receives the value of 1, completing significant delay_task activity. The trace
moves to the end of the delay_block on line 25 and then to the beginning of the
delay_task on line 18 and issues the message >>>RETURNING to indicate that execution
of the task is complete. The delay implemented by temp2 on line 14 now has a known value
and executes, causing simulation time to advance to 1.

Execution continues after the delay, reaching the end of the for loop on line 15 and reverting
to the beginning of the for loop.

The following output shows the beginning of the $settrace from simulating the code in the
previous example:

L10 "$settrace": for(temp = 0; temp < 6;) >>> temp = 32’h0, 0
L10 "$settrace": for(temp = 0; temp < 6;) >>> TRUE
L11 "$settrace": begin
L12 "$settrace": value = temp; >>> value = 4’h0, 0;
L13 "$settrace": delay_task(temp, temp2);
L21 "$settrace": begin :delay_block
L22 "$settrace": if((5 > a) && (a > 2)) >>> FALSE
L23 "$settrace": if(a >= 5) >>> FALSE
L24 "$settrace": delay_func(a)
L30 "$settrace": begin :func_block
L31 "$settrace": if(data <= 1) >>> TRUE
L31 "$settrace": delay_func = 1;
L33 "$settrace": end :func_block
L28 "$settrace": delay_func; >>> RETURNING
L24 "$settrace": b = delay_func(a); >>> b = 4’h1, 1;
L25 "$settrace": end :delay_block
L18 "$settrace": delay_task; >>> RETURNING
L14 "$settrace": #temp2 >>> #4’h1, 1
SIMULATION TIME IS 1
L14 "$settrace": #temp2 >>> CONTINUE
L14 "$settrace": ;
L15 "$settrace": end
L10 "$settrace": for(; temp < 6; temp = temp + 1) >>> temp = 32’h1, 1
November 2008 351 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
Note: No message shows the initiation of activity in the named block assign_block as the
simulation begins. Messages that $settrace generates at the end of the simulation show
the execution of assign_block after exiting from assign_block.

Saving and Restarting Simulations

The $save, $incsave, and $restart system tasks let you save the complete simulation
data structure into a file. This file can be then reloaded at a later time, so that you can continue
the simulation where it left off at the time it was saved. The $save, $incsave, and
$restart system tasks are often used during large simulation runs to save checkpoint
versions of the data structure at regular intervals. You can also use them to perform quick “try
and see” experiments without having to repeat the entire simulation each time. The syntax for
these system tasks is as follows:

$save("<name_of_file>");
$incsave("<incremental_filename>");
$restart("<name_of_file>");

All three system tasks take a filename as a parameter. That filename must be supplied as a
string enclosed in quotation marks.

The $save system task saves the complete data structure into the host operating system file
specified as a parameter. Interactive commands are also saved by the $save system task;
thus, when you use $restart to restore a simulation data structure, you also replace the
current set of commands with the saved set of commands.

The $incsave system task marks the simulation time and saves only the information that
has changed since the last invocation of $save. You supply a unique filename for each
incremental save. An incremental save applies only to the file produced by the previous
$save.

The $restart system task restores a previously saved data structure from a specified file.
The data structure description to be restarted does not have to be related in any way to the
description being replaced.
November 2008 352 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
The following figure and subsequent explanation show how $save and $restart work
during a simulation:

1. At time 0, the $shm_open system task opens a waveform database called shm1.db.

2. At time 0, probes for signals a and b begin, recording them in shm1.db.

3. At time 400, the $save system task creates a Verilog save file called time1.sav where
it stores a list of the current probes (a and b) and the simulation information.

4. At time 550, a probe for signal c begins, recording it in shm1.db.

5. At time 700, a probe for signal d begins, recording it in shm1.db.

6. At time 850, the $restart system task opens the time1.sav file to recall the state of
the simulation at time 400.

❑ Because signals c and d are being probed at the time the $restart system task
is issued, they are added to the probe list.

❑ The time in the waveform database (shm1.db) is set to time 400, and the waveform
data that previously existed after time 400 is discarded.

❑ When the simulation restarts at time 400, signals a, b, c, and d are probed.

7. At time 950, a probe for signal e begins, recording it in shm1.db.

8. At time 1050 a probe for signal f begins, recording it in shm1.db.

9. At time 1400, the $save system task creates a Verilog save file called time2.sav
where it stores a list of the current probes (a, b, c, d, e, and f) and the simulation
information.

10. At time 1600, $reset changes the clock to 0; simulation stops.

0 100 200 300 400 500 600 700 800 900 1000

$save(time1.sav);
$reset;$restart(time1.sav);

1400 16001100

$save(time2.sav);

$shm_open(shm1.db);

$shm_probe(a,b);
$shm_probe(c);

$shm_probe(d):

$shm_probe(e);

$shm_probe(f);

Time
November 2008 353 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
To guard against host machine failures during simulation, use the following module in the
main source description; it runs concurrently and independently of the rest of the description.

module checkpoint;
always #100000 $save("run.dat");

endmodule

At any time after a failure, you can retrieve the simulation data structure and continue the
simulation from the last checkpoint by issuing the following interactive commands:

C1> $restart("run.dat");
C2> .

Incremental Save and Restart

Restarting from an incremental save is similar to restarting from a full save, except that you
specify the name of the incremental save file in the restart command. The full save file that
the incremental save file is based upon must still be present, as it is required for a successful
restart.

If the full save file has been changed in any way since the incremental save was performed,
errors result. Many checks are performed during a restart to ensure that the data in the two
files are consistent.

The incremental restart is useful for going back in simulation time. If a full save is performed
near the beginning of simulation, and an incremental save is done at regular intervals, then
going back in time is performed by restarting from the appropriate file.

The module shown in the following example saves the incremental state of the simulation
every 10,000 time units. The files are recycled as time advances. Note that the first save is
not performed at simulation time 0. This is because the incremental files are smaller if
simulation is allowed to proceed before the first save is performed.

module checkpoint;
initial

#500 $save("save.dat");
always
begin

#100000 $incsave("inc1.dat");
#100000 $incsave("inc2.dat");
#100000 $incsave("inc3.dat");
#100000 $incsave("inc4.dat");

end
endmodule

Restarting from the inc3.dat files is performed as follows:

 C23> $restart("inc3.dat");
November 2008 354 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
Command-Line Restart

Another way to restart a simulation is to use the -r command-line option when you invoke
Verilog-XL, as follows:

verilog -r run.dat

In this example, the simulation is restarted from the file run.dat, which contains a previously
saved simulation data structure.

Note: When you restart a simulation with the -r (restart) option using a previously saved
Verilog save file (instead of using the $restart system task), you must reprobe the signals
you want to see. Also, you must specify all the command line options that were supplied
during the execution of the $save task to obtain the same functionality that the corresponding
command line options supported.

Limitations for Saving and Restarting

The following are the limitations in saving and restarting a Verilog-XL simulation:

■ You cannot save the state of simulation on a host of one type and then restart the
simulation on a host of a different type.

■ You cannot save the state of simulation using one version of Verilog-XL and then restart
the simulation using another version.

■ You cannot save the state of a simulation in batch mode and then restart the same
simulation in the GUI mode or vice versa.

Command History

The $history system task prints out a list of all of the interactive commands that have been
entered. The printout includes the number of each command so that you may use it in the re-
execute and disable commands. The list also indicates which commands are active by
flagging the command numbers with an asterisk (*) character. The syntax is as follows:

$history;

The following interactive dialog shows a sample command history printout:

C8> 1
Command history:
C1* $history;
C2 $settrace;
C3 $cleartrace;
C4* forever

@s85.i85.acc
$stop;
November 2008 355 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
C5 force s85.ready = 0;
C6 force s85.ready = 1;
C7 $save("85a.dat");

C8> -4
C8> 1

Command history:
C1* $history;
C2 $settrace;
C3 $cleartrace;
C4 forever

@s85.i85.acc
$stop;

C5 force s85.ready = 0;
C6 force s85.ready = 1;
C7 $save("85a.dat");

C8> $display("acc=%h", s85.i85.acc);
acc=7f

C9> .

Command Input Files

The $input system task allows command input text to come from a named file instead of
from the terminal. At the end of the command file or when an asynchronous interrupt is issued
from the terminal, the input is automatically switched back to the terminal. The syntax is as
follows:

$input("<filename>");

If an $input task is executed while a previous command file is being read, then the old file
is closed and the new file is read in its place. At the end of the new file, input is switched back
to the terminal, not to the old file.

Another way to specify a command input file is to use the command-line option -i when you
first invoke Verilog-XL. The name of the input command file must follow the -i option. Again,
at the end of this file, or when an asynchronous interrupt is issued from the terminal, the input
is automatically switched back to the terminal.

Note: A previously generated key file containing asynchronous interrupt information cannot
be read by the $input command because the interrupt information in the file will cause
syntax errors. Such a file can only be read by using the -i command-line option at the
beginning of a Verilog-XL run.

Log File

Each time Verilog-XL runs, a log file is created. The log file contains a copy of all the text that
is printed to the standard output, and also includes, at the beginning of the file the host
command that was used to run Verilog-XL. The syntax is as follows:
November 2008 356 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
$log("<filename>");
$log;
$nolog;

The $nolog and $log system tasks are used to disable and re-enable output to the log file.
The $nolog task disables output to the log file, while the $log task re-enables the output.
If you supply an optional filename to $log, then the old log file is closed, a new log file is
created, and output is directed to the new log file.

The default log filename is verilog.log, which can be changed using the -l command
option, as in the following example:

verilog src1.v -l src1.log

The preceding invocation of Verilog-XL changes the name of the log file to src1.log. Use
this method to provide a unique name for each log file you intend to keep. Otherwise, with
each new run, Verilog-XL overwrites any previously created log file that uses the default name
verilog.log.

Key File

Verilog-XL creates a key file whenever it enters interactive mode for the first time. The key file
contains all of the text that has been typed in from the standard input. The file also contains
information about asynchronous interrupts so that, in conjunction with the -i input command
file option, an exact simulation recovery is possible. See Interactive Recovery in the
Verilog-XL User Guide for more details. The syntax is as follows:

$key("<filename>");
$key;
$nokey;

The $nokey and $key system tasks are used to disable and re-enable output to the key file.
The $nokey task disables output to the key file, while the $key task re-enables the output.
If you supply an optional filename to $key, then the old key file is closed, a new key file is
created, and output is directed to the new file.

The default key filename is verilog.key, which can be changed by the -k command
option, as in the following example:

verilog src1.v -k src1.key

The above invocation changes the name of the key file to src1.key. Use this method to
provide a unique name for each key file you intend to keep. Otherwise, with each new run,
Verilog-XL overwrites any previously created key file that uses the default name
verilog.key.
November 2008 357 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
Setting the Interactive Scope

The $scope system task lets you assign a particular level of hierarchy as the interactive
scope for identifying objects. The <name> parameter must be the complete hierarchical
name of a module, task, function, or named block. Once $scope is executed, you no longer
need to reference the full hierarchical name of any object in or below the specified level of
hierarchy. In subsequent interactive commands, these objects may be referenced in relation
to the interactive scope established by $scope. The initial setting of the interactive scope is
the first top-level module. The syntax is as follows:

$scope(<name>);

Showing the Hierarchy

The $showscopes system task produces a complete list of modules, tasks, functions, and
named blocks that are defined at the current scope level. The parameter n is a switch. When
it is nonzero, all of the modules, tasks, functions, and named blocks in or below the current
hierarchical scope are listed. When n is zero, the operation is identical to $showscopes
without a parameter—that is, only objects at the current scope level are listed. At the end of
the list, the full hierarchical name of the current level is printed, along with a list of all the top
level modules. This information is sufficient to allow traversal of the hierarchy either up or
down by using the $scope system task.

The system task $showallinstances displays the number of instances of each module,
gate, and primitive in the entire design hierarchy. Also, for modules and UDPs, this task
identifies the name of the file that contains their definitions.

The syntax for the $showscopes and $showallinstances tasks is as follows:

$showscopes;
$showscopes(n);
$showallinstances;

Showing Variable Status

The $showvars system task produces status information for register and net variables, both
scalar and vector. This information is very useful for examining the contribution of all the
drivers on a net, especially when the net’s value is x. When invoked without parameters,
$showvars displays the status of all variables in the current scope. The syntax is as follows:

$showvars;
$showvars(<list_of_variables>);
$showvariables(control);
$showvariables(control,<list_of_variables>);
November 2008 358 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
When invoked with a <list_of_variables>, $showvars shows only the status of the
specified variables. If the <list_of_variables> includes a bit-select or part-select of a
register or net, Verilog-XL displays status information for all the bits of that register or net. The
information produced for each variable includes the following:

The system task $showvariables displays information similar to that of $showvars, but
allows more control over the information displayed. The control parameter accepts an
integer value from 0 to 7 and determines the amount of information displayed, as shown in
the following table.

Showing Net Expansion Status

This system task lists all of the vector nets that have been expanded during compilation. The
syntax is as follows:

■ name of variable ■ future value if scheduled

■ scope of variable ■ whether the variable is forced

■ type of variable ■ decompilation of drivers, with output values

■ current value ■ future value of drivers, if scheduled

Control Value Information Displayed

0 Display the same information as $showvars (default).

1 Display all information for variables in or below the current scope.

2 Display all information except driver information for
variables in, but not below, the current scope.

3 Display all information except driver information for
variables in or below the current scope.

4 Display information for unknown variables in, but not
below, the current scope.

5 Display information for unknown variables in or below
the current scope.

6 Display all information except driver information for
unknown variables in, but not below, the current scope.

7 Display all information except driver information for
unknown variables in or below the current scope.
November 2008 359 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
$showexpandednets;

Showing Module Port Status

This system task lists all module ports that have not been collapsed during compilation. The
syntax is as follows:

$showportsnotcollapsed;

Showing Number of Drivers

The $countdrivers system function is provided to count the number of drivers on a
specified net so that bus contention can be identified. The syntax is as follows:

$countdrivers(net, net_is_forced, number_of_01x_drivers,
number_of_0_drivers, number_of_1_drivers,number_of_x_drivers);

This system function returns a 0 if there is no more than one driver on the net and returns a
1 otherwise (indicating contention). The net specified by net must be a scalar or a bit-select
of an expanded vector net.

The number of parameters to the system function may vary according to how much
information is desired. The net parameter is required; the rest are optional. Include a comma
to hold the place of parameters you are not using. For example:

$countdrivers(net, , ,number_of_0_drivers,
number_of_1_drivers, number_of_x_drivers);

The parameters net_is_forced, and number_of_01x_drivers are not used by this
call to $countdrivers.

The optional parameters must be predefined so that $countdrivers can assign values to
them. The parameter net_is_forced, if supplied, returns a scalar 1 or 0 and may be
predefined as a reg variable. The parameters number_of_01x_drivers,
number_of_0_drivers, number_of_1_drivers, and number_of_x_drivers
should be predefined as integer variables.

If you supply additional parameters to the $countdrivers function, each parameter returns
the information described in the following table.

Parameter Return Value

net_is_forced Returns a 1 if the net is forced and a 0 if the
net is not forced.
November 2008 360 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
The following example shows how you can use $countdrivers to determine the drivers of
a net:

module two_drivers (node, ina, inb);
output node;
input ina, inb;
buf a (node, ina); // buffers a and b
buf b (node, inb); // both drive output node\
endmodule

module drive_contention;
reg contention;
reg is_forced;
integer driver_total, d0, d1, dx;
reg ina, inb;

two_drivers c (node, ina, inb);

always @ (ina or inb)
if (node === 1’bx)
begin // contention is set to 1 if there are

// two or more drivers, and 0 otherwise
contention = $countdrivers (node, is_forced,

driver_total, d0, d1, dx);
if (contention)
$display("Contention---\n",

"is_forced: %b\n", is_forced,
"driver_total: %0d\n", driver_total,
"num_0_drivers: %0d\n ", d0,
"num_1_drivers: %0d\n", d1,
"num_x_drivers: %0d\n", dx);

end

initial $monitor("time: %0d", $time, "node:%b", node,
"ina:%b", ina, "inb:%b", inb);

initial
begin

#10 ina = 1’b1;
#10 inb = 1’b0;
#10 ina = 1’b0; inb = 1’b1;

number_of_01x_drivers Returns an integer representing the number of
drivers that are in a 0, 1, or x state; this
represents the total number of drivers on the
net that are not forced.

number_of_0_drivers Returns an integer representing the number of
drivers on the net that are in the 0 state.

number_of_1_drivers Returns an integer representing the number of
drivers on the net that are in the 1 state.

number_of_x_drivers Returns an integer representing the number of
drivers on the net that are in the x state.

Parameter Return Value
November 2008 361 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
end
endmodule

The following output comes from running the code in the previous example:

Compiling source file "contention.v"
Highest level modules:
drive_contention

time: 0 node:x ina:x inb:x
Contention---
is_forced: 0
driver_total: 2
num_0_drivers: 0
num_1_drivers: 0
num_x_drivers: 2

time: 10 node:x ina:1 inb:x
Contention---
is_forced: 0
driver_total: 2
num_0_drivers: 0
num_1_drivers: 1
num_x_drivers: 1

time: 20 node:x ina:1 inb:0
Contention---
is_forced: 0
driver_total: 2
num_0_drivers: 1
num_1_drivers: 1
num_x_drivers: 0

time: 30 node:x ina:0 inb:1
49 simulation events

Displaying the Delay Mode

The $showmodes system task displays the delay modes in effect for particular modules
during simulation. When invoked with a non-zero constant argument, $showmodes displays
the delay modes of the current scope, as well as the delay modes of all module instances
beneath it in the hierarchy. If a zero argument or no argument is supplied to $showmodes,
the system task displays only the delay mode of the current scope. The syntax is as follows:

$showmodes;
$showmodes(<non_zero_constant>);

Storing Interactive Commands

The $keepcommands and $nokeepcommands system tasks control whether or not
Verilog-XL saves interactive commands in its history stack. You can access this stack with the
$history system task. The system task $nokeepcommands tells Verilog-XL to add no
more interactive commands to its history stack. The system task $keepcommands tells
November 2008 362 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
Verilog-XL to add all subsequent interactive commands to its history stack. The syntax is as
follows:

$keepcommands;
$nokeepcommands;

Interactive Source Listing—Decompilation

Two system tasks produce a line-numbered listing of your source description. Producing this
listing of your source description is called decompilation. These system tasks are $list and
$listcounts. A third system task, $list_forces, lists the currently active force
statements.

$list

When invoked without a parameter, $list produces a listing of the module, task, function,
or named block that is defined as the current scope setting. When an optional parameter i s
supplied, it must refer to a specific module, task, function or named block, in which case, the
specified object is listed. The syntax is as follows:

$list;
$list (<name>);

The listing provides, apart from the source text itself, the following information:

■ References to the original source file line numbers

■ An asterisk (*) appearing next to the line number of any source line that has a current
simulation event associated with it

■ The current value of declared data items listed as a comment after the declared name

$listcounts

The $listcounts system task is an enhancement of $list. The $listcounts system
task is disabled by default to accelerate simulation. You must include the +listcounts
option on the command line to enable the task, unless the +no_speedup option is specified
on the command line. The task produces a line-numbered source listing that includes an
execution count, which is the number of times Verilog-XL has executed the statements in
each line thus far in the simulation. The syntax is as follows:

$listcounts;
$listcounts(<hierarchical_name>);
November 2008 363 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
The $listcounts system task takes an optional hierarchical name argument. If you do not
include an argument, $listcounts produces a listing of the source description at the scope
level from which you called the task.

$list_forces

The $list_forces system task lists the currently active force statements. The list
produced by the $list_forces system task shows force statements with the full
hierarchical names of the nets and registers subject to the force statements. The syntax is
as follows:

$list_forces;
$list_forces("<file_name>");

The following example shows an interactive force statement and the $list_forces
system task:

C1 > force d = 1;
C2 > $list_forces;
force top.d = 1;

The first interactive entry is a force statement that forces d to 1. The list produced by the
$list_forces system task shows the full hierarchical name of d.

If you are making a design work correctly by adding force statements to it, the
$list_forces and the $reset system tasks provide the following efficient method:

1. View all the currently active force statements with the $list_forces task to
understand changes or additions that the design requires in the force statements.

2. Reset the simulation to time 0 with the $reset system task.

3. Enter the changes or additions to the force statements.

4. Simulate again.

The $list_forces system task does not show inactive force statements or the release
statements that made them inactive unless a force statement has assigned a value to a
concatenation of nets or registers and a subsequent release statement has inactivated the
force statement on one or more of the nets or registers in the concatenation.

The following example shows an interactive force statement that forces a value onto a
concatenation of registers, a release statement that releases the force statement on one
of the registers, and the $list_forces system task:

C1 > force {a,b,c} = 3’b111;
C2 > #100 $stop
C3 > .
C2: $stop at simulation time 210
November 2008 364 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
C3 > release b;
C4 > #100 $stop;
C5 > .
C4: $stop at simulation time 310
C5 > $list_forces;
force {top.a, top.b, top.c} = 3’b111;
release top.b;

You can specify a filename to which Verilog-XL writes the list of active force statements.
Verilog-XL formats this file so that you can input its contents with the $input system task.
You can, for example, input this file after you reset Verilog-XL to apply these force
statements before the simulation begins again. The following example shows an interactive
force statement, a $list_forces system task, a $reset system task, and the application
of the force statement before the simulation begins again:

C1 > force d = 1;
C2 > $list_forces("forces.cmd");
C3 > $reset;
C3: $reset at simulation time 110
C4 > $input("forces.cmd");
C5 > force top.d = 1;
C6 >

The $list_forces system task takes an argument. This argument can be a character
string that specifies a filename or a constant that is an ASCII value. You enclose a filename
in quotation marks. In the above example, Verilog-XL writes the active force statement to
reg d to a file named forces.cmd. The $reset system task resets the simulation time to
0, returns d to its initial value, and resumes the interactive mode. The $input system task
tells Verilog-XL to execute the force statement in forces.cmd.

By design, the $list_forces task does not list force statements written in protected
code. As a result, $list_forces does not always list all the force statements in effect at
the time at which it is issued.

The $list_forces task does not list any force or release statements for a
concatenation subject to a force statement if all members of the concatenation have been
released. In such a case the $list_forces task without an argument lists the currently
active force statements both in the log file and in the standard output.

Note: If you issue force statements interactively, but you have $nokeepcommands in
effect, the behavior of $list_forces is unpredictable.

Disabling and Enabling Warnings

The $disable_warnings and $enable_warnings system tasks make it possible to
suppress or generate warning messages. See Appendix H, Verilog-XL Messages, of the
Verilog-XL User Guide for more information about messages.
November 2008 365 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
$disable_warnings

The $disable_warnings system task tells Verilog-XL to stop displaying warnings about
the following:

■ Timing check violations, which Verilog-XL displays by default

■ The triregs that acquire a value of X due to charge decay, which Verilog-XL displays by
default

The syntax is as follows:

$disable_warnings;
$disable_warnings ("<keyword>"?<,<module_instance>>*?);

This system task’s arguments are optional. The task can have only one keyword argument,
but it can have any number of module_instance arguments.

In this example, Verilog-XL disables all timing check violation messages and all trireg
charge decay notifications for the rest of the simulation, unless the $enable_warnings
system task (see the following section) reenables them.

The keyword argument

Adding an argument to the $disable_warnings system task specifies the type of warning
that Verilog-XL disables. The following table shows the valid arguments:

You must enclose the keyword in quotation marks. The following example shows the use of
the decay keyword argument:

$disable_warnings("decay");

In this example, Verilog-XL stops displaying notifications of trireg charge decay but
continues to display warnings about timing check violations.

The module instance argument

An argument of one or more module instance names, or the top-level module name placed
after the keywords in the previous table, specifies where in the source description Verilog-XL
disables warnings. When you enter a <module_instance> argument Verilog-XL displays
no warnings of the type designated by the keyword argument in the specified module

"decay" Specifies that you want to disable charge decay warnings

"timing" Specifies that you want to disable timing check violation warnings
November 2008 366 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
instances in the module hierarchy. The following example shows a use of the module instance
argument:

$disable_warnings ("decay",precharge,dram2);

In this example, Verilog-XL displays no charge decay warnings in the modules with the
instance names precharge or dram2, or in the module instances hierarchically below
precharge or dram2.

Note: Port collapsing can disable warnings of charge decay for a trireg that is not in the
specified module. The disabling of charge decay warnings in a module and the collapsing of
that module’s ports can result in the disabling of charge decay warning messages about a
trireg that is the external net connected by the collapsed port.

$enable_warnings

The $enable_warnings system task without arguments enables the display of the
warnings listed in the previous table.

The $enable_warnings system task with appended arguments enables the display of any
warning that you disabled with the $disable_warnings system task. The
$enable_warnings system task takes a module instance name or the top-level module
name as arguments. The syntax is as follows:

$enable_warnings (<"keyword">?<,<module_instance>>*?);

For example, the following line enables notifications of trireg charge decay for the entire
simulation:

$enable_warnings ("decay");

The following example shows uses of the $enable_warnings system task:

$disable_warnings ("decay");
$enable_warnings("decay",dram_bitcell);

The $disable_warnings system task tells Verilog-XL not to display charge decay
warnings about triregs in the source description; the $enable_warnings system task tells
Verilog-XL to make an exception and to display charge decay warnings about all triregs in the
module instance named dram_bitcell and about all triregs in the modules instantiated
hierarchically below that module instance.
November 2008 367 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
Loading Memories from Text Files

Two system tasks—$readmemb and $readmemh—read and load data from a specified text
file into a specified memory. Either task may be executed at any time during a simulation. The
syntax is as follows:

$readmemb("<filename>", <memname>);
$readmemb("<filename>", <memname>, <start_addr>);
$readmemb("<filename>", <memname>, <start_addr>, <finish_addr>);
$readmemh("<filename>", <memname>);
$readmemh("<filename>", <memname>, <start_addr>);
$readmemh("<filename>", <memname>, <start_addr>, <finish_addr>);

The text file to be read must contain only the following:

■ white space (spaces, new lines, tabs, and form-feeds)

■ comments (both types of comments are allowed)

■ binary or hexadecimal numbers

The numbers must have neither the length nor the base format specified. For $readmemb,
each number must be binary. For $readmemh, the numbers must be hexadecimal. The
unknown value (x or X), the high impedance value (z or Z), and the underscore (_) can be
used in specifying a number as in a Verilog-XL source description (see Chapter 2, “Lexical
Conventions,”). White space and/or comments must be used to separate the numbers.

In the following description, the term “address” refers to an index into the array that models
the memory.

As the file is read, each number encountered is assigned to a successive word element of the
memory. Addressing is controlled both by specifying start and/or finish addresses in the
system task invocation, and by specifying addresses in the data file.

When addresses appear in the data file, the format is an “at” character (@) followed by a
hexadecimal number as follows:

@hh...h

Both upper- and lower-case digits are allowed in the number. No white space is allowed
between the @ and the number. You may use as many address specifications as you need
within the data file. When the system task encounters an address specification, it loads
subsequent data starting at that memory address.

If no addressing information is specified within the system task, and no address specifications
appear within the data file, then the default start address is the left-hand address given in the
declaration of the memory, and consecutive words are loaded until either the memory is full
or the data file is completely read. If the start address is specified in the task without the finish
November 2008 368 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
address, then loading starts at the specified start address and continues towards the
right-hand address given in the declaration of the memory.

If both start and finish addresses are specified as parameters to the task, then loading begins
at the start address and continues towards the finish address, regardless of how the
addresses are specified in the memory declaration.

When addressing information is specified both in the system task and in the data file, the
addresses in the data file must be within the address range specified by the system task
parameters. Otherwise, an error message is issued, and the load operation is terminated.

A warning message is issued if the number of data words in the file differs from the number
of words in the range implied by the start and finish addresses.

For example, consider the following declaration of memory mem:

reg[7:0] mem[1:256];

Given this declaration, each of the following statements will load data into mem in a different
manner:

initial $readmemh("mem.data", mem);

initial $readmemh("mem.data", mem, 16);

initial $readmemh("mem.data", mem, 128, 1);

The first statement loads up the memory at simulation time 0 starting at the memory address
1. The second statement begins loading at address 16 and continues on towards address
256. For the third and final statement, loading begins at address 128 and continues down
towards address 1.

In the third case, when loading is complete, Verilog-XL performs a final check to ensure that
exactly 128 numbers are contained in the file. If the check fails, the simulator issues a warning
message.

Note: Errors or warnings that result from the execution of the system tasks $readmemb and
$readmemh do not terminate simulation.

Setting a Net to a Logic Value

The $deposit system task allows you to set a net to a particular value and then to simulate
with the net set to that new value. The value change is propagated throughout the nets and
registers being driven by the variable that has been set. The syntax is as follows:

$deposit(variable, value);
November 2008 369 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
The $deposit task can be used within any Verilog-XL procedural block. You can define the
time at which the net is to be given a new value using the standard procedural constructs. The
task can also be used on the interactive command line.

Use this system task as a debugging or design initialization aid. You should not use it as a
representation of actual circuitry.

Common uses for the $deposit system task include the following:

■ To initialize large portions or all of a circuit either at the beginning of or during a
simulation. You can select the nodes to be deposited to yourself, or use PLI code to
extract the node names.

■ To stop the simulator during a debugging session and to use the command on the
interactive command line to set a new value.

■ To reset a circuit to a known state after simulation in order to retry a different debug route.

■ To set parts of a circuit to analyze intricate circuit details (common for switch level
simulation).

■ To break feedback loops to set them to a known state.

In the syntax, variable is the name of the net or register whose value is being changed.
The variable can be a net or register type but not a parameter, and it can be a vector or scalar
object that can be expanded or compacted.

The second parameter, value, is a numerical or logical value in standard Verilog-XL
notation. Bit and part selects are not allowed.

If the width of the value is smaller than the range of the variable, an error message is
generated. If the width of the value is larger than the range of the variable, the MSBs are
truncated and a warning is issued.

X and Z states can also be deposited.

Here are some examples of using $deposit:

$deposit(sig, 1);
$deposit(bus, ’hA2);
$deposit(bus4, ’bZ01x);

Fast Processing of Stimulus Patterns

The system function $getpattern provides for the fast processing of stimulus patterns that
must be propagated to a large number of scalar inputs. The function reads stimulus patterns
November 2008 370 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
that have been loaded into a memory using the $readmemb or $readmemh system tasks.
The syntax is as follows:

$getpattern (<mem_element>);

The use of this function is limited; it may only be used in a continuous assignment statement
in which the left-hand side is a concatenation of scalar nets, and the parameter to the system
function is a memory element reference. There is no limit on the number of $getpattern
functions in a simulation, but only one $getpattern function is permissible per memory
instance.

The following example shows how stimuli stored in a file can be read into a Verilog-XL
memory using $readmemb and applied to the circuit, one pattern at a time, using
$getpattern:

module top;
parameter in_width=10,
patterns=200,

step=20;
reg [1:in_width] in_mem[1:patterns];
integer index;
// declare scalar inputs
wire i1,i2,i3,i4,i5,i6,i7,i8,i9,i10;
// assign patterns to circuit scalar inputs (a new pattern

// is applied to the circuit each time index changes value)
assign {i1,i2,i3,i4,i5,i6,i7,i8,i9,i10}

= $getpattern(in_mem[index]);
initial
begin
// read stimulus patterns into memory
$readmemb("patt.mem", in_mem);
// step through patterns (note that each assignment
// to index will drive a new pattern onto the circuit
// inputs from the $getpattern system task specified
// above
for(index = 1; index <= patterns; index = index + 1)

#step;
end
// instantiate the circuit module
mod1 cct(o1,o2,o3,o4,o5,o6,o7,o8,o9,o10,

i1,i2,i3,i4,i5,i6,i7,i8,i9,i10);
endmodule

In the above example, the memory in_mem is initialized with the stimulus patterns by the
$readmemb task. The integer variable index selects which pattern is being applied to the
circuit. The for loop increments the integer variable index periodically to sequence the
patterns.
November 2008 371 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
Incremental Pattern File Tasks

One of the system tasks that this section discusses stores selected simulation events in a
special purpose file called an incremental pattern file. Other system tasks that this section
discusses manipulate incremental pattern files for the following purposes:

■ Stimulus for simulations

■ Comparison of simulation results during a time window

■ Comparison of simulation results at the end of a time unit

$incpattern_write

The $incpattern_write system task writes an incremental pattern file that records the
value changes of specified nets or registers during simulation. The file is called an
incremental pattern file due to its particularly compact format, which stores only changes in
the values of arguments at the end of each time unit and ignores redundant information. The
size of the file is limited only by the available disk space.

The syntax is as follows:

$incpattern_write(<filename>,<list_of_variables>);

The <filename> is the name of the file that stores the value changes on items in the
<list_of_variables>. The <list_of_variables> in the
$incpattern_write syntax is a list of nets or registers separated by commas. The
variables can be either scalars or vectors.

The system task writes value changes and the simulation time at the end of each time unit.
The task records only the final values of variables.

Under some circumstances, a simulation is more efficient if it contains more than one
$incpattern_write task. Therefore, if a task is writing more than 64 variables, writing two
files results in faster simulation than writing one file. A single file holds more than 64 variables,
but in such a case, the first 64 signals should be the most active signals. Writing separate files
for stimulus and response data can simplify the use of incremental pattern file tasks other
than $incpattern_write.

Multiple $incpattern_write tasks can write files simultaneously.

The following example illustrates a way to terminate the task with the disable command:

...
task writer;
begin

$incpattern_write(.....);
November 2008 372 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
end
endtask

...
initial
begin

writer;
#1000 disable writer;

end

Distinguishing between input and output signals on inouts while writing incremental pattern
files is one of the topics discussed in “Examples of Response Checking” on page 378, which
presents a general usage example for the $incpattern_write, $incpattern_read,
and $compare system tasks documented in this chapter.

$incpattern_read

The $incpattern_read task reads an incremental pattern file and places values in that file
on expanded or accelerated nets. The syntax is as follows:

$incpattern_read(<filename>,<eof>,<list_of _variables>);

■ <filename> is the name of the incremental pattern file read by this system task.

■ <eof> is a notifier register you declare, which toggles to signal the task’s completion.

■ The <list of variables> is a list of nets, scalar or vectored, separated by
commas.

The $incpattern_read task reads the values of the variables in the
<list_of_variables> for the $incpattern_write task that created an incremental
pattern file. It applies those values to its own <list_of_variables>, matching the
positions of variables in the two lists to determine which values to apply. The number of
entries in the two lists must be the same, and entries holding matching positions in the two
lists must have identical bit-widths.

The $incpattern_read task places values on nets named for the variables in its
<list_of_variables>. You can think of these nets as constituting the fanout of the
system task. These nets typically connect to a design or to the $compare or
$strobe_compare system tasks. Any Verilog monitoring system task can monitor the nets
in the task’s fanout.

The value changes on the task’s fanout nets occur at the same simulation times that they did
in the simulation that provided data to $incpattern_write.
November 2008 373 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
The following table shows the values of the <eof> notifier that toggles to indicate the task’s
completion.

Fanout from the $incpattern_read task to the $compare or $strobe_compare system
tasks must be scalared vector nets or scalar nets.

The following example illustrates the easiest way to treat the $incpattern_read fanout,
which is buffering each output bit of the $incpattern_read task with an nmos gate:

 Notifier Values

BEFORE completion AFTER completion

x 1

0 1

1 0

z z

module top;
nmos(expected_signal,incpattern_signal,1);
and(simulated_signal,in1,in2);

task reader;
begin
$incpattern_read(file,eof_register,in1,in2,incpattern_signal);
end
endtask

initial
begin

reader;
$strobe_compare(expected_signal,simulated_signal);
#1 disable reader;

end

endmodule

incpattern_signal in nmos connects to
incpattern_signal from $incpattern_read

expected_signal in
$strobe_compare connects
to expected_signal from
nmos
November 2008 374 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
Declaring the control input of the nmos as 1 makes the gate function as a buffer. The
incremental pattern file, file, serves as a source of stimulus and as a source of values for
comparisons that $strobe_compare makes.

This example shows how the disable command can terminate the task in the same way that
it terminates the $incpattern_write task in the example in “$incpattern_write” on
page 372.

See “Examples of Response Checking” on page 378 for an illustration of the use of the
$incpattern_read, $incpattern_write, and $compare system tasks documented in
this section.

$compare

The $compare system task issues a discrepancy message if an expected value and a
simulated value differ during the time window in which the task runs. The time window can be
of any length. The syntax is as follows:

$compare(<enable>,<expected_value>,<simulated_value>
<,<expected_value>,<simulated_value>>*);

■ <enable> is a Verilog expression that enables the $compare task when its value
equals TRUE or 1, and disables the task when it has another value. Declaring it as a null
enables the task throughout simulation; it can not be a constant.

■ <expected_value> and <simulated_value> are the first and second members
of a pair of equal bit-width scalar or vectored nets that includes the
<simulated_value> as its second member.

The nets that carry expected values into the task can be the fanout of the
$incpattern_read task, in which case, the nets must be expanded vector nets or scalar
nets. The example in $incpattern_read shows how to connect the $strobe_compare task
to the $incpattern_read task; the considerations and methods are identical for
connecting the $compare task to the $incpattern_read task.

The nets which carry simulated values into the task connect to models. There is no limit on
the number of pairs of expected and simulated values that the task compares.

The task perceives a discrepancy between an expected value and a simulated value in the
circumstances in the following table:

Expected Value Simulated Value

0 Non-0
November 2008 375 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
When the simulator finds a discrepancy between an expected value and a simulated value it
displays a discrepancy message. The discrepancy message includes the following
information:

■ Name of the file that contains the $compare task invocation that generates the
discrepancy message

■ Line number that contains the $compare task invocation that generates the discrepancy
message

■ Instance name of the module that contains the $compare task invocation that generates
the discrepancy message

■ Time at which the discrepancy occurred

■ Expected and simulated values

An invocation of the $compare task, and the discrepancy message that the task can produce
while responding to that invocation appear in the following example:

initial
$compare(enable, bgrant_exp, bgrant_sim, back_exp, back_sim);

"src.v", 15: Simulated value does not match Expected value in top.block.1cpu

Expected bgrant_exp: 0, Simulated bgrant_sim: 1 at time 32450

When the task finds a discrepancy on a vector, it reports only one discrepancy message for
the entire bus. The discrepancy message in such a case presents both the expected and the
simulated values for the entire bus as hexadecimal numbers.

“Examples of Response Checking” on page 378 illustrates the $compare,
$incpattern_write, and $incpattern_read system tasks documented in this section.

$strobe_compare

The $strobe_compare system task issues a discrepancy message if a value produced by
a simulation and a corresponding expected value differ at the end of the single time unit in
which the task runs. The syntax is as follows:

$strobe_compare(<expected_value>,<simulated_value>
<,<expected_value>,<simulated_value>>*);

1 Non-1

z Non-Z

Expected Value Simulated Value
November 2008 376 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
■ <expected_value> is the first member of a pair of equal bit-width scalar or vectored
nets that includes the <simulated_value> as its second member.

■ <simulated_value> is the second member of a pair of equal bit-width scalar or
vectored nets that includes the <expected_value> as its first member.

The nets that carry expected values into the task can be the fanout of the
$incpattern_read task, in which case the nets must be expanded vector nets or scalar
nets. The example in “$incpattern_read” on page 373 shows how to connect the
$strobe_compare task to the $incpattern_read task.

The nets that carry simulated values into the $strobe_compare task connect to models.
There is no limit on the number of pairs of expected and simulated values.

The $strobe_compare task finds a discrepancy between an expected value and a
simulated value in the circumstances in the following table:

When the simulator finds a discrepancy between an expected value and a simulated value, it
displays a discrepancy message. The discrepancy message includes the following
information:

■ Name of the file that contains the $strobe_compare task invocation that generates the
message

■ Line number that contains the $strobe_compare task invocation that generates the
message

■ Instance name of the module that contains the $strobe_compare task invocation that
generates the message

■ Time at which the discrepancy occurred

■ Expected and simulated values

An invocation of the $strobe_compare task and a discrepancy message that the task can
produce while responding to that invocation appear in the following example:

always @CLK #(PERIOD-1)
$strobe_compare(bgrant_exp, bgrant_sim, back_exp, back_sim);

Expected Value Simulated Value

0 Non-0

1 Non-1

z Non-Z
November 2008 377 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
"src.v", 15: Simulated value does not match Expected value in top.block.1cpu
Expected bgrant_exp: 0, Simulated bgrant_sim: 1 at time 32450

When the task finds a discrepancy on a vector, it reports only one discrepancy message for
the entire bus. The discrepancy message in such a case presents both the expected and
simulated values for the entire bus as hexadecimal numbers.

Examples of Response Checking

Ascertaining whether or not the responses of a gate-level implementation are identical to the
responses of a behavioral model is an application that calls for the $incpattern_write,
$incpattern_read, and $compare tasks. The following example shows a system-level
simulation. The top-level module is named system. An ASIC described at the RTL level
bearing the name asic1_rtl_level a1 is instantiated in the top-level module system.
The purpose of the simulation is to capture the stimulus and response of asic1_rtl_level
a1 in order to verify a gate-level implementation of asic1_rtl_level a1 that appears as
an instantiation named asic_gate_level a1.

Example 1
module system;

asic1_rtl_level a1 (in1,out1,io);
asic2_rtl_level a2 (in2,out2,io);

initial $incpattern_write("ASIC1_PAT1",in1,out1,io,a1.io_control);
endmodule;

In addition to the signals on the ports of asic1_rtl_level a1, the simulation also captures
the signal a1.io_control, which determines whether the inout io is serving as an input or
an output of asic1_rtl_level a1. When the inout io is serving as an input,
a1.io_control has a value of 1, which enables either a bufif1 or its behavioral
equivalent to place the value of a driver or a register on io. When a1.io_control has a
value of 0, io serves as an output of a1.

The signal a1.io_control is read as control by the $incpattern_read task in
Example 2 because control is the last entry in that task’s list, and because
a1.io_control is the last entry in the $incpattern_write task’s list in Example 1.

Example 2
module system;

reg EOF;
wire in1,out1,io,control,io_bus,io_exp,io_sim;
nmos (compare_out1_exp,out1_exp,1),(io,io_bus,control);
pmos (io_exp,io_bus,control),(io_sim,io,control);
asic_gate_level a1 (in1,out1,io);
initial

$incpattern_read("ASIC1_PAT1", EOF,in1,out1_exp,io_bus,control);
November 2008 378 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
initial @EOF $finish(2);
initial
$compare(,compare_out1_exp,out1,io_exp,io_sim);

endmodule

This example is explained as follows:

■ The register EOF declared is part of the mechanism that ends the simulation.

■ The wires and gates declared connect the tasks to each other or connect the gate-level
implementation to the tasks.

■ The signal in1 in the list of the $incpattern_read task applies stimulus from the
incremental pattern file to the gate-level model.

■ The signal out1 in Example 1 corresponds to out1_exp in the $read task’s list in
Example 2. The signal out1_exp passes through the first of two buffering nmos gates
and becomes compare_out1_exp in the $compare task’s list. The
compare_out1_exp variable forms a pair with the out1 output of the gate-level model
for comparison by the $compare task.

■ The variable control in the $read task’s list corresponds to the signal
a1.io_control in Example 1. The control variable controls the second of the two
nmos gates and the two pmos gates. The nmos gate places the value stored as io in
Example 1 on the io inout of the gate-level model under test when control is 1.

■ When control is 0, the two pmos gates propagate signals. The first pmos gate passes
the value of io in Example 1, which corresponds to the variable io_bus in the read
task’s list of variables. The value appears as io_exp in the variable list of the $compare
task. Simultaneously, the second pmos gate passes the value on the io inout port of the
gate-level model under test to the variable io_sim in the $compare task’s variable list.
The $compare task compares io_exp and io_sim.

Using gates to make the connections between incremental pattern tasks and models enables
the tasks to function properly, and it makes simulations more efficient.

The following line begins the $compare task without delay because the first entry in the
$compare task’s list enables the task continuously when the entry is a null.

$compare(,out1_exp,out1,io_exp,io_sim);

The following line ends the simulation when the $incpattern_read task toggles the
notifier.

initial @EOF $finish(2);
November 2008 379 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
Functions and Tasks for Reals

The following functions handle real values:

The following example shows how the $realtobits and $bitstoreal functions are used
in port connections:

module driver (net_r);
output net_r;
real r;
wire [64:1] net_r = $realtobits(r);

endmodule

module receiver (net_r);
input net_r;
wire [64:1] net_r;
real r;
initial assign r =$bitstoreal(net_r);

endmodule

Functions and Tasks for Timescales

The following are the system tasks and functions that support timescales. For more
information about these constructs see Chapter 17, “Timescales.”

The following are timescale functions:

$rtoi Converts real values to integers by truncating the real value. (For
example, 123.45 becomes 123.)

$itor Converts integers to real values. (For example, 123 becomes 123.0.)

$realtobits Passes bit patterns across module ports; converts from a real number
to the 64-bit representation (vector) of that real number.

$bitstoreal The reverse of $realtobits; converts from the bit pattern to a real
number.

$time Returns an integer that is a 64-bit time, scaled to the time unit of the
module that invoked it.

$realtime Returns a real number that is scaled to the time unit of the module that
invoked it.
November 2008 380 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
The following are timescale system tasks:

Protecting Data in Memory

The system tasks $sreadmemb and $sreadmemh load data into memory from a Verilog-XL
source character string, thus supporting the protection of that data.

The $sreadmemh and $sreadmemb system tasks take memory data values and addresses
as string arguments. These strings take the same format as the strings that appear in the
input files passed as arguments to $readmemh and $readmemb. The syntax is as follows:

$sreadmemb(<mem_name>,<start_addr>,<finish_addr>,
<string1>,<string2>,,,);

$sreadmemh(<mem_name>,<start_addr>,<finish_addr>,
<string1>,<string2>,,,);

The following table defines the syntax variables:

$scale Allows you to take a time value from a module with one time unit and
use it in a module with a different time unit. The time value is converted
from the time unit of one module to the time unit of the module that
invokes $scale.

$printtimescale Displays the time unit and precision of a particular module. The
syntax is as follows:

$printtimescale(<hierarchical_path_name>?);
$timeformat(<units_number>,<precision_number>,

<suffix_string>,<minimum_field_width>);

$timeformat Specifies the following:

■ the way that the %t format specification reports time
information

■ the time unit for delays entered interactively

<mem_name> Name of the memory structure

<start_addr> Memory start address

<finish_addr> Memory end address

<stringN> The string value containing the actual data to be placed into
memory, beginning at <start_addr>
November 2008 381 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
In the following example, the memory memx is loaded with 10 values, starting at address 0
and ending at address 9:

reg [3:0] memx [0:15] /* a memory made up of 16 four bit cells */

$sreadmemh (memx, 0, 9, "6 7 8 9 A B C D E F");

Value Change Dump File Tasks

Seven system tasks are provided to create and format the value change dump file. For more
information about these tasks see Chapter 20, “The Value Change Dump File.” The syntax is
as follows:

$dumpall;
$dumpfile(<filename>);
$dumpflush;
$dumplimit(<filesize>);
$dumpoff;
$dumpon;
$dumpvars(<levels> <,<module|var>>*);

The $dumpall system task creates a checkpoint in the value change dump file that shows
the current values of its variables.

The $dumpfile system task specifies the name of the value change dump file. If you do not
specify a dump filename, Verilog-XL uses the default name verilog.dump.

The $dumpflush system task empties the dump file buffer and ensures that all the data in
that buffer is stored in the value change dump file.

The $dumplimit system task sets the size of the value change dump file.

The $dumpoff system task stops Verilog-XL from recording value changes in the value
change dump file.

The $dumpon system task allows Verilog-XL to resume recording value changes in the value
change dump file.

The $dumpvars system task specifies the variables whose changing values Verilog-XL
records in the value change dump file.

The $dumpports system task scans the (arg1) ports of a module instance and monitors
the ports for both value and drive level.
November 2008 382 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
Running the Behavior Profiler

The behavior profiler identifies the modules and statements in your source description that
use the most CPU time during simulation. See Chapter 19, “The Behavior Profiler,” for details
on the behavior profiler and for examples of profiler output.

There are four system tasks for the behavior profiler:

■ $startprofile on page 383

■ $reportprofile on page 383

■ $listcounts on page 384

■ $stopprofile on page 384

If you want to know the number of times each statement has executed at any point during
simulation, use the $listcounts system task and the +listcounts command-line option
or the +no_speedup command line option.

$startprofile

The $startprofile system task invokes the behavior profiler. It tells the behavior profiler
to begin or to continue to take samples of the simulation. The syntax is as follows:

$startprofile;
$startprofile (<sampling_factor>);

This task takes an integer argument, called the sampling factor, that specifies the multiple of
100 microseconds of CPU time that is the interval between samples. By default, the behavior
profiler takes a sample every 100 microseconds—a sampling factor of 1. This default
sampling factor can increase the time it takes to simulate your source description. You can
minimize this increase by specifying a sampling factor greater than 1.

$reportprofile

The behavior profiler always displays its data at the end of simulation unless you use the
$reportprofile system task to produce the following data reports before the end of a
simulation.

■ Profile ranking by statement

■ Profile ranking by module instance

■ Profile ranking by statement class
November 2008 383 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
■ Profile ranking by statement type

See “Behavior Profiler Data Report” on page 473 for information about the data reports.

The syntax is as follows:

$reportprofile (<max_lines>?);

This task takes an integer argument that specifies the maximum number of lines the behavior
profiler prints in the tables. The argument is optional. The default maximum number of lines
is 100.

$listcounts

The $listcounts system task produces a source listing with both the line numbers and the
execution count for each line. You can enter $listcounts before or after $startprofile.
The $listcounts task is disabled unless you include the +listcounts option or the
+no_speedup option on the command line. The syntax is as follows:

$listcounts (<hierarchical_name>?);

The $listcounts system task takes an optional hierarchical name argument. If you do not
include an argument, $listcounts produces a listing of the source description at the scope
level from which you called the task.

$stopprofile

The $stopprofile system task tells the behavior profiler to stop taking samples before the
end of the simulation. This system task takes no arguments as shown in the following syntax:

$stopprofile;

Resetting Verilog-XL—Starting Simulation Over Again

Verilog-XL includes the $reset system task to enable you to reset Verilog-XL to its "Time 0"
state so that you can begin to simulate over again. The $reset system task works at least
three times faster than any other means of restarting a simulation: compiling your source
description again, or entering a $restart system task (if Verilog-XL executed a $save
system task immediately after it compiled your source description).

Verilog-XL also includes the $reset_count system function to keep track of the number of
times you reset Verilog-XL, and the $reset_value system function to allow you to pass an
integer value that you can access after you reset the simulation time.
November 2008 384 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
The following are some of the simulation methods that you can employ with the $reset
system task and its related system functions:

■ Determine the force statements your design needs to operate correctly, reset the
simulation time to 0, enter these force statements, and start to simulate again.

■ Reset the simulation time to 0 and apply new stimuli.

■ Determine that debug system tasks, such as $monitor and $strobe, are keeping track
of the correct nets or registers, reset the simulation time to 0, and begin the simulation
again.

The following section explains the syntax and an example of the use of the $reset system
task and the $reset_count and $reset_value system functions.

$reset

The $reset system task tells Verilog-XL to return the simulation of your design to its logical
state at simulation time 0. When Verilog-XL executes the $reset system task, it takes the
following actions to stop the simulation:

■ Disables all concurrent activity, initiated in either initial and always procedural
blocks in the source description, or through interactive mode (disables, for example, all
force and assign statements, the current $monitor system task, and any other
active task).

■ Cancels all scheduled simulation events.

■ Displays, and writes in the log file, a message about resetting Verilog-XL.

■ Closes any active graphics windows.

■ Clears all profiling information if you invoke the behavior profiler utility.

■ Closes any open value dump file if you opened a value change dump file.

While Verilog-XL prepares to begin the simulation again, it takes the following actions:

■ Reprocesses the options that you entered on the command line, with the exception of
the following options:

❑ s to enter interactive mode after compilation

❑ r to restart a simulation

❑ l to specify a log filename

❑ k to specify a key filename
November 2008 385 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
Note: Verilog-XL does not reprocess command-line options if it executes a $reset
system task after a $restart system task. Verilog-XL does not save command-line
option information when it executes a $save system task.

■ Enters interactive mode if you specify that it enter interactive mode after executing the
$reset system task.

After Verilog-XL executes the $reset system task, the simulation is in the following state:

■ The simulation time is 0.

■ All registers and nets contain their initial values.

■ Verilog-XL begins to execute the first procedural statements in all initial and always
blocks.

The syntax is as follows:

$reset;
$reset(<stop_value>);
$reset(<stop_value>,<reset_value>);
$reset(<stop_value>,<reset_value>,<diagnostics_value>);

The $reset system task takes these arguments:

<stop_value> Indicates whether you want to enter interactive mode after
resetting Verilog-XL, or begin simulation immediately.
The following table shows the mode specified by the
<stop_value> argument:

<reset_value> Is an integer that you specify and whose value is returned by the
$reset_value system function after you reset Verilog-XL. You
cannot declare an integer that keeps its value after a reset. All
declared integers return to their initial values after reset. Entering
an integer as the <reset_value> argument allows you to
access the value of the integer as it was before the reset with the
$reset_value system function. This argument provides you

Argument Value Mode

A value of 0 or no argument Enters interactive mode after
resetting Verilog-XL.

A non-zero value Does not enter interactive mode
and begins simulation
immediately after resetting
Verilog-XL.
November 2008 386 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
with means of presenting information from before the reset of
Verilog-XL, to be used after the reset of Verilog-XL.

<diagnostic_value> Specifies the kind of diagnostic messages Verilog-XL displays
before it resets the simulation time to 0.
The following table describes the diagnostic messages that are
specified by these integers:

The <diagnostic_value> argument specifies the same
information as the integer argument to the $finish system
task. The default <diagnostic_value> argument is 1.

Argument
Value Diagnostic Messages

0 ■ No diagnostic messages

1 ■ The simulation time when Verilog-XL executes
the $reset system task

■ The location in the source description file of the
$reset system task

2 or > 2 ■ The simulation time when Verilog-XL executes
the $reset system task

■ The location in the source description file of the
$reset system task

■ Statistics about memory used by the design

■ Statistics about the CPU time since simulation
began
November 2008 387 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
Examples

On the following pages, the two examples show the top-level module and the log file of the
simulation of a half adder. There is a design mistake in the half adder. The log file shows how
the design is debugged. The simulation is started again with the $reset system task.

In the above example, the top-level module contains an instance of a module of a half adder.
The instance name is ha1. The top-level module monitors and checks the results of the half
adder’s addition. If Verilog-XL finds an addition error, it displays a warning, displays the input
and output values, and stops the simulation.

The following example shows interactive entries during the simulation of the half adder:

0 in1=0,int2=0,s=1,c=0

ADDITION ERROR

c (reset2) wire = St0
St0 <- (top.ha1): and and1(c, in1, in2);

s (reset2) wire = St1
St1 <- (top.ha1): or or2(s, int1, int2);

L18 "reset2.v": $stop at simulation time 5

module reset2;
reg in1,in2;
wire s,c;
initial
begin

$monitor("%0d in1=%b,int2=%b,s=%b,c=%b",
$time,in1,in2,s,c);

#100 $stop;
end

initial
begin
#5 forever

begin
if ({c,s} != in1 + in2)
begin

$display("ADDITION ERROR\n");
$showvars(c,s);
$stop;

end

#10 ;
end

end

initial
begin

{in1,in2} = 0;
repeat (3)
#10 {in1,in2} = {in1,in2} + 1;

end

halfadd ha1 (in1,in2,s,c);
endmodule

Half adder instance
named ha1

Monitor half adder inputs
and outputs

The initial block checks
the addition, reports
mistakes and half adder
output values, and stops
the simulation
November 2008 388 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
Type ? for help

C1 > $list(ha1);
// halfadder.v
34 module halfadd(in1, in2, s, c);
35 input
35 in1, // = St0
35 in2; // = St0
36 output
36 s, // = St1
36 c; // = St0
38 and
38 and1(c, in1, in2);
39 not
39 not1(int1, c);
40 or
40 or1(int2, in1, in2),
41 or2(s, int1, int2);
43 endmodule

C2 > force s = ha1.int1 & ha1.int2;

C3 > .
5 in1=0,int2=0,s=0,c=0
10 in1=0,int2=1,s=1,c=0
20 in1=1,int2=0,s=1,c=0
30 in1=1,int2=1,s=0,c=1
L8 "halfadder.v": $stop at simulation time 100

C3 > $reset;

C3: $reset at simulation time 100

C4 > force s = ha1.int1 & ha1.int2;

C4 > .
0 in1=0,int2=0,s=0,c=0
10 in1=0,int2=1,s=1,c=0
20 in1=1,int2=0,s=1,c=0
30 in1=1,int2=1,s=0,c=1

In the previous example, the following sequence of steps occurs:

1. At simulation time 5, Verilog-XL displays the warning of the addition error and the values
of the half-adder outputs, stops the simulation, and enters the interactive mode.

2. The $list system task shows the contents of the half adder module. The design error
is that the fanin of the s output should be an AND gate instead of an OR gate.

3. A force statement corrects the error, and simulation resumes.

4. Verilog-XL displays that the addition results are now correct.

5. An interactive entry of the $reset system task resets Verilog-XL to the time 0 state. This
system task does not include a first argument of 1 or more than 1, so Verilog-XL stays in
interactive mode after the reset.

6. With another entry of the force statement, Verilog-XL releases all forces when it resets
the simulation time to 0.
November 2008 389 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
7. Verilog-XL displays that the simulation results are once again correct.

$reset_count

The $reset_count system function returns an integer that represents the number of times
you called the $reset system task since you invoked Verilog-XL. The initial value of this
integer is 0.

You can use this integer value, for example, to specify the stimuli that Verilog-XL applies to a
design. The following example shows a top-level module that applies stimulus to a design. In
this top-level module, the number of times that Verilog-XL executes the $reset system task
determines the stimulus that Verilog-XL applies.

module reset;
reg in1,in2;
wire out;

design design1 (in1,in2,out); // instance of a module

initial
begin

$monitor("in1=%b,in2=%b,out=%b",in1,in2,out);
case ($reset_count) // integer returned by $reset_count

// determines the stimulus
0 : begin

{in1,in2} = 2’d0; // first stimulus
#10 $reset(1);

end

1 : begin
{in1,in2} = 2’d1; // second stimulus
#10 $reset(1);

end

2 : begin
{in1,in2} = 2’d2; // third stimulus
#10 $reset(1);

end

3 : begin
{in1,in2} = 2’d3; // fourth stimulus
#10 $reset(0);

end
endcase

end
endmodule

In the above example, Verilog-XL applies a stimulus and resets the simulation time to 0 four
times. If Verilog-XL has not yet executed the $reset system task, it applies the first stimulus.
After Verilog-XL executes the $reset system task once, it applies the second stimulus. It
applies the third stimulus and the fourth stimulus after each subsequent execution of the
$reset system task.
November 2008 390 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
$reset_value

The $reset_value system function extracts the reset value that is an argument to the
$reset task. The $reset_value function returns a zero if there has not yet been a reset;
otherwise, it extracts the value of the <reset_value> argument from the $reset call. You
can use this system function to communicate information from one reset run to the next.

The following example shows a use of the $reset_value system function:

module reset_value;
reg [7:0] op1,op2;
reg ci;
wire [7:0] s;
wire co;
integer [31:0] reset_integer;

byte_adder byte_adder1(co,s,ci,op1,op2);

task what_next;
input carry_in,carry_out;
input [7:0] operand1,operand2,sum;

// task checks the addition
if (operand1 + operand2 + carry_in != {carry_out,sum})

$reset(0,reset_integer); // if addition not correct, reset and go to
interactive

else
begin

reset_integer = reset_integer + 1;
$reset (1,reset_integer); // if addition is correct,

// increment reset_integer and
// reset, without interactive

end
endtask

initial
begin

reset_integer = $reset_count;
case ($reset_value)

0 : begin
{ci,op1,op2} = 17’d0;
#10 what_next(ci,co,op1,op2,s);
end

1 : begin
{ci,op1,op2} = 17’d625;
#10 what_next(ci,co,op1,op2,s);
end

2 : begin
{ci,op1,op2} = 17’d5025;
#10 what_next(ci,co,op1,op2,s);

end

3 : begin
{ci,op1,op2} = 17’d129225;
#10 what_next(ci,co,op1,op2,s);
end

endcase
end
endmodule
November 2008 391 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
Verilog-XL applies a new stimulus only when the addition before Verilog-XL reset the
simulation time was correct.

When the addition of the previous stimulus proves incorrect, Verilog-XL enters interactive
mode and applies the previous stimulus again.

The previous example shows a top-level module that applies stimulus to an 8-bit full adder.
The task what_next checks the addition of the adder. This check can then have one of the
following results:

■ If the addition is not correct, the task does not increment the value of the integer
<reset_integer>. The task resets the simulation time to 0 and tells Verilog-XL to
enter interactive mode.

■ If the addition is correct, the task increments the value of the integer
<reset_integer> and resets the simulation time to 0. The task does not tell
Verilog-XL to enter interactive mode.

The results of the check of the addition described above determine the value of
<reset_integer>. After the reset, the value of <reset_integer> returns to its initial
value, but you can obtain its value from before the reset, using the <reset_value>
argument to the $reset system task and through the $reset_value system function. The
case statement in the initial block that applies the stimulus accesses the value of
<reset_integer> before the reset using the $reset_value system function. If the task
what_next has incremented the value of reset_integer, the case statement applies a
new stimulus. If the task has not incremented that value, Verilog-XL enters the interactive
mode and schedules the application of the stimulus that failed the addition check.

SDF Annotation

Tools used before or after Verilog-XL in the design process, such as pre-layout and post-
layout tools, produce Standard Delay Format (SDF) files. These files can include timing
information for the following:

■ Delays for module iopaths, devices, ports, and interconnect delays

■ Timing checks

■ Timing constraints

■ Scaling, environmental, technology, and user-defined parameters

SDF files are the input for the SDF annotator, which uses the PLI as an interface to
backannotate timing information into Verilog HDL designs. A configuration file that you write
controls how the backannotation occurs.
November 2008 392 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
This section covers only the system task aspect of SDF backannotation. Refer to the SDF
Annotator Guide for complete information.

$sdf_annotate

The $sdf_annotate system task invokes the SDF Annotator. You can run the SDF
Annotator any number of times from a Verilog family tool. You can call this system task
interactively or by typing it in the simulation stimuli file in an initial block. If you want to allow
SDF backannotation at times other than time 0, use the +annotate_any_time plus option
on the command line. The $sdf_annotate arguments are shown in the following syntax:

$sdf_annotate (<"sdf_file">, <module_instance>?,
<"config_file">?, <"log_file">?, <"mtm_spec">?,
<"scale_factors">?, <"scale_type">?);

All arguments other than the initial <"sdf_file"> are optional. All the arguments except
<module_instance> must be in quotation marks. If you omit optional arguments, the
commas that would have surrounded them must remain, unless the omitted arguments are
consecutive and include the last argument, in which case, the closing parenthesis can follow
the last argument present.

The $sdf_annotate arguments are as follows:

<"sdf_file"> Literal string that identifies the name of the SDF file. The SDF
Annotator reads this SDF file. This file does not appear on the
Verilog command line.

<module_instance> Name of the module instance. Where applicable, an instance
can have an array index (for example, x.y[3].p).
The SDF Annotator uses the hierarchy level of the module
instance for running the annotation. If you do not specify
<module_instance>, the SDF Annotator uses the module
containing the call to the $sdf_annotate system task as the
<module_instance> for annotation.
The names in the SDF file are relative paths to the
<module_instance> or full paths with respect to the entire
Verilog HDL description.

<"config_file"> Literal string that identifies the name of the configuration file. The
SDF Annotator reads this configuration file. See “Using the
Configuration File” in the SDF Annotator User Guide for more
information. If you do not specify this argument, the SDF
Annotator uses the default settings.
November 2008 393 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
<"log_file"> Literal string that identifies the name of the annotation log file.
The SDF Annotator generates this file during annotation. The
default name for the log file is sdf.log.
The SDF Annotator writes status information, warnings, and
error messages to the log file during the annotation process.
These messages also include the configuration of the annotator,
assumptions made during annotation, and warnings or errors
due to inconsistencies found during annotation. The SDF
Annotator also prints warning and error messages to a standard
output.

<"mtm_spec"> Literal string that specifies the delay values that are annotated to
the Verilog family tool as one of the following keywords:

This argument overrides the mtm command in the configuration
file. The default setting is TOOL_CONTROL, but if none of the
TOOL_CONTROL command line options is specified, the default is
TYPICAL.

Note: This argument applies only for backannotation to Verilog-XL and Verifault-XL.
Minimum, typical, and maximum values are always annotated to Veritime.

<"scale_factors"> Set of three real number multipliers in the form of
min_mult:typ_mult:max_mult that the SDF Annotator
uses to scale the minimum, typical, and maximum timing data
from the SDF file before they are annotated to the Verilog Family
tool. The min_mult, typ_mult, and max_mult variables
each represent a positive real number. For example,
1.6:1.4:1.2.
This argument overrides the scale command in the
configuration file. The default value is 1.0:1.0:1.0 for
minimum, typical, and maximum values.
See “Scaling the Timing Data” in the SDF Annotator User

MINIMUM Annotates the minimum delay value.

TYPICAL Annotates the typical delay value.

MAXIMUM Annotates the maximum delay value.

TOOL_CONTROL Delay value is determined by the
command line options of the Verilog
Family tool (+mindelays,
+typdelays, or +maxdelays).
November 2008 394 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
Guide for an example of scaling delay values using the
<"scale_factors"> and <"scale_type"> parameters.

<"scale_type"> Literal string that specifies how the SDF Annotator scales the
timing specifications in SDF that are annotated to the Verilog
family tool as one of the following keywords:

This argument overrides the scale command in the configuration
file.

Controlling $sdf_annotate Output

Three options enable you to control the output from the SDF Annotator:

■ +sdf_verbose

Writes detailed information about the backannotation process to the annotation log file.

■ +sdf_error_info

Displays PLI error messages.

■ +sdf_no_warnings

Suppresses all warning messages from the SDF Annotator.

$sdf_annotate Examples

The three examples in this section show the following aspects of running $sdf_annotate:

■ Creating new delay triplets

■ Invoking multiple system tasks and log files

FROM_MINIMUM Scales from the minimum timing
specification.

FROM_TYPICAL Scales from the typical timing
specification.

FROM_MAXIMUM Scales from the maximum timing
specification.

FROM_MTM (default) Scales from the minimum, typical, and
maximum timing specifications.
November 2008 395 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
■ Specifying interconnect delays

Creating new Delay Triplets

The following example shows how to create new minimum-typical-maximum delay triplets
scaled to the Verilog design and how to annotate the minimum, the typical, or the maximum
members of those triplets to the specified scope.

The argument "my.sdf" is the SDF file, and m1 is the module instance that the
$sdf_annotate task annotates. The following example omits the third argument, the
configuration file that can determine how annotation occurs. The following example also omits
the fourth argument, the log file, so the default sdf.log is used:

module top;
•••
circuit m1(i1,i2,i3,o1,o2,o3);
initial

$sdf_annotate("my.sdf",m1,,,"MAXIMUM","1.6:1.4:1.2","FROM_MTM");
//stimulus and response checking

•••
endmodule

The <"mtm_spec"> argument’s value "MAXIMUM" specifies that the maximum delays in
the new minimum-typical-maximum triplets are annotated to the Verilog design. The last two
arguments are scale factors and scale types, which determine how SDF makes new
minimum-typical-maximum delay triplets. The three scale factors are 1.6, 1.4, and 1.2. The
scale factors multiply members of delay triplets in the SDF file to create new triplets whose
members can be annotated to the Verilog design. Like the other <"scale_types"> value,
"FROM_MTM" specifies the SDF triplet members to be multiplied by the scale factors.
"FROM_MTM" specifies that scale factor 1.6 multiplies the minimum members in the SDF file
delay triplets, 1.4 multiplies typical members, and 1.2 multiplies the maximum members.
The three <"scale_types"> values other than "FROM_MTM" work differently because
they make all three of the <"scale_factors"> values multiply only the minimum, or only
the typical, or only the maximum members of delay triplets in the SDF file.

Invoking Multiple System Tasks

The following example shows separate annotations to distinct portions of a design hierarchy.
There is no configuration file specification; therefore, the SDF Annotator uses the defaults.
When performing multiple annotations, specify a different log file for each annotation for
easier verification of the results.

module top;
•••
cpu m1(i1,i2,i3,o1,o2,o3);
fpu m2(i4,o1,o3,i2,o4,o5,o6);
dma m3(o1,o4,i5,i6,i2);
November 2008 396 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
// perform annotation
initial
begin

$sdf_annotate("cpu.sdf",m1,,"cpu.log");
$sdf_annotate("fpu.sdf",m2,,"fpu.log");
$sdf_annotate("dma.sdf",m3,,"dma.log");

end
// stimulus and response-checking

•••
endmodule

Specifying Interconnect Delays

The following example shows an interconnect delay that occurs between instances u1 and
u2 of jbuf:

■ The “Interconnect Delay Annotation Example” on page 397 shows the code module.

■ The “Hierarchy of Interconnect Delay Annotation Example” on page 398 shows the
hierarchy of the code module.

■ The “SDF file for Interconnect Delay Annotation Example” on page 399 shows the SDF
file, top.sdf, that supplies delay information.

■ The “Effective Hierarchy Specifications for Annotation” on page 399 shows the
configurations of hierarchical information that can yield effective SDF annotation for the
combination of the code module and the SDF file.

The delay between the instance ports is indicated in the SDF file by the descriptor
INTERCONNECT followed by port descriptions. The first port is an output or inout, and the
second port is an input or inout. You must describe each port hierarchically, but the
descriptions in the SDF file are only one method of doing so. The lowest level in the
description of each port in the SDF file is the name of the port in the module definition. The
other information identifies the instances involved in the delay. You can divide the instance
information between the $sdf_annotate task and the SDF file, with the information in the
task constituting the beginning of the information. You can either include or omit the level
containing the task.

Interconnect Delay Annotation Example
‘timescale 1ns/1ns
module top ();
reg t;
lower array1 (f,t);
initial
begin

$sdf_annotate ("top.sdf");
end
initial
begin

fork
November 2008 397 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
#00 t =0;
#20 t = 1;
#60 t = 0;
#100 $stop;
join

end
endmodule

‘timescale 1ns/1ns
module lower (out1,in1);
input in1;
output out1;
wire delay_connection;
jbuf u1 (delay_connection,in1);
jbuf u2 (out1, delay_connection);
endmodule

‘timescale 1ns/1ns
module jbuf (X,A);
input A;
output X;
buf u2(X,A);

specify
(A *> X) = (0:0:0);

endspecify
endmodule

Hierarchy of Interconnect Delay Annotation Example

You can consider interconnect delays as sitting on the MIPD of the target, which is the MIPD
of u2 in this example.

module top

module lower instance array1

module jbuf instance u1

module jbuf instance u2

net interconnect_delay in module lower

port X in jbuf module definition

port A in jbuf module definition
November 2008 398 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
SDF file for Interconnect Delay Annotation Example
(DELAYFILE
(DESIGN "top")

(DATE "")
(VENDOR "")
(PROGRAM "")
(VERSION "")
(DIVIDER .)
(VOLTAGE)
(PROCESS "")
(TEMPERATURE)
(TIMESCALE)
(CELL

(CELLTYPE "top")
(INSTANCE)
(DELAY
(ABSOLUTE

(INTERCONNECT array1.u1.X array1.u2.A (6:10:16) (8:12:18))
) // end delay
) // end absolute
) // end cell
) // end delayfile

Annotating Path Delay or Timing Check Vector Bits in Specify Blocks

In specify blocks, you can annotate the path delays or timing check structures to individual
bits of vectors on a module-by-module basis or for an entire design. Verilog-XL does this by
expanding vectors to all possible statements before annotating. You can display expanded
specify blocks using the $list system task, or specify the -d command line option.

Annotating Vector Bits on a Module-by-Module Basis

Use the ‘expand_specify_vectors and ‘noexpand_specify_vectors compiler
directives to annotate vector bits on a module-by-module basis with SDF. These compiler
directives must be specified outside of module descriptions.

Effective Hierarchy Specifications for Annotation

$sdf_annotate <module_instance>
argument Interconnect ports in SDF file

top.array1 u1.X u2.A

top array1.u1.X array1.u2.A

array1 u1.X u2.A

(no entry) array1.u1.X array1.u2.A
November 2008 399 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
Annotating Vector Bits for an Entire Design

Use the +expand_specify_vectors command line plus option to annotate vector bits for
an entire design. If you use this plus option, the specify blocks in all modules in a design are
expanded, regardless of the compiler directives you set on a module-by-module basis.

Expanding Path Delays

The following example shows a parallel connection path delay before and after it is expanded.
Path Delays are described in Chapter 12, “Using Specify Blocks and Path Delays.”

/* Unexpanded Path Delay */

output [3:0] o;
input [3:0] i;

specify
(i => o) = 0;

endspecify

/* Expanded Path Delay */

output [3:0] o;
input [3:0] i;

specify
(i[0] => o[0]) = 0;
(i[1] => o[1]) = 0;
(i[2] => o[2]) = 0;
(i[3] => o[3]) = 0;

endspecify

You can expand full connection path delays, but the number of path delays is exponentially
expanded. For example, expanding a 32-bit to 32-bit full connection path delay results in 1024
paths.

With SDF, you must annotate each bit in an expanded specify block. For example, to annotate
the specify block in the previous example, you would specify the following SDF syntax:

(IOPATH i[0] o[0] ...)
(IOPATH i[1] o[1] ...)
(IOPATH i[2] o[2] ...)
(IOPATH i[3] o[3] ...)

You cannot annotate with SDF using (IOPATH i o ...).

The following example shows a full connection path delay before and after it is expanded.

/* Unexpanded Path Delay */

output [3:0] o;
input [3:0] i;

specify
(i *> o) = 0;

endspecify
November 2008 400 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
/* Expanded Path Delay */

output [3:0] o;
input [3:0] i;

specify
(i[0] => o[0]) = 0;
(i[0] => o[1]) = 0;
(i[0] => o[2]) = 0;
(i[0] => o[3]) = 0;
(i[1] => o[0]) = 0;
(i[1] => o[1]) = 0;
(i[1] => o[2]) = 0;
(i[1] => o[3]) = 0;
(i[2] => o[0]) = 0;
(i[2] => o[1]) = 0;
(i[2] => o[2]) = 0;
(i[2] => o[3]) = 0;
(i[3] => o[0]) = 0;
(i[3] => o[1]) = 0;
(i[3] => o[2]) = 0;
(i[3] => o[3]) = 0;

endspecify

Expanding Timing Checks

You can expand timing checks by distributing the timing check across all possible
combinations of the two signals. The following example shows a timing check before and after
it is expanded. Timing Checks are described in Chapter 13, “Timing Checks”.

/* Unexpanded Timing Check */

input [3:0] i;
input clk;

specify
$setuphold(clk,i,0,0);

endspecify

/* Expanded Timing Check */

input [3:0] i;
input clk;

specify
$setuphold(clk,i[0],0,0);
$setuphold(clk,i[1],0,0);
$setuphold(clk,i[2],0,0);
$setuphold(clk,i[3],0,0);

endspecify

The following example shows a timing check with two vectored input signals before and after
it is expanded.

/* Unexpanded Timing Check */

input [3:0] x;
input [3:0] y;
November 2008 401 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
specify
$setuphold(x,y,0,0);

endspecify

/* Expanded Timing Check */

input [3:0] i;
input clk;

specify
$setuphold(x[0],y[0],0,0);
$setuphold(x[0],y[1],0,0);
$setuphold(x[0],y[2],0,0);
$setuphold(x[0],y[3],0,0);
$setuphold(x[1],y[0],0,0);
$setuphold(x[1],y[1],0,0);
$setuphold(x[1],y[2],0,0);
$setuphold(x[1],y[3],0,0);
$setuphold(x[2],y[0],0,0);
$setuphold(x[2],y[1],0,0);
$setuphold(x[2],y[2],0,0);
$setuphold(x[2],y[3],0,0);
$setuphold(x[3],y[0],0,0);
$setuphold(x[3],y[1],0,0);
$setuphold(x[3],y[2],0,0);
$setuphold(x[3],y[3],0,0);

endspecify

When delayed signals, which are used with negative timing checks, are vectors, Verilog-XL
uses the numbered bit of the delayed signal to set the corresponding numbered bit of the
timing check as shown in the following example. See “Using Negative Timing Check Limits in
$setuphold and $recrem” on page 313 for information about using delayed signals.

/* Unexpanded Timing Check */

input [7:0] d;
wire [7:0] d_d;

specify
$setuphold(posedge clk,d,-1,5,ntfy,,,clk_d,d_d);

endspecify

/* Expanded Timing Check */

input [3:0] i;
input clk;

specify
$setuphold(posedge clk, d[7], -1, 5, ntfy,,,clk_d, d_d[7]);
$setuphold(posedge clk, d[6], -1, 5, ntfy,,,clk_d, d_d[6]);
$setuphold(posedge clk, d[5], -1, 5, ntfy,,,clk_d, d_d[5]);
$setuphold(posedge clk, d[4], -1, 5, ntfy,,,clk_d, d_d[4]);
$setuphold(posedge clk, d[3], -1, 5, ntfy,,,clk_d, d_d[3]);
$setuphold(posedge clk, d[2], -1, 5, ntfy,,,clk_d, d_d[2]);
$setuphold(posedge clk, d[1], -1, 5, ntfy,,,clk_d, d_d[1]);
$setuphold(posedge clk, d[0], -1, 5, ntfy,,,clk_d, d_d[0]);

endspecify
November 2008 402 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
Using the $dlc System Task

The $dlc system task invokes the delay calculator. The syntax is as follows:

$dlc(<GCF_filename>,<Pearl_command_filename>{, <top_module_name>});

You must specify the general constraint format (GCF) filename and the Pearl filename
arguments. If you omit the <top_module_name> argument,
Verilog-XL uses the first top-level module found in the description.

You create the GCF file to specify the operating conditions and the timing library format (TLF)
libraries. The following is an example GCF file:

(GCF
(HEADER

(VERSION “1.2”)
(DESIGN “small0”)
(TIME_SCALE 1.0E-9)

)
(GLOBALS

(GLOBALS_SUBSET ENVIRONMENT
(VOLTAGE_THRESHOLD 10.0 90.0)
(OPERATING_CONDITIONS ““ 1.00 3.13 100.00)
(EXTENSION “CTLF_FILES” (timing.ctlf))

)
)
(CELL ()

(SUBSET TIMING
(ENVIRONMENT

(INPUT_SLEW 1.00 1.00)
)

)
)

)

You create the Pearl command file to specify the commands and options that you want to use
for delay calculation. If you have a CDC dlcinit file, you must first convert it with the
dlc2pearl.pl script. For example:

dls2pearl.pl dlcinit pearl.cmd

This example generates a Pearl command file called pearl.cmd and a GCF file called
pearl.gcf for the constraints. The following is an example Pearl command file:

ReadSpf small0.rspf
EstimateWireLoads -rc -topology best
TopLevelCell top
WriteSDFDelays -precision 6 -ns top.sdf
TopLevelCell adder
WriteSDFDelays -precision 6 -ns adder.sdf

Note: The Pearl command file can only contain commands that relate to delay calculation.
Otherwise, Pearl generates error messages. For more details about Pearl-related
information, see the Pearl User Guide.
November 2008 403 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
The following Pearl commands are always executed before those in the user command file:

ReadGCFTimingLibraries(GCF filename)
ReadVerilog(filename1)
ReadVerilog(filename2) ...
TopLevelCell(top module name)
ReadGCFContraints(GCF filename)

Then, the user command file is included using:

Include <user cmd file>

The $dlc task generates an SDF file. You can specify the SDF filename in the Pearl
command file. You can then backannotate the SDF file to the Verilog design using
the $sdf_annotate system task.

Using the $system System Task

The $system system task is is an in-built verilog system task that makes a call to the C
function system(). The C function, system(), executes the argument passed to it as if the
argument was executed from the terminal. Consider the example given below. It uses the the
$system task to rename a file.

module top;
initial $system(“mv design.v adder.v”);

endmodule

Using the $simvision System Task

You can launch Simvision from your Verilog code with the $simvision task. This task is
used to interactively view simulation results in Simvision while the simulation is runnning. If
there is no SimVision currently attached to the simulator, this task launches one that will
attach to this simulator. All variables being recorded to the database are available for viewing.
Conversely, a variable must be recorded in the database in order to view it with Simvision.
This means that there must be at least one call to $recordvars in order for $simvision to
be useful.

Syntax:

$simvision(["arguments"]);

The $simvision command launches the simvision in the users path.

You can also pass Simvision arguments as parameters to the $simvision task once there
is a SimVision attached to the simulator. The parameter is a string enclosed in double quotes
and it can be any one of the SimVision tcl commands or you can simply specify $simvision
November 2008 404 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
to launch the design browser. The argument string can also be passed to the SimVision
console to be run by SimVision.

For instance you can tell SimVision to bring up another Waveform window as shown below:

$simvision("waveform new");

There can be only one interactive Simvision connection at a time for each simulation. If you
exit Simvision or the simulator, or use the $recordclose or $recordabort tasks to exit,
the interactive connection is closed. You can then call the $simvision task again to start a
new interactive connection.

If you disconnect from the Simvision using the disconnect button, the control is transferred to
the command prompt. You can use the $simvision task again to open another window for
the same simulation run.

Example:

The following example opens the design browser.

module record;
.....
.....

initial
begin
$recordvars;
$simvision; // this will open up the design browser.
end

endmodule
November 2008 405 Product Version 8.2

Verilog-XL Reference
System Tasks and Functions
November 2008 406 Product Version 8.2

Verilog-XL Reference
15
Programmable Logic Arrays

This chapter describes the following:

■ Overview on page 407

■ Syntax on page 407

■ Array Types on page 408

■ Array Logic Types on page 408

■ Logic Array Personality Declaration and Loading on page 409

■ Logic Array Personality Formats on page 409

■ PLA Examples on page 411

Overview

Programmable logic array (PLA) devices are modeled by a group of system tasks. This
chapter describes the formats of the logic array personality file.

Syntax

The syntax for PLA system tasks is as follows:

$<array_type>$<logic>$<format>(<memname>,{A1,..,An},{B1,..,Bn});

<array_type>
::= sync
||= async

<logic>
::= and
||= or
||= nand
||= nor

<format>
::= array
||= plane
November 2008 407 Product Version 8.2

Verilog-XL Reference
Programmable Logic Arrays
<memname>
::=<IDENTIFIER>

You must put PLA input terms, output terms, and memory in ascending order, as
demonstrated in this chapter since other orders are not supported consistently.

The PLA syntax allows for the following system tasks:

$sync$and$array(...)
$sync$or$array(...);
$sync$nand$array(...);
$sync$nor$array(...);
$async$and$array(...)
$async$or$array(...);
$async$nand$array(...);
$async$nor$array(...);
$sync$and$plane(...)
$sync$or$plane(...);
$sync$nand$plane(...);
$sync$nor$plane(...);
$async$and$plane(...)
$async$or$plane(...);
$async$nand$plane(...);
$async$nor$plane(...);

Array Types

Verilog allows the modeling of both synchronous and asynchronous arrays. The synchronous
forms allow you to control the time at which the logic array is evaluated and the outputs are
updated. For the asynchronous forms, the evaluations are automatically performed whenever
an input term changes value and when any word in the personality memory is changed.

For both the synchronous and asynchronous versions, the output terms (<Bi>’s) are updated
with zero delays.

An example of an asynchronous system call is as follows:

$async$and$array(mem,{a1,a2,a3,a4,a5,a6,a7},{b1,b2,b3});

An example of a synchronous system call is as follows:

$sync$or$plane(mem,{a1,a2,a3,a4,a5,a6,a7}, {b1,b2,b3});

Note: The input terms (<Ai>’s) and the output terms (<Bi>’s) are always represented as
concatenations.

Array Logic Types

Verilog allows the modeling of arrays with and, or, nand, and nor logic planes. This applies to
all array types and formats.
November 2008 408 Product Version 8.2

Verilog-XL Reference
Programmable Logic Arrays
An example of a nor plane system call is as follows:

$async$nor$array(mem,{a1,a2,a3,a4,a5,a6,a7},{b1,b2,b3});

An example of a nand plane system call is as follows:

$sync$nand$plane(mem,{a1,a2,a3,a4,a5,a6,a7}, {b1,b2,b3});

Logic Array Personality Declaration and Loading

The logic array personality is declared as an array of registers that is as wide as the number
of input terms and as deep as the number of output terms. The following example shows a
logic array with n input terms and m output terms:

reg[1:n] mem[1:m];

The personality of the logic array is normally loaded into the memory from a text data file
using the system tasks $readmemb or $readmemh. Alternatively, it is possible to write the
personality data directly into the memory using the normal Verilog assignment statements.
PLA personalities may be changed dynamically at any time during simulation, simply by
changing the contents of the memory. The new personality will be reflected on the outputs of
the logic array at the next evaluation.

Logic Array Personality Formats

Two separate personality formats are supported by Verilog and are differentiated by using
either an array system call or a plane system call. The array system call allows for a 1 or a 0
in the memory that has been declared. A 1 means take the input value, and a 0 means do not
take the input value.

The following example illustrates an array with logic equations:

b1 = a1 & a2
b2 = a3 & a4 & a5
b3 = a5 & a6 & a7

The PLA personality is as follows:

1100000 in mem[1]
0011100 in mem[2]
0000111 in mem[3]

The module for the PLA is as follows:

module async_array(a1,a2,a3,a4,a5,a6,a7,b1,b2,b3);
input a1,a2,a3,a4,a5,a6,a7;
output b1,b2,b3;

reg[1:7] mem[1:3];
// memory declaration for
// array personality
November 2008 409 Product Version 8.2

Verilog-XL Reference
Programmable Logic Arrays
reg b1, b2, b3;
initial
begin
// setup the personality from the file array.dat

$readmemb("array.dat", mem);
// setup an asynchronous logic array with the input
// and output terms expressed as concatenations

$async$and$array(mem,{a1,a2,a3,a4,a5,a6,a7}, {b1,b2,b3});
end

endmodule

The file array.dat contains the binary data for the PLA personality:

1100000
0011100
0000111

The plane system call complies with the University of California at Berkeley format for
espresso. Each bit of the data stored in the array has the following meaning:

An example of the usage of the new tasks follows. The logical function of this PLA is shown
first, followed by the PLA personality in the new format, the Verilog description using the
$async$and$plane system task, and finally the results of the simulation.

The logical function of the PLA is as follows:

b[1] = a[1] & ~a[2];
b[2] = a[3];
b[3] = ~a[1] & ~a[3];
b[4] = 1;

The PLA personality is as follows:

3’b10?
3’b??1
3’b0?0
3’b???

The following example shows the Verilog description using the $async$and$plane system
task:

module pla;
‘define rows 4
‘define cols 3
reg [1:‘cols] a, mem[1:‘rows];

0 take the complemented input value

1 take the true input value

 x take the "worst case" of the input value

 z don’t-care; the input value is of no significance

 ? same as z
November 2008 410 Product Version 8.2

Verilog-XL Reference
Programmable Logic Arrays
reg [1:‘rows] b;
initial

begin
// PLA system call

$async$and$plane(mem,
{a[1],a[2],a[3]},
{b[1],b[2],b[3],b[4]});

mem[1] = 3’b10?;
mem[2] = 3’b??1;
mem[3] = 3’b0?0;
mem[4] = 3’b???;

// stimulus and display
#10 a = 3’b111;
#10 $displayb(a, " -> ", b);
#10 a = 3’b000;
#10 $displayb(a, " -> ", b);
#10 a = 3’bxxx;
#10 $displayb(a, " -> ", b);
#10 a = 3’b101;
#10 $displayb(a, " -> ", b);

end
endmodule

The output for the previous code is as follows:

111 -> 0101
000 -> 0011
xxx -> xxx1
101 -> 1101

PLA Examples

This section contains the following PLA examples:

■ “Synchronous Example” on page 411

■ “And-Or Array Example” on page 412

■ “PAL16R8 Example” on page 413

■ “PAL16R4 Example” on page 418

Synchronous Example

An example of synchronized version of PLA is as follows:

module sync_array(a1,a2,a3,a4,a5,a6,a7,b1,b2,b3);
input a1,a2,a3,a4,a5,a6,a7;
output b1,b2,b3;
reg[1:7] mem[1:3]; // memory declaration
reg b1, b2, b3;

initial
begin

// setup the personality
November 2008 411 Product Version 8.2

Verilog-XL Reference
Programmable Logic Arrays
$readmemb("array.dat", mem);
// setup a synchronous logic array to be evaluated
// when a positive edge on the clock occurs

forever @(posedge clk)
$sync$and$array(mem, {a1,a2,a3,a4,a5,a6,a7}, {b1,b2,b3});

end
endmodule

And-Or Array Example

To model a double PLA device, two logic array system tasks with two separate memories are
used. For example, if the previous logic equation defines the and-plane, the logic equations
for the or-plane are as follows:

c1 = b1 | b2;
c2 = b1 | b3;
c3 = b1 | b2 | b3;
c4 = 0;
c5 = b1;
c6 = b2;
c7 = b3;

The asynchronous version of this PLA has the following form:

module and_or_async(a1,a2,a3,a4,a5,a6,a7,c1,c2,c3,c4,c5,c6,c7);
input a1,a2,a3,a4,a5,a6,a7; // input terms
output c1,c2,c3,c4,c5,c6,c7; // output terms
reg[1:7] and_plane[1:3]; // and-plane memory
reg[1:3] or_plane[1:7]; // or-plane memory
reg b1, b2, b3;
reg c1, c2, c3, c4, c5, c6, c7;

initial
begin

$readmemb("and_plane.dat", and_plane);
$readmemb("or_plane.dat", or_plane);
$async$and$array(and_plane,

{a1,a2,a3,a4,a5,a6,a7}, {b1,b2,b3});
$async$or$array(or_plane,

{b1,b2,b3}, {c1,c2,c3,c4,c5,c6,c7});
end

endmodule

The file and_plane.dat contains the following binary data:

1100000
0011100
0000111

and the file or_plane.dat contains the binary data:

110
101
111
000
100
010
001
November 2008 412 Product Version 8.2

Verilog-XL Reference
Programmable Logic Arrays
PAL16R8 Example
//Test program taken from MMI’s "PAL (Programmable Array Logic)
//Handbook", Third Edition, shaft encoder no. 2, page 6-262.

module test_PAL16R8;
reg

clk, oc_, set_, phi0,phi90, x4;
wire

ud, s4, s3, s2, s1, count;
//instantiation of the PAL device
PAL16R8

cct (clk, phi0,phi90,x4,,,,,set_,,oc_,
ud,,s4,s3,s2,s1,,count);

parameter
p = 100,
L = 1’b0, H = 1’b1, X = 1’bx;

always
begin

#(p/2) clk = 1;
#(p/2) clk = 0;

end
initial
begin

$display("--CONTROLS-- --INPUTS-- x ssss -OUTPUTS-");
$display("clk oc_ set_ phi0 phi90 4 1234 count ud");
$display("-|---|---|-----|-----|---|--||||---|----|-");
$monitor(,clk,,,,oc_,,,,set_,,,,,,phi0,,,,,,phi90,,,,x4,

,,s1,s2,s3,s4,,,,count,,,,,ud);
$monitoroff;
#(p-1) forever
begin

$monitor;
#p;

end
end
initial
begin

$display("clear registers");
clk=0; oc_=L; set_=L;
#p $display("count up x4=L");

phi0=L; phi90=L; x4=L; set_=H;
#p phi0=H; phi90=L; #p;
#p phi0=H; phi90=H; #p;
#p phi0=L; phi90=H; #p;
#p phi0=L; phi90=L; #p;
#p phi0=H; phi90=L; #p;
#p phi0=H; phi90=H; #p;
#p phi0=L; phi90=H; #p;
#p $display("count up x4=H");

phi0=L; phi90=L; x4=H; #p;
#p phi0=H; phi90=L; #p;
#p phi0=H; phi90=H; #p;
#p phi0=L; phi90=H; #p;
#p phi0=L; phi90=L; #p;
#p phi0=H; phi90=L; #p;
#p phi0=H; phi90=H; #p;
#p $display("clear registers");

phi0=X; phi90=X; x4=X; set_=L;

#p $display("count down x4=L");
November 2008 413 Product Version 8.2

Verilog-XL Reference
Programmable Logic Arrays
phi0=L; phi90=L; x4=L; set_=H;
#p phi0=L; phi90=H; #p;
#p phi0=H; phi90=H; #p;
#p phi0=H; phi90=L; #p;
#p phi0=L; phi90=L; #p;
#p phi0=L; phi90=H; #p;
#p phi0=H; phi90=H; #p;
#p phi0=H; phi90=L; #p;
#p $display("count down x4=H");

phi0=L; phi90=L; x4=H; #p;
#p phi0=L; phi90=H; #p;
#p phi0=H; phi90=H; #p;
#p phi0=H; phi90=L; #p;
#p phi0=L; phi90=L; #p;
#p phi0=L; phi90=H; #p;
#p phi0=H; phi90=H; #p;
#p $display("test Hi-Z");

phi0=X; phi90=X; x4=X; set_=X; oc_=H;
#p $finish;

end
endmodule

module PAL16R8(clock, i0,i1,i2,i3,i4,i5,i6,i7,,enable,
o7,o6,o5,o4,o3,o2,o1,o0);

input
clock, i0,i1,i2,i3,i4,i5,i6,i7, enable;

output
o7,o6,o5,o4,o3,o2,o1,o0;

reg //AND array outputs
b0,b1,b2,b3,b4,b5,b6,b7,

b8,b9,b10,b11,b12,b13,b14,b15,
b16,b17,b18,b19,b20,b21,b22,b23,
b24,b25,b26,b27,b28,b29,b30,b31,
b32,b33,b34,b35,b36,b37,b38,b39,

b40,b41,b42,b43,b44,b45,b46,b47,
b48,b49,b50,b51,b52,b53,b54,b55,
b56,b57,b58,b59,b60,b61,b62,b63;

reg[0:31] //memory for array personality
person[0:63];

notif0 #20 //output enable drivers
(o0, q0, enable), (o1, q1, enable),
(o2, q2, enable), (o3, q3, enable),
(o4, q4, enable), (o5, q5, enable),
(o6, q6, enable), (o7, q7, enable);

or //fixed OR array
(q0, b0,b1,b2,b3,b4,b5,b6,b7),
(q1, b8,b9,b10,b11,b12,b13,b14,b15),
(q2, b16,b17,b18,b19,b20,b21,b22,b23),
(q3, b24,b25,b26,b27,b28,b29,b30,b31),
(q4, b32,b33,b34,b35,b36,b37,b38,b39),
(q5, b40,b41,b42,b43,b44,b45,b46,b47),
(q6, b48,b49,b50,b51,b52,b53,b54,b55),
(q7, b56,b57,b58,b59,b60,b61,b62,b63);

always @(posedge clock)
//programmable AND array evaluated every positive clock edge

$sync$and$array(person,
{i0,!i0, !q0,q0, i1,!i1, !q1,q1,
i2,!i2, !q2,q2, i3,!i3, !q3,q3,
i4,!i4, !q4,q4, i5,!i5, !q5,q5,
i6,!i6, !q6,q6, i7,!i7, !q7,q7},
{b0,b1,b2,b3,b4,b5,b6,b7,
November 2008 414 Product Version 8.2

Verilog-XL Reference
Programmable Logic Arrays
b8,b9,b10,b11,b12,b13,b14,b15,
b16,b17,b18,b19,b20,b21,b22,b23,
b24,b25,b26,b27,b28,b29,b30,b31,
b32,b33,b34,b35,b36,b37,b38,b39,
b40,b41,b42,b43,b44,b45,b46,b47,
b48,b49,b50,b51,b52,b53,b54,b55,
b56,b57,b58,b59,b60,b61,b62,b63});

// read the PAL personality at the beginning of simulation
initial $readmemb("person16R8.dat", person, 0, 63);

endmodule

The contents of file person16R8.dat are as follows:

// Addresses 0-7
0000_0000_0010_0010_0001_0010_0000_0000
0000_0000_0001_0001_0010_0001_0000_0000
0000_0000_1001_0010_0001_0001_0000_0000
0000_0000_1010_0001_0010_0010_0000_0000
0000_0000_0010_0010_0010_0001_0000_0000
0000_0000_0001_0001_0001_0010_0000_0000
0000_0000_1001_0010_0010_0010_0000_0000
0000_0000_1010_0001_0001_0001_0000_0000

// Addresses 8-15
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111

// Addresses 16-23
0100_0000_0000_0000_0000_0000_0000_0000
0000_0000_0000_0000_0000_0000_0000_0100
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111

// Addresses 24-31
0000_0000_0010_0000_0000_0000_0000_0000
0000_0000_0000_0000_0000_0000_0000_0100
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111

// Addresses 32-39
0000_0100_0000_0000_0000_0000_0000_0000
0000_0000_0000_0000_0000_0000_0000_0100
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111
November 2008 415 Product Version 8.2

Verilog-XL Reference
Programmable Logic Arrays
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111

// Addresses 40-47
0000_0000_0000_0000_0010_0000_0000_0000
0000_0000_0000_0000_0000_0000_0000_0100
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111

// Addresses 48-55
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111

// Addresses 56-63
0000_0000_0001_0010_0001_0010_0000_0000
0000_0000_0001_0010_0010_0010_0000_0000
0000_0000_0001_0010_0010_0001_0000_0000
0000_0000_0010_0010_0010_0001_0000_0000
0000_0000_0010_0001_0010_0001_0000_0000
0000_0000_0010_0001_0001_0001_0000_0000
0000_0000_0010_0001_0001_0010_0000_0000
0000_0000_0001_0001_0001_0010_0000_0000

The output from running this example is as follows:

Compiling source file "test_PAL16R8"
Highest level modules:
test_PAL16R8

--CONTROLS-- --INPUTS-- x ssss -OUTPUTS-
clk oc_ set_ phi0 phi90 4 1234 count ud
-|---|---|-----|-----|---|--||||---|----|-
clear registers
 1 0 0 x x x 0000 x x
count up x4=L
 1 0 1 0 0 0 0101 1 1
 1 0 1 1 0 0 1101 1 0
 1 0 1 1 0 0 1001 0 1
 1 0 1 1 1 0 1011 1 0
 1 0 1 1 1 0 1010 1 1
 1 0 1 0 1 0 0010 1 0
 1 0 1 0 1 0 0110 0 1
 1 0 1 0 0 0 0100 1 0
 1 0 1 0 0 0 0101 1 1
 1 0 1 1 0 0 1101 1 0
 1 0 1 1 0 0 1001 0 1
 1 0 1 1 1 0 1011 1 0
 1 0 1 1 1 0 1010 1 1
November 2008 416 Product Version 8.2

Verilog-XL Reference
Programmable Logic Arrays
 1 0 1 0 1 0 0010 1 0
 1 0 1 0 1 0 0110 0 1
count up x4=H
 1 0 1 0 0 1 0100 1 0
 1 0 1 0 0 1 0101 0 1
 1 0 1 1 0 1 1101 1 0
 1 0 1 1 0 1 1001 0 1
 1 0 1 1 1 1 1011 1 0
 1 0 1 1 1 1 1010 0 1
 1 0 1 0 1 1 0010 1 0
 1 0 1 0 1 1 0110 0 1
 1 0 1 0 0 1 0100 1 0
 1 0 1 0 0 1 0101 0 1
 1 0 1 1 0 1 1101 1 0
 1 0 1 1 0 1 1001 0 1
 1 0 1 1 1 1 1011 1 0
 1 0 1 1 1 1 1010 0 1
clear registers
 1 0 0 x x x 0000 1 0
count down x4=L
 1 0 1 0 0 0 0101 1 1
 1 0 1 0 1 0 0111 1 0
 1 0 1 0 1 0 0110 1 0
 1 0 1 1 1 0 1110 1 0
 1 0 1 1 1 0 1010 0 0
 1 0 1 1 0 0 1000 1 0
 1 0 1 1 0 0 1001 1 0
 1 0 1 0 0 0 0001 1 0
 1 0 1 0 0 0 0101 0 0
 1 0 1 0 1 0 0111 1 0
 1 0 1 0 1 0 0110 1 0
 1 0 1 1 1 0 1110 1 0
 1 0 1 1 1 0 1010 0 0
 1 0 1 1 0 0 1000 1 0
 1 0 1 1 0 0 1001 1 0
count down x4=H
 1 0 1 0 0 1 0001 1 0
 1 0 1 0 0 1 0101 0 0
 1 0 1 0 1 1 0111 1 0
 1 0 1 0 1 1 0110 0 0
 1 0 1 1 1 1 1110 1 0
 1 0 1 1 1 1 1010 0 0
 1 0 1 1 0 1 1000 1 0
 1 0 1 1 0 1 1001 0 0
 1 0 1 0 0 1 0001 1 0
 1 0 1 0 0 1 0101 0 0
 1 0 1 0 1 1 0111 1 0
 1 0 1 0 1 1 0110 0 0
 1 0 1 1 1 1 1110 1 0
 1 0 1 1 1 1 1010 0 0
test Hi-Z
 1 1 x x x x zzzz z z
L75 "test_PAL16R8": $finish at simulation time 6100
1663 simulation events
CPU time: 1 secs to compile and load + 2 secs in simulation
November 2008 417 Product Version 8.2

Verilog-XL Reference
Programmable Logic Arrays
PAL16R4 Example
// Test program taken from MMI’s "PAL (Programmable Array Logic)
// Handbook", Third Edition, shaft encoder no. 1, page 6-259.
module test_PAL16R4;

reg
clk, oc_, set_, phi0,phi90;

wire
down, s4, s3, s2, s1, up;

// instantiate the PAL device
PAL16R4

cct (clk, phi0,phi90,,,,,,set_,,oc_,
down,,s4,s3,s2,s1,,up);

parameter
p = 100,
L = 1’b0, H = 1’b1, X = 1’bx;

always
begin

#(p/2) clk = 1;
#(p/2) clk = 0;

end
initial

begin
$display("--CONTROLS-- --INPUTS-- ssss -OUTPUTS-");
$display("clk oc_ set_ phi0 phi90 4321 up down");
$display("-|---|---|-----|-----|------||||--|----|-");
$monitor(,clk,,,,oc_,,,,set_,,,,,,phi0,,,,,,phi90,,,,,

,,s4,s3,s2,s1,,,up,,,,,down);
$monitoroff;
#(p-1) forever

begin
$monitor;
#p;

end
end

initial
begin

$display("clear registers");
clk=0; oc_=L; set_=L;
#p $display("count up");

phi0=L; phi90=L; set_=H; #p;
#p phi0=L; phi90=H; #p;
#p phi0=H; phi90=H; #p;
#p phi0=H; phi90=L; #p;
#p phi0=L; phi90=L; #p;
#p phi0=L; phi90=H; #p;
#p phi0=H; phi90=H; #p;
#p phi0=H; phi90=L; #p;
#p phi0=L; phi90=L; #p;
#p phi0=L; phi90=H; #p;
#p phi0=H; phi90=H; #p;
#p phi0=H; phi90=L; #p;
#p phi0=L; phi90=L; #p;
#p $display("clear registers");

phi0=X; phi90=X; set_=L;
#p $display("count down");
phi0=L; phi90=L; set_=H; #p;
#p phi0=H; phi90=L; #p;
#p phi0=H; phi90=H; #p;
#p phi0=L; phi90=H; #p;
#p phi0=L; phi90=L; #p;
November 2008 418 Product Version 8.2

Verilog-XL Reference
Programmable Logic Arrays
#p phi0=H; phi90=L; #p;
#p phi0=H; phi90=H; #p;
#p phi0=L; phi90=H; #p;
#p phi0=L; phi90=L; #p;
#p phi0=H; phi90=L; #p;
#p phi0=H; phi90=H; #p;
#p phi0=L; phi90=H; #p;
#p phi0=L; phi90=L; #p;
#p $display("test Hi-Z");

phi0=X; phi90=X; set_=X; oc_=H;
#p $finish;

end
endmodule

module PAL16R4(clock, i0,i1,i2,i3,i4,i5,i6,i7,,enable,
o7,o6,o5,o4,o3,o2,o1,o0);

input
clock, i0,i1,i2,i3,i4,i5,i6,i7, enable;

output
o7,o6,o5,o4,o3,o2,o1,o0;

reg //AND array outputs
b0,b1,b2,b3,b4,b5,b6,b7,
b8,b9,b10,b11,b12,b13,b14,b15,
b16,b17,b18,b19,b20,b21,b22,b23,
b24,b25,b26,b27,b28,b29,b30,b31,
b32,b33,b34,b35,b36,b37,b38,b39,
b40,b41,b42,b43,b44,b45,b46,b47,
b48,b49,b50,b51,b52,b53,b54,b55,
b56,b57,b58,b59,b60,b61,b62,b63,
//output latches
q2,q3,q4,q5;

reg[0:31] //memory for array personality
person[0:63];

notif1 #20 //output enable drivers
(o0, f0, b0), (o1, f1, b8),
(o2, q2, !enable), (o3, q3, !enable),
(o4, q4, !enable), (o5, q5, !enable),
(o6, f6, b48), (o7, f7, b56);

or //fixed OR array
(f0, b1,b2,b3,b4,b5,b6,b7),
(f1, b9,b10,b11,b12,b13,b14,b15),
(f2, b16,b17,b18,b19,b20,b21,b22,b23),
(f3, b24,b25,b26,b27,b28,b29,b30,b31),
(f4, b32,b33,b34,b35,b36,b37,b38,b39),
(f5, b40,b41,b42,b43,b44,b45,b46,b47),
(f6, b49,b50,b51,b52,b53,b54,b55),
(f7, b57,b58,b59,b60,b61,b62,b63);

always @(posedge clock)
begin

q2 = f2;
q3 = f3;
q4 = f4;
q5 = f5;

end
initial

begin
// load personality into logic array memory at the
// beginning of simulation
$readmemb("person16R4.dat", person, 0, 63);
// asynchronous programmable AND array
// evaluated automatically when input terms change
November 2008 419 Product Version 8.2

Verilog-XL Reference
Programmable Logic Arrays
$async$and$array(person,
{i0,!i0, o0,!o0, i1,!i1, o1,!o1,
i2,!i2, !q2,q2, i3,!i3, !q3,q3,
i4,!i4, !q4,q4, i5,!i5, !q5,q5,
i6,!i6, o6,!o6, i7,!i7, o7,!o7},
{b0,b1,b2,b3,b4,b5,b6,b7,
b8,b9,b10,b11,b12,b13,b14,b15,
b16,b17,b18,b19,b20,b21,b22,b23,
b24,b25,b26,b27,b28,b29,b30,b31,
b32,b33,b34,b35,b36,b37,b38,b39,
b40,b41,b42,b43,b44,b45,b46,b47,
b48,b49,b50,b51,b52,b53,b54,b55,
b56,b57,b58,b59,b60,b61,b62,b63});

end
endmodule

The contents of file person16R4.dat are as follows:

// Test program personality for the shaft encoder no. 1
/* Columns

1 1 2 2 2
4 8 2 6 0 4 8 */

// Addresses 0-7
0000_0000_0000_0000_0000_0000_0000_0000
0100_1000_0001_0001_0010_0001_0000_0000
1000_0100_0010_0010_0001_0010_0000_0000
1000_1000_0010_0001_0010_0010_0000_0000
0100_0100_0001_0010_0001_0001_0000_0000
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111

// Addresses 8-15
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111

// Addresses 16-23
0100_0000_0000_0000_0000_0000_0000_0000
0000_0000_0000_0000_0000_0000_0000_0100
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111

// Addresses 24-31
0000_0000_0001_0000_0000_0000_0000_0000
0000_0000_0000_0000_0000_0000_0000_0100
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111
November 2008 420 Product Version 8.2

Verilog-XL Reference
Programmable Logic Arrays
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111

// Addresses 32-39
0000_0100_0000_0000_0000_0000_0000_0000
0000_0000_0000_0000_0000_0000_0000_0100
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111

// Addresses 40-47
0000_0000_0000_0000_0001_0000_0000_0000
0000_0000_0000_0000_0000_0000_0000_0100
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111

// Addresses 48-55
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111

// Addresses 56-63
0000_0000_0000_0000_0000_0000_0000_0000
1000_1000_0010_0010_0010_0001_0000_0000
0100_0100_0001_0001_0001_0010_0000_0000
1000_0100_0010_0001_0001_0001_0000_0000
0100_1000_0001_0010_0010_0010_0000_0000
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111
1111_1111_1111_1111_1111_1111_1111_1111

The output from running this example through Verilog-XL is as follows:

Compiling source file "test_PAL16R4"
Highest level modules:
test_PAL16R4

--CONTROLS-- --INPUTS-- ssss -OUTPUTS-
clk oc_ set_ phi0 phi90 4321 up down
-|---|---|-----|-----|------||||--|----|-
clear registers
 1 0 0 x x 0000 1 1
count up
 1 0 1 0 0 0000 1 1
 1 0 1 0 0 0000 1 1
 1 0 1 0 1 0100 0 1
November 2008 421 Product Version 8.2

Verilog-XL Reference
Programmable Logic Arrays
 1 0 1 0 1 1100 1 1
 1 0 1 1 1 1101 0 1
 1 0 1 1 1 1111 1 1
 1 0 1 1 0 1011 0 1
 1 0 1 1 0 0011 1 1
 1 0 1 0 0 0010 0 1
 1 0 1 0 0 0000 1 1
 1 0 1 0 1 0100 0 1
 1 0 1 0 1 1100 1 1
 1 0 1 1 1 1101 0 1
 1 0 1 1 1 1111 1 1
 1 0 1 1 0 1011 0 1
 1 0 1 1 0 0011 1 1
 1 0 1 0 0 0010 0 1
 1 0 1 0 0 0000 1 1
 1 0 1 0 1 0100 0 1
 1 0 1 0 1 1100 1 1
 1 0 1 1 1 1101 0 1
 1 0 1 1 1 1111 1 1
 1 0 1 1 0 1011 0 1
 1 0 1 1 0 0011 1 1
 1 0 1 0 0 0010 0 1
 1 0 1 0 0 0000 1 1
clear registers
 1 0 0 x x 0000 1 1
count down
 1 0 1 0 0 0000 1 1
 1 0 1 0 0 0000 1 1
 1 0 1 1 0 0001 1 0
 1 0 1 1 0 0011 1 1
 1 0 1 1 1 0111 1 0
 1 0 1 1 1 1111 1 1
 1 0 1 0 1 1110 1 0
 1 0 1 0 1 1100 1 1
 1 0 1 0 0 1000 1 0
 1 0 1 0 0 0000 1 1
 1 0 1 1 0 0001 1 0
 1 0 1 1 0 0011 1 1
 1 0 1 1 1 0111 1 0
 1 0 1 1 1 1111 1 1
 1 0 1 0 1 1110 1 0
 1 0 1 0 1 1100 1 1
 1 0 1 0 0 1000 1 0
 1 0 1 0 0 0000 1 1
 1 0 1 1 0 0001 1 0
 1 0 1 1 0 0011 1 1
 1 0 1 1 1 0111 1 0
 1 0 1 1 1 1111 1 1
 1 0 1 0 1 1110 1 0
 1 0 1 0 1 1100 1 1
 1 0 1 0 0 1000 1 0
 1 0 1 0 0 0000 1 1
test Hi-Z
 1 1 x x x zzzz x x
L69 "test_PAL16R4": $finish at simulation time 5500
1643 simulation events
CPU time: 1 secs to compile and load + 4 secs in simulation
November 2008 422 Product Version 8.2

Verilog-XL Reference
16
Interconnect Delays

This chapter describes the following:

■ Overview on page 423

■ Module Import Port Delays (MIPDs) on page 425

■ Single-Source/MultiSource Interconnect Transport Delays (S/MITDs) on page 434

Overview

Interconnect delays are delays that affect signals as they pass through a module input or
inout. For information about displaying and monitoring interconnect delay signal values, see
“Monitoring Interconnect Delay Signal Values” on page 342. Verilog-XL offers three types of
interconnect delays:

■ Module Input Port Delays (MIPDs)—A MIPD describes the delay to a module input port.
Delays are inertial and affect three transitions: to 1, to 0, and to Z.

■ Single-source Interconnect Transport Delays (SITDs)—A SITD is like a MIPD, but with
transport delays and with global and local pulse control. SITDs affect six transitions: 0 to
1, 1 to 0, 0 to Z, Z to 0, 1 to Z, and Z to 1.

■ Multi-source Interconnect Transport Delays (MITDs)—A MITD is like a SITD, in that they
are transport delays, are subject to global and local pulse control, and affect six
transitions. However, MITDs allow you to specify unique delays for each source-load
path.

Note: For brevity, SITDs and MITDs are sometimes grouped together in this chapter and are
referred to as S/MITDs.
November 2008 423 Product Version 8.2

Verilog-XL Reference
Interconnect Delays
Important

S/MITDs are not part of the Verilog Hardware Description Language; PLI
backannotation creates MIPDs as the default form of interconnect delay and it
creates S/MITDs in response to command line options. For more information about
the PLI access routines for MIPDs and S/MITDs, see the PLI 1.0 User Guide and
Reference and the VPI User guide and Reference.

The following table summarizes MIPDs, S/MITDs, and their differences.
:

Aspect MIPDs S/MITDs

Default status Default type of interconnect delay Command line option required

Delayed path
characteristics

Maximum of one MIPD for each
input or inout. MIPDs affect all
signals passing to acceleratable
gates.

Affect signal paths beginning in
any source, driven by
acceleratable gates, and passing
through inputs or inouts to
acceleratable gates

Signals subject to
delay

Same delay affects signals from
all sources connected to a
primitive that is connected to a
port with a MIPD.

Source-to-load paths can have
unique delays

Transitions affected Affect three transitions:

to 1, to 0, to Z

Affect six transitions:

0->1, 1->0, 0->Z, Z->0, 1->Z, Z-
>1

min:typ:max triplets Available for each of the three
delays

Available for each of the six
delays

System tasks’ ability
to observe delays

No post-interconnect delay-
monitoring. Delay in signal is
visible only after it passes through
a primitive.

Post-interconnect delay-
monitoring available. Delay in
signal is visible after it passes
through the input or inout port.

Delay handling Inertial delay Inertial or transport delay

Pulse control Not subject to pulse control Global and local pulse control
apply.

Memory Small memory requirement Slightly larger memory
requirement

Performance Small performance penalty Slightly larger performance
penalty
November 2008 424 Product Version 8.2

Verilog-XL Reference
Interconnect Delays
Module Import Port Delays (MIPDs)

A MIPD defines a delay to a module input or inout port. If a port comprises more than one bit,
you can assign a different MIPD for each bit. If you specify a MIPD on an inout port, the delay
only works on propagations into a module.

A MIPD elapses before the following:

■ A module path delay begins.

■ Verilog-XL looks for timing check violations

In a MIPD, you can specify rise, fall, and high-impedance propagation delays.

MIPDs are inertial delays just like the delays on primitives. An inertial delay filters out pulse
widths shorter than the specified delay, and schedules at a later simulation time pulse widths
that are longer than the delay. If a pulse width is just as long as a delay, you cannot predict
whether Verilog-XL schedules or filters out the pulse width.

Note: MIPDs affect timing checks. If a timing check’s data or reference event propagates
through a port with a MIPD, the event is delayed by the MIPD. If this delay means the event
is no longer within the time limit of the timing check, the timing check will not report a timing
violation.

Strength changes are propagated through MIPDs, but are not affected by them.

How MIPDs Work

The purpose of MIPDs is to distribute the same delay to each of the accelerated primitives in
a port’s fanout. MIPDs do not work like buffers on ports. This section discusses the following
characteristics and limitations of MIPDs:

■ MIPDs are specified only on input and inout ports.

■ MIPDs affect all levels of the hierarchy.

■ MIPDs are unidirectional.

■ MIPDs are not wire path delays.

Specification MIPDs and S/MITDs are specified by PLI routines, with SDF
annotation possible

Aspect MIPDs S/MITDs
November 2008 425 Product Version 8.2

Verilog-XL Reference
Interconnect Delays
■ Each bit in a port can have only one MIPD.

MIPDs Are Specified Only on Input and Inout Ports

You can specify MIPDs only on input and inout ports. In the following figure, the valid ports
for MIPDs are m1ia, m1ib, m2io, m2ia, and m2ib.

The ports are declared as follows:

As you can see int he previous figure, no MIPDs were placed on the output ports, because
this is illegal.

MIPDs Affect All Levels of the Hierarchy

MIPDs are implemented so as to distribute delays to each load in a port’s fanout; they require
no specific hierarchical relationship between drivers and loads or between ports and loads.
MIPDs do the following:

■ They distribute delays to loads on the same hierarchical level as the port and to loads on
a lower hierarchical level

Input Ports Output Ports Inout Ports

m1ia m1oa m2io

m1ib m1ob

m2ia m2o

m2ib

mod1 mod2

port

 m1ia

port

 m1ib

port

 m2o

port
 m1oa

port

 m2ia

port

 m2io

port

 m2ib

buf1

or1

port
 m1ob

buf2

bufif1_1
MIPD

MIPD

MIPD

MIPD

MIPD
November 2008 426 Product Version 8.2

Verilog-XL Reference
Interconnect Delays
■ They delay the propagation of transitions between drivers and loads on the same or
different hierarchical levels

The following figure shows the loads and drivers on different levels of a hierarchy that are
affected by a MIPD:

In this figure, a MIPD placed on input port m2a of module mod2 specifies a delay between all
the loads in port m2a’s fanout and each of the drivers connected to those loads. Here, the
drivers are buf1 in mod1 and not1 in mod2. The loads are or1 in mod2 and and1 in mod3.

Notice that the MIPD specifies a delay between not1 and both or1 and and1, even though
not1 is inside of port m2a. The MIPD’s delay value is distributed to or1 and and1 to delay
the propagation of transitions from all their drivers, including not1.

Note: A MIPD can specify a delay between a driver and a load within the same module, as
long as the load is in the fanout of the port on which you specify the MIPD.

mod1 mod3

mod2

port

 m2a
buf1

or1

and1

not1

MIPD
November 2008 427 Product Version 8.2

Verilog-XL Reference
Interconnect Delays
MIPDs Are Unidirectional

MIPDs are unidirectional—that is, a MIPD distributes its delay only to loads inside the
module that contains the MIPD. The following figure shows the loads that are and are not
affected by a MIPD because of its unidirectional property:

In the previous figure, the MIPD on port m3a of mod3 specifies a delay from drivers xor1 and
not1 to the load and1. The MIPD does not specify a delay between these two drivers and
nor1 in module mod2. Even if port m3a were an inout port, the MIPD would not specify a
delay between not1 and nor1, because MIPDs are unidirectional.

MIPDs Are Not Wire Path Delays

MIPDs are not specified for a wire path. Instead, they apply to all state transitions that
propagate through a bit in a port. If different wire paths enter through a bit in a port, a MIPD
on that bit applies equally to each wire path.

The following figure shows modules with single-bit ports and their valid MIPDs. In this figure,
mod3’s port m3a and mod4’s port m4a are single-bit ports. You can insert only one MIPD on

mod1

mod2

mod3

not1

and1

nor1

xor1

port

 m3a

MIPD
November 2008 428 Product Version 8.2

Verilog-XL Reference
Interconnect Delays
port m3a that specifies a delay from both drivers nor1 and nand1, to both loads not1 and
xor1.

You cannot assign a MIPD to port m3a to specify a delay between nor1 and its loads, and
then insert a second MIPD on the same port to specify a different delay between nand1 and
its loads. To do this, you must use multi-source interconnect transport delays (MITDs) (see
“An Application of MIPDs” on page 433). Similarly, you cannot insert one MIPD on port m3a
to specify a delay between the drivers and not1, and then insert another MIPD on port m3a
to specify a delay between the drivers and xor1. A MIPD at port m3a affects both not1 and
xor1. To specify a delay between the drivers and only xor1, insert a MIPD at port m4a.

Note: If both MIPDs are specified, the propagation delay between the drivers and xor1 is
the sum of the MIPDs.

Each Bit in a Port Can Have Only One MIPD

The number of MIPDs on a port cannot exceed its number of bits. Single-bit ports can only
have one MIPD.

The following figure shows the valid MIPDs for multiple-bit and single-bit ports. In this figure,
port m3a was declared to be 2 bits wide. One bit connects buf1 to and1 and the other bit
connects or1 to xnor1. You can specify one MIPD on port m3a that applies to both bits, or
two MIPDs on port m3a, one for each bit. Port m5a is a single-bit port that can take only one

not1

nand1

nor1

mod1

mod2

mod3

port

 m3a

xor1

mod4

port

 m4a

MIPD

MIPD
November 2008 429 Product Version 8.2

Verilog-XL Reference
Interconnect Delays
MIPD. Port m5a’s MIPD specifies the delay between the two drivers nand1 and xor1, and
the two loads not1 and nor1.

Specifying MIPDs

You must specify MIPDs using PLI access routines because you do not specify MIPDs in your
source description. The following list shows the access routines you need to specify MIPDs.

■ acc_append_delays inserts delay values on an object if they do not exist, or adds
delays to existing delay values on an object. Use it after you find the handle for the port.

■ acc_replace_delays replaces existing delay values on an object with new values. It
inserts new delay values if they do not exist. Use it when you need to change the delay
values in a MIPD.

■ acc_fetch_delays returns the delay values on an object. If the object has more than
one bit, this routine returns the delay value for the most significant bit. To find the delay
values for each bit, first get each bit’s handle with acc_next_bit, then call
acc_fetch_delays. Use it when you need to know the delay values of a MIPD.

mod1

nor1

mod2

mod3

mod4

nand1

and1

xor1

xnor1

not1

port

 m3a

or1

buf1

mod5

port

 m5a

MIPD

MIPD

MIPD
November 2008 430 Product Version 8.2

Verilog-XL Reference
Interconnect Delays
■ acc_handle_object returns a handle for a named object. Use it when you need to get
the handle for a module instance.

■ acc_handle_port returns a handle for a module’s port. Use it after you get the
instance handle.

■ acc_next_bit returns a handle for the next bit in a vector port. Use it when you need
to get handles for all the bits in a port.

For examples and additional information about the PLI access routines, see the PLI 1.0 User
Guide and Reference and the VPI User Guide and Reference.

Restrictions on Ports for MIPDs

You can only insert a MIPD on an input or inout port that meets the following conditions:

■ All loads in its fanout can be accelerated.

■ Nets from the module input port to the loads inside the module are scalar nets or
expanded vector nets.

A load can be accelerated if it is a user-defined primitive (UDP) or one of the following
primitive types:

buf and bufif0 nmos
not nand bufif1 pmos

or cmos
pullup nor notif0 rnmos
pulldown xor notif1 rpmos

xnor rcmos

Behavioral constructs and bidirectional primitives are loads that cannot be accelerated. If you
try to insert a MIPD on a port whose fanout includes a load that cannot be accelerated, the
PLI generates a warning message and does not insert the MIPD.

You can insert a MIPD on a port of a module containing a load that is not accelerated if that
load is not in the port’s fanout. Therefore, to avoid using an illegal MIPD, you can insert buffers
to separate a load that cannot be accelerated from an input port fanout.
November 2008 431 Product Version 8.2

Verilog-XL Reference
Interconnect Delays
Monitoring Nets Internal to MIPDs

MIPDs affect the way the $monitor system task displays the values and transition times of
some of the nets in a module. The following figure shows how MIPDs affect the way these
nets are monitored in a module:

MIPDs have no effect on the values and transition times displayed by the $monitor system
task for a net that connects a port to a load in the port’s fanout. This is because port collapsing
applies the values and transition times of the net outside a port to the net inside a port.

MIPDs do not change port collapsing results. In the previous figure, nets top1 and inp1 are
connected by port m1ia. Port collapsing requires the $monitor system task to display the
same values and transition times for top1 and inp1. However, MIPDs change the values
and transition times displayed by the $monitor system task of all nets not affected by port
collapsing that are in the path from the input port to the output. In the previous figure, the
$monitor system task displays the values of int1 and outp1 changing at later simulation
times because port m1ia has a MIPD.

Displaying Status Information for Nets Internal to MIPDs

If you enter the $showvars system task for a net that connects a port with a MIPD to a load
in the port’s fanout, Verilog-XL displays status information with the following warning
message:

Warning: input port delay exists between a net and its driver

Verilog-XL generates this message because the status information comes from the net on the
other side of the port, but port collapsing applies it to the net inside the port. If you enter this
system task for other nets in the path from the input port to the output, Verilog-XL issues no
warning message.

MIPD

mod1

port

m1ia

and1 or1

net inp1 net int1 net outp1
net top1
November 2008 432 Product Version 8.2

Verilog-XL Reference
Interconnect Delays
An Application of MIPDs

The following figure illustrates one use of MIPDs:

In this figure, buf1 in module mod1 drives loads in modules mod2 and mod3. Suppose you
want to model a propagation delay of 15 time units between buf1 and mod2, and a
propagation delay of 26 time units between buf1 and mod3. A lumped delay of 26 on buf1
could accurately model the propagation delay to mod3, but could not model the propagation
delay to mod2 as desired.

port

port

mod2

mod3

buf1

mod1

m2b

 m3a
November 2008 433 Product Version 8.2

Verilog-XL Reference
Interconnect Delays
The solution to this problem is shown in the next figure:

The MIPDs in this figure accurately model the propagation delays from buf1 to both mod2
and mod3. Here, the propagation delay from buf1 to each of its loads in mod2 is 15 time units,
and the propagation delay from buf1 to each of its loads in mod3 is 26 time units.

Single-Source/MultiSource Interconnect Transport
Delays (S/MITDs)

S/MITDs, like MIPDs, implement delay information for paths connecting sources with loads
through module input or inout ports. For single source nets, a SITD is much like a MIPD in
that it is a delay associated with a module input port, but a SITD supports transport delays
and pulse limits. For multi-source nets, a MITD is used because it can handle unique delays
and pulse limits between all source/load pairs.

A S/MITD can impose a delay on multiple paths from the same source to different loads, or it
can implement different delays on multiple paths from different sources to different loads.
There is no limit on the number of paths affected by S/MITDs that can pass through a module
port.

The delay information to which a S/MITD refers is like the delay information for a module path
delay: It can consist of one, two, three, or six types of transitions, and each transition can have

port

mod2

buf1

mod1

m2b

port

mod3

 m3a

MIPD
15

MIPD
26
November 2008 434 Product Version 8.2

Verilog-XL Reference
Interconnect Delays
minimum, typical, and maximum variations. Unlike module path delays, S/MITDs cannot be
conditional, but the ability to give 18 delay specifications (6 delays plus pulse reject and pulse
error values for each delay) for every source-to-load path can still model hardware delays
accurately.

S/MITDs are unidirectional. They affect signals passing into a module through the module’s
inout port, but then do not affect signals travelling in the opposite direction. Paths affected by
S/MITDs preserve the strength of signals passing through them.

Note: S/MITDs are not part of the Verilog Hardware Description Language; PLI
backannotation creates S/MITDs.

SITDs and MITDs have different characteristics designed to model hardware accurately while
conserving memory and maintaining performance. The following table shows the similarities
and differences between SITDs and MITDs.

Controlling MIPD and S/MITD Creation

Two options control the creation of MIPDs and S/MITDs:

+transport_int_delays
+multisource_int_delays

Characteristics SITDs MITDs

Unique delays for
each source-to-
load path

Always available, because there is
only one source

Available, but controlled by
command line options

Observability by system
tasks after
the module port

Both the pre- and post- delay
signal values are observable

Same a SITDs

Observability at primary
output

Observable Observable

6 delays plus
2 pulse limits
per delay

Always available, but allocated
only when needed

Always available

Transport delay Always available, but allocated
only when needed

Always available

Pulse control Always available, but allocated
only when needed

Always available
November 2008 435 Product Version 8.2

Verilog-XL Reference
Interconnect Delays
This section discusses the effects of using each option alone, of using them together, and of
omitting both options.

Using +transport_int_delays Alone

MIPDs are the default type of interconnect delay. If you use the +transport_int_delays
plus option without using the +multisource_int_delays option, Verilog-XL inserts
SITDs instead of MIPDs everywhere. The following table summarizes the effects of using the
+transport_int_delays option without the +multisource_int_delays option.

Using +multisource_int_delays Alone

If you use the +multisource_int_delays plus option without the
+transport_int_delays option, Verilog-XL inserts MITDs on all multi-source nets and
MIPDs on all single-source nets. The following table summarizes the effects of using the
+multisource_int_delays plus option without using the +transport_int_delays
option:

Characteristics Single-source Nets Multi-source Nets

Unique delays for each
source-to-load path

Always available, because
there is only one source

Unavailable. As with MIPDs,
all signals propagating to
primitives connected to the
port have the same delay.

6 delays plus 2 pulse limits
per delay

Available, but allocated only
when needed

Available

Transport delay Available Available

Pulse control Available Available

Characteristics Single-source Nets Multi-source Nets

Unique delays for each
source-to-load path

Unavailable; simulated as
MIPD

Available

6 delays plus 2 pulse limits
per delay

Unavailable; simulated as
MIPD

Available

Transport delay Unavailable; simulated as
MIPD

Available
November 2008 436 Product Version 8.2

Verilog-XL Reference
Interconnect Delays
The following table shows how MITD delay specifications supply information for the delays in
MIPDs:

Using Both +transport_int_delays and +multisource_int_delays

Using the +transport_int_delays and the +multisource_int_delays options in
combination enables maximum interconnect delay functionality, as shown in the following
table.

Using Neither Option

In the absence of both the +transport_int_delays option and the
+multisource_int_delays option, backannotation creates only MIPDs even if
specifications sufficient to create S/MITDs exist. “” on page 437 shows how S/MITD delay
specifications map to MIPD specifications in the absence of both the
+transport_int_delays and +multisource_int_delays plus options.

Pulse control Unavailable; simulated as
MIPD

Available

S/MITD delay specification mappings

MITD Delay Specifications MIPD to 1 MIPD to 0 MIPD to Z

Two (Rise and Fall) Rise Fall max(Rise, Fall)

Three (Rise, Fall, Z) Rise Fall Z

Six (0->1, 1->0, 0->Z, Z->0,
1->Z, Z->1)

0 -> 1 1 -> 0 0 -> Z

Characteristics Single-source Nets Multi-source Nets

Unique delays for each
source-to-load path

Always available, because there is
only one source.

Available

6 delays plus 2 pulse limits
per delay

Available Available

Transport delay Available Available

Pulse control Available Available

Characteristics Single-source Nets Multi-source Nets
November 2008 437 Product Version 8.2

Verilog-XL Reference
Interconnect Delays
S/MITDs and Pulse Handling

You can use global pulse control to make S/MITDs recognize pulses shorter than a specified
percentage of a delay, and either reject such pulses or treat them as having the e value.
Global pulse control can also make S/MITDs recognize pulses for rejection using the SLDI
delays as criteria, or it can prevent S/MITDs from rejecting pulses.

“Specifying Global Pulse Control on Module Paths” on page 257 explains global pulse control
for module paths. Global pulse control for S/MITDs is analogous to global pulse control for
module paths. You can specify global path pulse limits for S/MITDs as follows:

■ Use the +pulse_r/m and +pulse_e/n options to specify global path pulse control.
The limits you specify apply to both S/MITDs and module paths in the same way.

■ Specify reject and error limits for S/MITDs and for module paths separately in the same
simulation. To do this, enter two pairs of options on the simulation command line:

❑ The +pulse_r/m and +pulse_e/n options

❑ The +pulse_int_r/m and +pulse_int_e/n options.
The reject and error limits specified in these plus options affect
S/MITDs only.

The +transport_path_delays option, which makes module paths show transport delay
behavior has no effect on interconnect delays. Specific pulse control of the type that
PATHPULSE$ implements for module paths is not available for S/MITDs, but SDF annotation
can uniquely specify pulse limits for all transition types.

Preventing Pulse Limit Backannotation

The +no_pulse_int_backanno option prevents PLI backannotation of pulse limits. Only
one warning message is issued on the first attempt.

Resolving Ambiguous S/MITD Events

Verilog-XL maintains a table of currently scheduled events and their expected simulation
times for each S/MITD output. A new event entering the table that has an expected simulation
time earlier than the expected simulation times of other events on the table cancels the later
events. This is similar to what happens with module path delays (see “Understanding Path
November 2008 438 Product Version 8.2

Verilog-XL Reference
Interconnect Delays
Delays” on page 239). This policy can have the paradoxical results shown in the following
figure.

In this figure, the waveform at the S/MITD source is shown three times. In the first case, the
output transition to Z cancels the later transition to 1. The transition to Z must then be
rescheduled as a transition from 0, rather than from 1. Reinstating the 1 -> Z transition would
make it appear with the wrong delay.

Using the delay for the 1 -> Z transition after cancelling the 1 -> Z transition would also be
incorrect. Verilog-XL offers two resolutions:

■ A transition to Z using the 0->Z delay time

■ A transition to X using the 1 -> Z delay, followed by a transition to Z using the 0->Z delay
time

If you want the X value, use the +x_transport_pessimism command line option. This
option reflects the ambiguous delay situation by propagation of an X value during the
ambiguous period. Without this option, the S/MITD propagates the value that would have
followed the ambiguous period using the proper delay.

Note: The previous figure deals only with value changes. Handling for strength changes is
different.
November 2008 439 Product Version 8.2

Verilog-XL Reference
Interconnect Delays
PLI Tasks for S/MITDs

The PLI routines for S/MITDs are the same as those for MIPDs, but S/MITDs have different
and/or additional arguments. See the table in “Specifying MIPDs” on page 430 for a list of the
routines.

A new acc_configure option called accMultiSrcInt must be set in order for S/MITDs
to be used instead of MIPDs. The SDF annotator already sets this option.

For examples and additional information about the routines and their arguments, see the
“Known Problems and Solutions” (KP & S) document that accompanies the release of this
version.
November 2008 440 Product Version 8.2

Verilog-XL Reference
17
Timescales

This chapter describes the following:

■ Overview on page 441

■ The ‘timescale Compiler Directive on page 442

■ Timescale System Functions on page 444

■ The Timescale System Tasks on page 447

Overview

Timescales let you use modules that were developed with different time units together in the
same simulation. Verilog-XL can, for example, simulate a design that contains both a module
whose delays are specified in nanoseconds and a module whose delays are specified in
picoseconds.

To use modules with different time units in the same simulation, you need the following
timescale constructs:

■ The ‘timescale compiler directive specifies the unit of measurement for time and the
degree of precision of the time in the modules in your design.

■ The $printtimescale system task displays the time unit and precision specified for a
given module.

■ The $time and $realtime system functions, the $timeformat system task, and the
%t format specification specify how Verilog-XL reports time information. The system
function $timeformat also specifies the time unit you use in the delays entered
interactively.

■ The $scale system function allows the use of time values from one module with time
values from another module that has a different time unit.
November 2008 441 Product Version 8.2

Verilog-XL Reference
Timescales
The ‘timescale Compiler Directive

The ‘timescale compiler directive specifies the unit of measurement for time and delay
values, as well as the degree of accuracy, for the delays in all subsequent modules until
Verilog-XL reads another ‘timescale compiler directive. This rule applies to modules in
subsequent files also.

Usage Rules

A ‘timescale compiler directive applies to all module definitions that follow it in the source
description until the compiler reads another ‘timescale compiler directive. It must be
specified before and outside a module definition. The directive must not appear between the
module and endmodule keywords nor should it be specified for an instantiation of a module.

The ‘timescale compiler directive is optional. However, if your design includes a
‘timescale compiler directive for any module definition, you must include it before and
outside the first module definition.

Syntax

The syntax is as follows:

‘timescale <time_unit> / <time_precision>

The <time_unit> argument specifies the unit of measurement for times and delays.

The <time_precision> argument specifies the degree of precision to which Verilog-XL
rounds delay values before using them in simulation. The values Verilog-XL uses will be
accurate to within the unit of time that you specify. The smallest <time_precision>
argument of all the ‘timescale compiler directives in the design determines the time unit
for the simulation.

The <time_precision> argument must be at least as precise as the <time_unit>
argument; it cannot specify a longer unit of time than <time_unit>.

The integers in the above arguments specify an order of magnitude for the size of the value;
the valid integers are 1, 10, and 100. The character strings represent units of measurement;
the valid character strings are s, ms, us, ns, ps, and fs.

The units of measurement specified by these character strings are shown in the following
table:

s seconds
November 2008 442 Product Version 8.2

Verilog-XL Reference
Timescales
The following table shows how and when the ‘timescale compiler directive scales values:

The following example shows how this directive is used:

‘timescale 1 ns / 1 ps

Here, all time values in the modules that follow are multiples of 1 nanosecond because the
<time_unit> argument is 1 ns. Delays are rounded to real numbers with three decimal
places—that is, the values are precise to within one thousandth of a nanosecond—because
the <time_precision> argument is 1 ps, or one thousandth of a nanosecond.

Consider this example:

‘timescale 10 us / 100 ns

The time values in the modules that follow this directive are multiples of 10 microseconds
because the <time_unit> argument is 10 us. Delays are rounded to within one tenth of
a microsecond because the <time_precision> argument is 100 ns, or one tenth of a
microsecond.

The following example shows a ‘timescale directive in the context of an actual source
description:

ms milliseconds

us microseconds

ns nanoseconds

ps picoseconds

fs femtoseconds

Value of: Scaled at
compile time

Scaled at run
time

Rounded by
time precision

Not rounded by
time precision

Accelerated gate
delays

X X

Unaccelerated
gate delays

X X

Time limits on
$setup and $hold

X X

Simulation time
$time and
$realtime

X X
November 2008 443 Product Version 8.2

Verilog-XL Reference
Timescales
‘timescale 10 ns / 1 ns
module test;
reg set;
parameter d = 1.55;

initial
begin

#d set = 0;
#d set = 1;

end
endmodule

In the previous example, the ‘timescale 10 ns / 1 ns compiler directive specifies that
the time unit for module test is 10 nanoseconds. As a result, the time values in the module
are multiples of 10 nanoseconds rounded to the nearest nanosecond, and therefore, the
value stored in parameter d is scaled to a delay of 16 nanoseconds. This means that Verilog-
XL assigns the value 0 to reg set at simulation time 16 nanoseconds (1.6 x 10 ns), and then
assigns it the value 1 at simulation time 32 nanoseconds.

Note: parameter d retains its value no matter which timescale is in effect.

The simulation times in the previous example are determined as follows:

1. The value of parameter d is rounded from 1.55 to 1.6 according to the time precision.

2. The time unit of the module is 10 nanoseconds, and the precision is 1 nanosecond, so
Verilog-XL scales the delay of parameter d from 1.6 to 16.

3. Verilog-XL schedules the assignment of 0 to reg set at simulation time 16
nanoseconds (Verilog-XL adds 16 nanoseconds to the current simulation time of 0) and
the assignment of 1 at simulation time 32 nanoseconds (Verilog-XL adds 16
nanoseconds to the current simulation time of 16 nanoseconds). Verilog-XL does not
round time values when it schedules these assignments.

Effects of Timescales on Simulation Performance

Verilog-XL simulates with one time unit for the entire design. The simulation time unit is the
smallest <time_precision> argument specified in all the ‘timescale compiler
directives in the design. During compilation, Verilog-XL converts the delays on accelerated
gates to the simulation time unit. This means that the larger the difference between the
smallest time precision argument and the typical delay on accelerated gates the more
memory your design requires and the slower the simulation speed. Therefore, you should
make your <time_precision> arguments no smaller than is necessary.

Timescale System Functions

Verilog-XL has the following timescale system functions:
November 2008 444 Product Version 8.2

Verilog-XL Reference
Timescales
■ “$time” on page 445

■ “$realtime” on page 446

■ “$scale” on page 446

The $time and $realtime system functions allow you to access the current simulation
time.

The $scale system function converts time values in a module that uses one time unit, so
that these time values can be used in another module that uses a different time unit.

$time

The $time system function returns an integer that is a 64-bit time, scaled to the timescale
unit of the module that invoked it. The following example shows a use of the $time system
function:

‘timescale 10 ns / 1 ns
module test;

reg set;
parameter p = 1.55;
initial
begin

$monitor($time,,"set=%b",set);
#p set = 0;
#p set = 1;

end
endmodule

The results from the previous example are as follows:

0 set=x
2 set=0
3 set=1

In this example, Verilog-XL assigns to reg set the value 0 at simulation time 16
nanoseconds, and the value 1 at simulation time 32 nanoseconds. Note that these times do
not match the times reported by $time. The time values returned by the $time system
function are determined as follows:

1. Verilog-XL scales the simulation times 16 and 32 nanoseconds to 1.6 and 3.2, because
the time unit for the module is 10 nanoseconds, so time values reported by this module
are in multiples of 10 nanoseconds.

2. Verilog-XL rounds 1.6 to 2 and 3.2 to 3, because the $time system function returns an
integer. The <time_precision> argument does not cause Verilog-XL to round these
values.
November 2008 445 Product Version 8.2

Verilog-XL Reference
Timescales
$realtime

The $realtime system function returns a real number time that, like $time, is scaled to the
time unit of the module that invoked it.

The following example shows a use of the $realtime system function:

‘timescale 10 ns / 1 ns
module test;

reg set;
parameter p = 1.55;
initial
begin

$monitor($realtime,,"set=%b",set);
#p set = 0;
#p set = 1;

end
endmodule

The results from the previous example are as follows:

0 set=x
1.6 set=0
3.2 set=1

In this example, the event times in reg set are multiples of 10 nanoseconds, because 10
nanoseconds is the time unit for the module. They are real numbers because $realtime
returns a real number.

$scale

The $scale system function allows you to take a time value from a module that uses one
time unit and use it in a module that uses a different time unit. This system function takes a
hierarchical-name reference argument (such as a delay parameter) and converts its value to
the time unit of the module that invokes it. This system function returns a real number. The
syntax is as follows:

$scale <hierarchical_name>;

The following example shows the use of $scale:

‘timescale 1 s / 1 ms

module seconds;
initial
$display("p=%10.5f\n",$scale(milli.p));

endmodule

‘timescale 1 ms / 1 ms

module milli;
parameter p = 1;

endmodule
November 2008 446 Product Version 8.2

Verilog-XL Reference
Timescales
In module milli, parameter p has the value of 1 millisecond because it is assigned the value
1, and the preceding ‘timescale directive specifies that all time values in the module be
multiples of 1 millisecond.

In module seconds, the time unit is 1 second, so all time values in the module are in multiples
of 1 second; the precision is to 1 millisecond, or one thousandth of a second, as specified by
‘timescale 1 s / 1 ms. The $scale system function converts the value of p from 1
millisecond in module milli to 0.001 second in module seconds.

The following example shows another use of the $scale system function:

‘timescale 100 s / 1 ms

module first;
initial
$display("p=%10.5f\n",$scale(next.p));

endmodule

‘timescale 10 ms / 10 ms
module next;

parameter p = 1;
...

endmodule

In this, the output from the $display system task is as follows:

p= 0.00010

In module next, parameter p has a value of 10 milliseconds because it is assigned the value
1 and the preceding ‘timescale compiler directive specifies that all time values in the
module be multiples of 10 milliseconds.

In module first, all time values in the module are multiples of 100 seconds, rounded to a
precision of 1 millisecond, as specified by ‘timescale 100 s / 1 ms. The $scale
system function takes the value stored in parameter p and converts it from a value of 1 in
module next, to a value of 0.0001 in module first. This is because Verilog-XL assumes
the argument passed to $scale is a delay parameter and converts it to the time unit of the
module that invokes $scale.

The Timescale System Tasks

The following system tasks display and set timescale information:

■ “$printtimescale” on page 448

■ “$timeformat” on page 448
November 2008 447 Product Version 8.2

Verilog-XL Reference
Timescales
$printtimescale

The $printtimescale system task displays the time unit and precision for a particular
module. The syntax is as follows:

$printtimescale <hierarchical_name>;

This system task can be specified with or without an argument, as follows:

■ When no argument is specified, $printtimescale displays the time unit and precision
of the module that is the current scope (as set by $scope).

■ When an argument is specified, $printtimescale displays the time unit and
precision of the module passed to it.

The timescale information appears in the following format:

Time scale of (module_name) is unit / precision

The following example shows the use of the $printtimescale system task.

‘timescale 1 ms / 1 us
module a_dat;

initial
$printtimescale(b_dat.c1);

endmodule

‘timescale 10 fs /1 fs
module b_dat;

c_dat c1 ();
endmodule

‘timescale 1 ns / 1 ns
module c_dat;

...
endmodule

In the previous example, module a_dat invokes the $printtimescale system task to
display timescale information about another module c_dat, which is instantiated in module
b_dat.

The information about c_dat is displayed in the following format:

Time scale of (b_dat.c1) is 1ns / 1ns

$timeformat

The $timeformat system task performs the following two functions:

■ Sets the time unit for all subsequent delays entered interactively
November 2008 448 Product Version 8.2

Verilog-XL Reference
Timescales
■ Sets the time unit, precision number, suffix string, and minimum field width for all %t
formats specified in all modules that follow it in the source description until another
$timeformat system task is invoked. The %t format specification works with the
$timeformat system task to specify the uniform time unit, the time precision, and the
format that Verilog-XL uses to report timing information from various modules that have
different time units and precisions. You can use %t with the $display, $monitor,
$write, $strobe, $fdisplay, $fmonitor, $fwrite, and $fstrobe system tasks.

The syntax is as follows:

$timeformat (<units_number>,
<precision_number>,
<suffix_string>,
<minimum_field_width>);

The $timeformat system task arguments are described as follows:

The <units_number> argument must be an integer in the range from 0 to -15. This
argument represents the time unit as follows:

Argument Description

<units_number> An integer in the range from 0 to -15 representing a
time unit. The default is the smallest
<time_precision> argument of all the
‘timescale compiler directives in the source
description.

<precision_number> An integer defining the precision of the
<units_number>. For example, a value of 5 with a -
9 <units_number> indicates a precision of 5
nanoseconds. The default value is 0.

<suffix_string> A quoted string that you can use to clarify the output of
the $timeformat system task. For example, “ ns”
can be printed with the output to indicate nanoseconds.
The default is a null character string.

<minimum_field_width> An integer specifying the minimum field width to report
the time of the event. The default is 20.

Unit Number Time Unit Unit Number Time Unit

0 1 s -8 10 ns

-1 100 ms -9 1 ns
November 2008 449 Product Version 8.2

Verilog-XL Reference
Timescales
The following example shows the use of %t with the $timeformat system task to specify a
uniform time unit, time precision, and format for timing information.

Note: The following example requires a large amount of memory because of the large
difference between the smallest time precision (1ps) and the largest delay (10ns). See
“Effects of Timescales on Simulation Performance” on page 444 for more information.

‘timescale 1 ms / 1 ns
module cntrl;

initial
$timeformat(-9, 5, " ns", 10);

endmodule

‘timescale 1 fs / 1 fs
module a1_dat;

reg in1;
integer file;
buf #10000000 (o1,in1);
initial
begin

file = $fopen("a1.dat");
#00000000 $fmonitor(file,"%m: %t in1=%d
o1=%h", $realtime,in1,o1);
#10000000 in1 = 0;
#10000000 in1 = 1;

end
endmodule

‘timescale 1 ps / 1 ps
module a2_dat;

reg in2;
integer file2;
buf #10000 (o2,in2);
initial

begin
file2=$fopen("a2.dat");
#00000 $fmonitor(file2,"%m: %t in2=%d
 o2=%h",
$realtime,in2,o2);
#10000 in2 = 0;
#10000 in2 = 1;

end
endmodule

-2 10 ms -10 100 ps

-3 1 ms -11 10 ps

-4 100 us -12 1 ps

-5 10 us -13 100 fs

-6 1 us -14 10 fs

-7 100 ns -15 1 fs

Unit Number Time Unit Unit Number Time Unit
November 2008 450 Product Version 8.2

Verilog-XL Reference
Timescales
The contents of file a1.dat are as follows:

a1_dat: 0.00000 ns in1= x o1=x
a1_dat: 10.00000 ns in1= 0 o1=x
a1_dat: 20.00000 ns in1= 1 o1=0
a1_dat: 30.00000 ns in1= 1 o1=1

The contents of file a2.dat are as follows:

a2_dat: 0.00000 ns in2=x o2=x
a2_dat: 10.00000 ns in2=0 o2=x
a2_dat: 20.00000 ns in2=1 o2=0
a2_dat: 30.00000 ns in2=1 o2=1

In this example, the times of events written to the files by the $fmonitor system task in
modules a1_dat and a2_dat are reported as multiples of 1 nanosecond even though the
time units for these modules are 1 femtosecond and 1 picosecond respectively. This is
because the first argument of the $timeformat system task is -9 and the %t format
specification is included in the arguments to $fmonitor. This time information is reported
after the module names with five fractional digits, followed by an ns character string in a
space wide enough for 10 ASCII characters.

Timescales Examples

The following examples include three modules called ts_1ms_1ns, ts_1us_1ns, and
ts_1ns_1ns. They each use the following timescale constructs:

■ ‘timescale compiler directive

■ $time, $realtime, and $scale system functions

■ $printtimescale and $timeformat system tasks

■ %t format specification.

The comments in the code indicate the numbers to which you should refer in the explanation
after each module.

Timescale Example ts_1ms_1ns
‘timescale 1 ms / 1 ns // See 1

module ts_1ms_1ns;
initial
begin

$timeformat (-9 ,3 ," ns" ,20); // See 2, 3, 4, 5
$printtimescale; // See 6
$display;
$printtimescale(ts_1us_1ns); // See 7
$display("p = %15.9f\n",
$scale(ts_1us_1ns.p)); // See 8
November 2008 451 Product Version 8.2

Verilog-XL Reference
Timescales
$printtimescale(ts_1ns_1ns); // See 9
$display("p = %15.9f\n",
$scale(ts_1ns_1ns.p)); // See 10

end
endmodule

1. This specifies that all module definitions that follow this directive have a time unit of 1
milliseconds and a time precision of 1 nanosecond.

2. The first argument specifies that data displayed in the %t format specification appears in
the 1 nanosecond time unit.

3. The second argument specifies that the event time is reported with three fractional digits.

4. The third argument specifies that the event time is followed by the ns character string to
indicate the time unit is nanoseconds.

5. The fourth argument specifies at least a 20-character field width to report the time of the
event. If the width exceeds 20, Verilog-XL adds additional character widths.

6. This $printtimescale system task displays the time unit and the time precision of the
module that defines the current scope.

7. This $printtimescale system task displays the time unit and the time precision of the
module ts_1us_1ns (defined below).

8. This $scale system task reports the value of p in module ts_1us_1ns as a floating
point number with up to a 15-character width and up to 9 fractional digits; since module
ts_1us_1ns has a time unit of 1 us, Verilog-XL divides the value of p in ts_1us_1ns
by 1000.

9. This $printtimescale system task displays the time unit and the time precision of the
module ts_1ns_1ns.

10. This $scale system task reports the value of p in module ts_1ns_1ns as a floating
point number with up to a 15-character width and up to 9 fractional digits. Since module
ts_1ns_1ns has a time unit of 1 nanosecond, it divides the value of p by 1,000,000.

Timescale Example ts_1us_1ns
‘timescale 1us / 1ns // See 1

module ts_1us_1ns;
reg in;
parameter p = 123.456789;
buf #(10.415111) (o1, in); // See 2

initial
begin

#100 $display;
#000 $fmonitor(1,"%m: // See 3

%t %d %9.3f" , // See 4, 5, 6
$realtime, // See 7
November 2008 452 Product Version 8.2

Verilog-XL Reference
Timescales
$time, // See 8
$realtime // See 9
,,, in,, o1);

#100 in = 0;
#100 in = 1;

end
endmodule

1. A new ‘timescale compiler directive overrides the previous one, and this new directive
now applies to all subsequent module definitions.

2. This delay is in multiples of 1 microsecond because the 1 us time unit was specified in
the preceding ‘timescale compiler directive.

3. This $fmonitor system task displays the name of the module in which the event
occurs.

4. This %t displays timing information as specified in the last $timeformat system task in
module ts_1us_1ns.

5. This %d displays a decimal value.

6. This %9.3f displays a value in a 9-character width with 3 fractional digits.

7. This $realtime system task returns a real value for time, corresponding to the %t
format specification.

8. This $time system task returns an integer value for time, corresponding to the %d format
specification.

9. This $realtime system task returns a real value for time, corresponding to the %9.3f
format specification.

Timescale Example ts_1ns_1ns
‘timescale 1ns / 1ns // See 1

module ts_1ns_1ns;
reg in;
parameter p = 123.456789;
buf #(10.415111) (o1, in); // See 2

initial
begin

#100 $display;
#000 $fmonitor(1, "%m: %t %d %9.3f",$realtime, $time,

$realtime,,,in,,o1);
#100 in = 0;
#100 in = 1;
end

endmodule

1. A new ‘timescale compiler directive overrides the previous one. It sets the time unit
for subsequent module definitions to 1 ns and the time precision to 1 nanosecond.
November 2008 453 Product Version 8.2

Verilog-XL Reference
Timescales
2. This delay value is a multiple of 1 nanosecond; Verilog-XL rounds this delay to 10
because the time precision argument is the same as the time unit argument.

Timescales Examples Output

The output of the ts_1ms_1ns, ts_1us_1ns, and ts_1ns_1ns source modules is as
follows:

Time scale of (ts_1ms_1ns) is 1ms / 1ns

Time scale of (ts_1us_1ns) is 1us / 1ns
p = 0.123456789
Time scale of (ts_1ns_1ns) is 1ns / 1ns
p = 0.000123457
/* See 1 See 2 See 3 */
ts_1ns_1ns: 100 ns 100 100.000 x x
ts_1ns_1ns: 200 ns 200 200.000 0 x
ts_1ns_1ns: 210 ns 210 210.000 0 0
ts_1ns_1ns: 300 ns 300 300.000 1 0
ts_1ns_1ns: 310 ns 310 310.000 1 1

/* See 4 See 5 */
ts_1us_1ns: 100000 ns 100 100.000 x x
ts_1us_1ns: 200000 ns 200 200.000 0 x
ts_1us_1ns: 210415 ns 210 210.415 0 0
ts_1us_1ns: 300000 ns 300 300.000 1 0
ts_1us_1ns: 310415 ns 310 310.415 1 1

1. Events from module ts_1ns_1ns occur first because it has the smaller time unit and the
same delay numbers as ts_1us_1ns.

2. These events are times in nanoseconds as specified in $timeformat. Fractions of
nanoseconds in delay times are not included because the time precision is a single
nanosecond.

3. These events are in nanoseconds, as specified by the ‘timescale compiler directive
that precedes module ts_1ns_1ns.

4. These events are times in nanoseconds, as specified in $timeformat.

5. These events are in microseconds, as specified by the ‘timescale compiler directive
that precedes module ts_1us_1ns. The %t format specification is not used here; the
%d and %9.3f format specifications are used to format these values.
November 2008 454 Product Version 8.2

Verilog-XL Reference
18
Delay Mode Selection

This chapter describes the following:

■ Overview on page 455

■ Delay Modes on page 456

■ Reasons to Select a Delay Mode on page 458

■ Setting a Delay Mode on page 458

■ Precedence in Selection on page 459

■ Timescales and Simulation Time Units on page 460

■ Overriding Delay Values on page 461

■ Delay Mode Example on page 463

■ Decompiling with Delay Modes on page 464

■ $showmodes on page 464

■ acc_fetch_delay_mode Access Routine on page 464

■ Macro Module Expansion and Delay Modes on page 464

■ Summary of Delay Mode Rules on page 465

Overview

Delay modes provide command-line options and compiler directives that allow you to alter the
delay values specified in Verilog-XL models. You can ignore all delays specified in your model
or replace all delays with a value of one simulation time unit. You can also replace delay
values in selected portions of the model.

You can specify delay modes on a global basis or a module basis. If you assign a specific
delay mode to a module, then all instances of that module simulate in that mode. Moreover,
November 2008 455 Product Version 8.2

Verilog-XL Reference
Delay Mode Selection
the delay mode of each module is determined at compile time and cannot be altered
dynamically.

You can use selectable delay modes to speed up simulation during debugging. This chapter
explains how to do this as well as how delay selection facilitates using library modules that
contain delay specifications for both Verifault-XL and Veritime. “Delay Modes” on page 456
describes the four selectable delay modes. “Reasons to Select a Delay Mode” on page 458
discusses practical applications for selectable delay modes. The remaining sections explain
how to use selectable delay modes.

Important

The selected delay mode controls only structural delays (structural delays include
delays assigned to gate and switch primitives, UDPs, and nets), path delays, timing
checks, and delays on continuous assignments. Other delays simulate as specified
regardless of delay mode.

See “Summary of Delay Mode Rules” on page 465 for a summary of the rules governing
delay modes.

Delay Modes

The following sections describe the four delay modes that can be explicitly selected in
Verilog-XL, and the default mode in effect if no delay mode is selected.

Unit Delay Mode

In unit delay mode, Verilog-XL ignores all module path delay information and timing checks
and converts all non-zero structural and continuous assignment delay expressions to a unit
delay of one simulation time unit (see “Timescales and Simulation Time Units” on page 460).
There are two ways to circumvent the effect of the unit delay mode for specific delays:

■ Using PLI access routines (See the PLI 1.0 User Guide and Reference and the VPI User
Guide and Reference for more information on PLI access routines.)

■ Using the parameter attribute mechanism (See “Parameter Attribute Mechanism” on
page 462.)

Zero Delay Mode

Zero delay mode is similar to unit delay mode in that all module path delay information, timing
checks, and structural and continuous assignment delays are ignored.
November 2008 456 Product Version 8.2

Verilog-XL Reference
Delay Mode Selection
There are two ways to override the zero delay mode for specific delays:

■ Using PLI access routines (See the PLI 1.0 User Guide and Reference and the VPI User
Guide and Reference for more information.)

■ Using the parameter attribute mechanism (See “Parameter Attribute Mechanism” on
page 462.)

Distributed Delay Mode

Distributed delays are delays on nets, primitives, or continuous assignments—in other words,
delays other than those specified in procedural assignments and specify blocks. In distributed
delay mode, Verilog-XL ignores all module path delay information and uses all distributed
delays and timing checks. You can override specified delay values with PLI access routines
(see the PLI 1.0 User Guide and Reference and the VPI User Guide and Reference). Verilog-
XL ignores the parameter attribute mechanism in the distributed delay mode. See “Parameter
Attribute Mechanism” on page 462 for information about the parameter attribute mechanism.

The distributed delay mode in Verilog-XL produces results equivalent to “good machine”
results in Verifault-XL. See the Verifault-XL User Guide and the Verifault-XL Reference for
more information about Verifault-XL.

Path Delay Mode

In this mode, Verilog-XL derives its timing information from specify blocks. If a module
contains a specify block with one or more module path delays, all structural and continuous
assignment delays within that module except trireg charge decay times are set to zero. In
path delay mode, trireg charge decay remains active. The module simulates with “black
box” timing—that is, with module path delays only.

You can specify distributed delays that cannot be overridden by the path delay mode by using
the parameter attribute mechanism (see “Parameter Attribute Mechanism” on page 462) or
with PLI and VPI access routines (see the PLI 1.0 User Guide Reference and the VPI User
Guide and Reference). When a path delay mode simulation encounters a distributed delay
that is locked in by either mechanism, module path delays and the distributed delay simulate
concurrently.

When path delay mode is selected, modules that contain no module path delays simulate in
distributed delay mode.
November 2008 457 Product Version 8.2

Verilog-XL Reference
Delay Mode Selection
Default Delay Mode

If no delay mode is explicitly selected, the model simulates in the default mode—that is,
delays simulate as specified in the model’s source description files. Note that you can specify
path delays and distributed delays in the same module and they will simulate together only
when simulation is in the default delay mode.

Reasons to Select a Delay Mode

Replacing integer path or distributed delays with global zero or unit delays can reduce
simulation time by an appreciable amount. You can use delay modes during design
debugging phases when checking circuit logic is more important than timing correctness. You
can also speed up simulation during debugging by selectively disabling delays in sections of
the model where timing is not currently a concern. If these are major portions of a large
design, the time saved may be significant.

The distributed and path delay modes allow you to develop or use modules that define both
path and distributed delays and then to choose either the path delay or the distributed delays
at compile time. This feature allows you to use the same source description with all the
Veritools and then to select the appropriate delay mode when using the sources with
Verilog-XL. You can set the delay mode for Verilog-XL by placing a compiler directive for the
distributed or path mode in the module source description file, or by specifying a global delay
mode at run time.

Setting a Delay Mode

The following are the two ways to set a delay mode:

■ Use compiler directives in the source file to set delay modes specific to particular
modules.

■ Use command-line plus options at compile time to set a global delay mode for the
simulation run.

Compiler Directives

Use compiler directives to select a delay mode for all instances of the same module. The
compiler directive must precede the module definition. The compiler directives are as follows:

■ ‘delay_mode_path

■ ‘delay_mode_distributed
November 2008 458 Product Version 8.2

Verilog-XL Reference
Delay Mode Selection
■ ‘delay_mode_unit

■ ‘delay_mode_zero

When the compiler encounters a delay mode directive in a source file, it applies that delay
mode to all modules defined from that point on, until it encounters a directive specifying a
different delay mode or the end of compilation. Note that you can use the ‘resetall
compiler directive at any point to return the source to the default delay mode (no mode
selected). The recommended usage is to place ‘resetall at the beginning of each source
text file, followed immediately by the directives desired in the file. You may choose to manually
override all compiler directives by using the plus options described in “Command-Line Plus
Options” on page 459.

Delay modes specified with a compiler directive remain active across file boundaries.
Therefore, if you want to ensure that the modules in a particular file operate with the correct
delay mode, place a compiler directive for the correct mode at the top of a source file. You can
use command-line plus options to override these compiler directives.

Command-Line Plus Options

Four command-line plus options enable you to set a global delay mode. If you use more than
one plus option, the compiler issues a warning and selects the mode with the highest
precedence. The plus options are listed in the following table from highest to lowest
precedence:

Precedence in Selection

The order of precedence in delay mode selection from highest to lowest is as follows:

1. plus option selection

2. compiler directives

3. default — no delay mode

+delay_mode_path The design simulates in path delay mode—
except for modules with no module path delays.

+delay_mode_distributed The design simulates in distributed delay mode.

+delay_mode_unit The design simulates in unit delay mode.

+delay_mode_zero Modules simulate in zero delay mode.
November 2008 459 Product Version 8.2

Verilog-XL Reference
Delay Mode Selection
You can override the delay values established by any of these cases. See “Overriding Delay
Values” on page 461.

Timescales and Simulation Time Units

When working with delay modes, consider the way delay modes use timescales and
simulation time units. When you select the unit delay mode at runtime, each explicit delay gets
converted to a value of one, measured in simulation time units—that is, the value of the
smallest time_precision argument specified by a ‘timescale compiler directive in any
of your model’s description files. For example, you can specify an explicit delay for a gate as
follows:

nand #5 g1 (qbar, q, clear);

The nand gate (shown above) can be controlled by the following timescale directive:

`timescale 1 us/1 ns

The directive causes the simulation delay value for the nand gate g1 to be five microseconds.
When a model uses timescales, that delay of five units is measured in timescale units—that
is, its simulation value is five times the unit of time specified in a controlling timescale
directive. (In the absence of any timescale directives the delay is a relative value. It is used to
schedule events in the correct relative order.)

The following timescale directive gives the smallest precision argument specified for the
model:

`timescale 10 ns/1 ps

The previous code sets the simulation time unit as one picosecond, so the five microsecond
delay on nand gate g1 is measured as 5,000,000 picoseconds. When you select the unit
delay mode, your five microsecond delay on g1 gets converted to one picosecond.

The following example shows how delay times change from the default mode when the unit
delay mode is selected.

‘timescale 1 ns/1 ps
module alpha (a, b, c) ;

input b, c ;
output a ;
and #2 (a, b, c) ;

endmodule

‘timescale 100 ns/1 ns

module beta (q, a, d, e) ;
input a, d, e ;
output q ;
wire f ;
xor #2 (f, d, e) ;
alpha g1 (q, f, a) ;
November 2008 460 Product Version 8.2

Verilog-XL Reference
Delay Mode Selection
endmodule

‘timescale 10 ps/1 fs
module gamma (x, y, z) ;

input y,z;
output x;
reg w ;
initial
#200 w = 3 ;
...

endmodule

Delay mode selection controls the delays in the previous example with the following results:

■ zero delay mode — no delays on gates; delay on assignment to register w is 2 ns, as
specified, because delay modes do not affect behavioral delays

■ unit delay mode — delays of one femtosecond on gates; delay on assignment to register
w is 2 ns, as specified, because delay modes do not affect behavioral delays

■ path delay mode — distributed delays used because no module paths are defined

■ distributed delay mode — distributed delays used

■ default delay mode — distributed delays used

Overriding Delay Values

You can use one of the following two methods to override the effect of a delay mode selection:

■ PLI access routines

■ parameter attribute mechanism

The following two sections discuss these methods.

PLI 1.0 or VPI Access Routines and Delays

You can use a PLI 1.0 or VPI access routine to override a structural delay set by a delay mode.
This method can provide structural delay values in a module regardless of the method used
to define the module’s delay mode. The access routines that set delay values are the
following:

■ acc_append_delays

■ acc_replace_delays
November 2008 461 Product Version 8.2

Verilog-XL Reference
Delay Mode Selection
Refer to the PLI 1.0 User Guide and Reference and the VPI User Guide and Reference for
more information.

Note: In a PLI access routine, the delay value is measured in the timescale units of the
module containing the gate.

Parameter Attribute Mechanism

Modules frequently need distributed delays on sequential elements to prevent race
conditions. Sometimes such a module also needs path delays. Use parameter attributes to
ensure that these essential delays are not overridden in path, unit, or zero delay modes.

The DelayOverride$ specparam implements the parameter attribute mechanism. This
specparam allows you to specify a delay—on a particular instance of a primitive or UDP—
that takes effect during the zero, unit, or path delay modes. The delay provided by this
mechanism replaces the distributed delay that the zero, unit, or path delay mode overrides.
You must also provide a distributed delay to take effect during the distributed and default delay
modes.

To use DelayOverride$, include it in the specify block section of the module that contains
the instance to be controlled. The specparam uses the DelayOverride$ prefix followed by
the primitive or UDP instance name, with no space between. The syntax is as follows:

specparam DelayOverride$object_name = literal_constant_value;

The object_name is a primitive or UDP instance name. If you specify no object name, then
Verilog-XL overrides all delays on gate primitives and UDPs in that module. The
literal_constant_value is the number that provides the value for the delay. The
number can be any one of the following:

■ a decimal integer

■ a based number (for example, 2'b10)

■ a real number

■ a min:typ:max expression composed of any one of the above three number formats

The following is a syntax example for a DelayOverride$ specparam:

module
...
nand #5 g1 (q, qbar, preset) ;
...
specify

...
specparam DelayOverride$g1= 5;
...

endspecify
November 2008 462 Product Version 8.2

Verilog-XL Reference
Delay Mode Selection
...
endmodule

Note: For the parameter attribute mechanism the delay override value is measured in
simulation time units—that is, the module’s timescale is ignored.

Delay Mode Example

The following example illustrates the behavior of some delay mode features. The module
simulates using the distributed delays on the gates unless you set a global delay mode by
specifying a command-line plus option.

‘delay_mode_distributed // compiler directive controls
// all instances of ffnand

module ffnand (q, qbar, preset, clear);
output q, qbar;
input preset, clear;

 nand #1 g1 (q, qbar, preset) ; // set to 5 in unit, zero,
// and path delay modes

nand #0 g2 (qbar, q, clear) ; // zero in all modules

specify
(preset => q) = 10; // path delay from preset to q --

// used only in path delay mode
specparam DelayOverride$g1= 5; // delay for g1 --

// used only in unit, path,
// and zero delay modes

endspecify
endmodule
‘resetall // returns delay mode to default delay mode

The following table shows the simulation delays executed on the example when you select
one of the global delay modes:

unit delay Gate g1 is assigned a delay value of five simulation time units
because the specparam DelayOverride$g1 overrides the unit
delay mode; gate g2 keeps its zero delay because unit delay
mode affects only non-zero delays.

zero delay Gate g1 gets a delay of five simulation time units, as specified by
the specparam DelayOverride$g1.

distributed delay A global distributed delay mode has the same effect on this
module as no global delay mode because the compiler directive
selects distributed mode. In either case, g1 has a delay of one
timescale unit because the distributed delay is used (the
specparam and module path specification are both ignored).
November 2008 463 Product Version 8.2

Verilog-XL Reference
Delay Mode Selection
You cannot simulate this module in the default mode because a delay mode compiler directive
precedes it.

Decompiling with Delay Modes

When decompiling a Verilog-XL source using $list or the -d compile time option, the delay
values displayed are the ones being simulated—not the ones in the original description. If
delays have been added using PLI access routines, these are not displayed in the
decompilation.

$showmodes

Use the $showmodes system task to display delay modes in effect for particular modules
during simulation. When invoked with a non-zero constant argument, it displays the delay
modes of the current scope as well as delay modes of all module instances beneath it in the
hierarchy. If a zero argument or no argument is supplied to $showmodes, this system task
displays only the delay mode of the current scope.

$showmodes;

$showmodes(<non_zero_constant>);

acc_fetch_delay_mode Access Routine

An application can use the access routine acc_fetch_delay_mode to retrieve delay mode
information from Verilog-XL.

Macro Module Expansion and Delay Modes

When a delay mode is in effect, all macro module instances within the scope of that delay
mode are expanded before the delay mode information is processed. This rule means that a
macro module instance inherits the delay mode of the module in which it is expanded.

path delay The simulation uses the module path delay information and
ignores distributed delays. The g1 delay is five simulation time
units, as specified by the DelayOverride$g1 specparam.
November 2008 464 Product Version 8.2

Verilog-XL Reference
Delay Mode Selection
Summary of Delay Mode Rules

The following table summarizes the rules governing the behavior of a module for which a
particular delay mode is in effect.

Unit Zero Distributed Path** Default

module path delays ignored ignored ignored used used

timing checks ignored ignored used used used

delays specified by
access routine

PLI access routines work in all delay modes

override by
DelayOverride$

used used ignored used ignored

treatment of
distributed delays

set to 1* set to 0 used as
defined

ignored used as defined

* non-zero values are set to one simulation time unit
** path mode is ignored in modules containing no path information
November 2008 465 Product Version 8.2

Verilog-XL Reference
Delay Mode Selection
November 2008 466 Product Version 8.2

Verilog-XL Reference
19
The Behavior Profiler

This chapter describes the following:

■ How the Behavior Profiler Works on page 467

■ Behavior Profiler System Tasks on page 469

■ Behavior Profiler Data Report on page 473

■ Recommended Modeling Practices on page 485

■ How Verilog-XL Affects Profiler Results on page 485

■ Behavior Profiler Example on page 486

How the Behavior Profiler Works

The behavior profiler identifies the modules and statements in your Verilog HDL that use the
most CPU time during simulation. When Verilog-XL executes the $startprofile system
task, the behavior profiler begins to take samples of your source description. A sample is a
“snapshot” of your design.

By default, the behavior profiler takes a sample every 100 microseconds of CPU time,
recording the number of samples it takes of each line. When the behavior profiler takes a
sample, it performs the following functions:

1. It interrupts the current process.

2. It scans the Verilog-XL data structure to determine which source file line the CPU is
executing.

3. It continues the current process.

There is a relationship between the number of samples the behavior profiler records for a line
and the amount of CPU time used by that line. The more samples of a line in your source
description, the more CPU time is used by that line. The line that has the most samples thus
uses more CPU time than any other line.
November 2008 467 Product Version 8.2

Verilog-XL Reference
The Behavior Profiler
If the behavior profiler takes more samples of one line in your source description than it finds
of any other line, then that one line uses more CPU time than any other line.

The following example shows an elementary use of the behavior profiler. In this example, two
registers are declared in different modules. The registers are toggled at different simulation
time intervals. The output of the following example has four different formats shown in the
section “Behavior Profiler Data Report” on page 473.

Behavior Profiler Sample Code
2 module test2;
3 rega
3 inst1();
4 regb
4 inst2();
5 initial
6 begin
7* $list;
8 $list(inst1);
9 $list(inst2);
10 #10
10 $startprofile; // starts the behavior profiler
11 #10000
11 $finish;
12 end
13 endmodule
15 module rega;
16 reg
16 a; // = 1’h1, 1
17 initial
18 begin
19 a = 1;
20 forever
21 begin
22* #1 // specifies that reg a toggles
23 a = ~a; // after every time unit
24 end
25 end
26 endmodule
28 module regb;
29 reg
29 b; // = 1’h1, 1
30 initial
31 begin
32 b = 1;
33 forever
34 begin
35* #10 // specifies that reg b toggles
36 b = ~b; // after every 10 time units
37 end
38 end
39 endmodule

In the previous example, reg a changes value every time unit, and reg b changes value
every 10 time units. The $startprofile system task invokes the behavior profiler after
Verilog-XL has simulated for 10 time units.
November 2008 468 Product Version 8.2

Verilog-XL Reference
The Behavior Profiler
The behavior profiler results show that lines 22 and 23 have almost 10 times more samples
than lines 35 and 36. The lines that toggle reg a are executed most frequently and use most
of the CPU time during simulation.

Behavior Profiler System Tasks

There are four system tasks for the behavior profiler. These system tasks are as follows:

■ “$startprofile” on page 469

■ “$reportprofile” on page 470

■ “$stopprofile” on page 471

■ “$listcounts” on page 471

The $startprofile system task tells Verilog-XL to begin or to resume collecting behavior
profiler data, $reportprofile tells Verilog-XL to report this data before the end of the
simulation, and $stopprofile tells Verilog-XL to stop collecting this data. Enter
$reportprofile or $stopprofile after $startprofile.

The $listcounts system task produces a source listing with both the line numbers and the
execution count for each line. You can enter $listcounts before or after $startprofile.
The $listcounts task is disabled unless you include the +listcounts option on the
command line.

This section describes the behavior profiler system tasks in detail and tells you when to use
them.

$startprofile

Use the $startprofile system task to invoke the behavior profiler. It tells the behavior
profiler to begin, or to continue to take samples of the simulation. The syntax is as follows:

$startprofile;

Note: When Verilog-XL is invoked in Turbo mode, the profiler is disabled as default. You must
specify the +profile command-line option if you want to start the profiler.

By default, the behavior profiler takes a sample every 100 microseconds.

The following example shows a source description that includes the $startprofile
system task. Verilog-XL loads three memories before it invokes the behavior profiler.

...
initial
November 2008 469 Product Version 8.2

Verilog-XL Reference
The Behavior Profiler
begin
$readmemb("mem1.dat",mem1);
$readmemb("mem2.dat",mem2);
$readmemb("mem3.dat",mem3);
$startprofile;

end
...

Note: Instead of placing $startprofile in your design, you can place it in a separate file
with the following module definition and include the filename in your Verilog-XL command
line.

module profile;
initial

$startprofile;
endmodule

$reportprofile

The behavior profiler always displays its data at the end of simulation unless you use the
$reportprofile system task to produce the following data reports before the end of a
simulation.

■ Profile ranking by statement

■ Profile ranking by module instance

■ Profile ranking by statement class

■ Profile ranking by statement type

The syntax is as follows:

$reportprofile (<max_lines>?);

The <max_lines> variable is an optional integer argument that specifies the maximum
number of lines of data that the behavior profiler reports. The default maximum number of
lines is 100.

The following example shows a source description that includes the $reportprofile
system task:

...
$startprofile;
...

#1000000
$reportprofile(200);
$finish;

end
endmodule
November 2008 470 Product Version 8.2

Verilog-XL Reference
The Behavior Profiler
Default behavior profiler data reports never have more than 100 lines but you can produce
reports with more than 100 lines with the $reportprofile system task. In the previous
example, the specified maximum number of lines is 200.

$stopprofile

Use the $stopprofile system task to stop taking samples before the end of the simulation.
This system task takes no arguments. The syntax is as follows:

$stopprofile;

The following example shows a source description that includes the $stopprofile system
task.

...
initial

#10000
begin

$stopprofile;
$readmemb("mem.dat",mem);
$startprofile;

end

initial
...

In this example, at simulation time 10000, Verilog-XL performs the following functions:

1. Stops the behavior profiler from taking samples.

2. Loads the memory.

3. Enables the behavior profiler to resume taking samples.

Verilog-XL interrupts sampling in this example, so the behavior profiler takes no sample of the
$readmemb system task.

$listcounts

The $listcounts system task is an enhancement of $list; it produces a line-numbered
source listing that includes an execution count—that is, the number of times Verilog-XL
executes the statements in the line. The syntax is as follows:

$listcounts (<hierarchical_name>?);

The $listcounts system task takes an optional hierarchical name argument. If you do not
include an argument, $listcounts produces a listing of the source description at the scope
level from which you called the task.
November 2008 471 Product Version 8.2

Verilog-XL Reference
The Behavior Profiler
The following example shows a source listing produced by the $listcounts system task for
the “Behavior Profiler Sample Code” on page 468.

 0: 1 module test2;
 0: 2 rega
 0: 3 inst1();
 0: 4 regb
 0: 5 inst2();
 1: 6 initial
 1: 7 begin
 1: 8 #10
 1: 9 $startprofile;
 1: 10 #10000
 1: 11* $listcounts;
 0: 12 $listcounts(test2.inst1);
 0: 13 $listcounts(test2.inst2);
 0: 14 $finish;
 1: 15 end
 0: 16 endmodule
 // tst121
 0: 17 module rega;
 0: 18 reg
 0: 19 a; // = 1'h0, 0
 1: 20 initial
 1: 21 begin
 1: 22 a = 1;
 1: 23 forever
10010: 24 begin
10010: 25* #1
10009: 26 a = ~a;
10010: 27 end
 1: 28 end
 0: 29 endmodule
 // tst121
 0: 30 module regb;
 0: 31 reg
 0: 32 b; // = 1'h1, 1
 1: 33 initial
 1: 34 begin
 1: 35 b = 1;
 1: 36 forever
 1001: 37 begin
 1001: 38* #10
 1000: 39 b = ~b;
 1001: 40 end
 1: 41 end
 0: 42 endmodule

In this example, a $listcounts system task on line 11 for the top-level module and for each
instance of its submodules produces a listing of the entire source description. You interpret
the listings as follows:

■ The first column lists the number of times that Verilog-XL has executed each statement.

■ The second column lists the line numbers of each statement in the source description.
As with $list, an asterisk (*) in this column indicates that the line contains a simulation
event that Verilog-XL schedules for the current simulation time.
November 2008 472 Product Version 8.2

Verilog-XL Reference
The Behavior Profiler
■ The third column lists the source description.

The $listcounts system task provides information that helps you to analyze the behavior
profiler data in the profile ranking by statement report. The output from the $listcounts
system task shows you the line number and execution count of the statements in your source
description. The behavior profiler uses these line numbers to produce the profile ranking by
statement report. The execution count thus helps you to determine the cause of a high
percentage and number of samples for a line in the profile ranking by statement report.

There are two causes for a high percentage and number of samples for a line in your source
description. The execution count indicates which cause explains the high percentage and
number, as shown in the following table:

If a line has a high percentage and number of samples, but a low execution count, you should
consider rewriting that line with a different construct.

Behavior Profiler Data Report

Verilog-XL creates the following behavior profiler data reports:

■ “Profile Ranking by Statement” on page 473

■ “Profile Ranking by Module Instance” on page 476

■ “Profile Ranking by Statement Class” on page 477

■ “Profile Ranking by Statement Type” on page 478

Profile Ranking by Statement

The profile ranking by statement report ranks the lines in your source description according
to how many samples they represent.

Execution
Count Cause of a High Percentage and Number of Samples

low Verilog-XL uses more CPU time to execute the statement on that line than it
uses to execute other lines.

high Verilog-XL executes the statement on that line more often than it executes
other lines.
November 2008 473 Product Version 8.2

Verilog-XL Reference
The Behavior Profiler
The following report shows the contents of the profile ranking by statement report produced
by the behavior profiler during a simulation of the source listing in “Behavior Profiler Sample
Code” on page 468:

Profile ranking by statement:

Self% Cum.% Samples Statement
----- ----- ------- -----------------------

51.7% 51.7% 179 test2.v, L23, test2.inst1
26.6% 78.3% 92 test2.v, L22, test2.inst1
 7.2% 85.5% 25 test2.v, L21, test2.inst1
 4.6% 90.2% 16 test2.v, L36, test2.inst2
 4.3% 94.5% 15 test2.v, L22, test2.inst1
 3.8% 98.3% 13 test2.v, L35, test2.inst2
 1.2% 99.4% 4 test2.v, L11, test2
 0.3% 99.7% 1 XL
 0.3% 100.0% 1 test2.v, L34, test2.inst2

To read this report, you must first look in the Statement column to find the desired line
number, and then look in the other columns for the behavior profiler data about that line.

Note: The “XL” in the report stands for all the events in the design accelerated by the XL
algorithm. Verilog-XL reports a single percentage and number of samples for all accelerated
events, no matter how many lines are used to specify them in the source description.

The following table describes the information displayed in each column:

Column Description

Statement Lists from left-to-right the following information about a line in the
source description:

■ the name of the file that contains the line

■ the line number

■ the hierarchical name of the module instance that contains the line

Self % Indicates the percent of the total number of samples that represent the
line listed in the Statement column.

Cum. % Indicates the percent of samples that represent the line listed in the
Statement column plus the preceding lines. Look in this column to see
if a small number of source description lines use most of the CPU
time. In the previous profile ranking by statement report , 98.3% of the
samples represent lines 23, 22, 21, 36 and 35.

Samples Indicates how many samples of the line were found.
November 2008 474 Product Version 8.2

Verilog-XL Reference
The Behavior Profiler
Note: The profile ranking by statement report can contain more than one entry for the same
line in the source description. For example, in the report in “Profile Ranking by Statement” on
page 473, a procedural delay (test2.v, L22, test2.inst1) has two entries, because
procedural delays have two locations in the Verilog-XL data structure. One entry occurs when
Verilog-XL schedules an event; the other entry occurs at the event’s execution.

Interactive statements

The profile ranking by statement report can include samples of interactive statements. The
behavior profiler lists samples of interactive statements by inserting a hyphen (-) between the
uppercase letter L and the line number in the statement column. Verilog-XL counts interactive
statements, and the behavior profiler uses this count to assign line numbers to the statements
in the profile ranking by statement report. The statement column entry for interactive
statements does not include a hierarchical name for a module instance. The following
example shows the log file of a simulation that invokes the behavior profiler and includes
interactive statements:

Compiling source file "beh_int.v"
Highest level modules:
beh_int

1 module beh_int;
2 reg
2 a; // = 1’hx, x
3 initial
4 begin
5* $list;
6 $startprofile;
7 $stop;
8 end
9 endmodule

L7 "beh_int.v": $stop at simulation time 0
Type ? for help

C1 > $showscopes; // Line number L1 in the statement column
Directory of scopes at current scope level:
Current scope is (beh_int)
Highest level modules:
beh_int

C2 > $showvars; // Line number L2 in the statement column
Variables in the current scope:
a (beh_int) reg = 1’hx, x

C3 > $finish; // Line number L3 in the statement column
C3: $finish at simulation time 0
8 simulation events

CPU time: 0 secs to compile + 0 secs to link + 0 secs in simulation
Report limit: 100

Profile ranking by statement:

 Self% Cum.% Samples Statement
 ----- ----- ------- -----------------------
 25.0% 25.0% 1 beh_int.v, L7, beh_int
November 2008 475 Product Version 8.2

Verilog-XL Reference
The Behavior Profiler
 25.0% 50.0% 1 beh_int.v, L-1,
 25.0% 75.0% 1 beh_int.v, L-2,
 25.0% 100.0% 1 beh_int.v, L-3,

Profile Ranking by Module Instance

The profile ranking by module instance report ranks the module instances in your source
description according to the number of samples of their contents. The following example
shows the contents of the profile ranking by module instance report produced by the behavior
profiler during a simulation of the source listing in “Behavior Profiler Sample Code” on
page 468:

Profile ranking by module instance:

 Self% Cum.% Samples (Self + submodules) Instance

 ----- ----- ------- ------------------- --------

 89.9% 89.9% 311 (89.9% 311) test2.inst1

 8.7% 98.6% 30 (8.7% 30) test2.inst2

 1.2% 99.7% 4 (99.7% 345) test2

To read this report, look in the Instance column to find the desired module instance name,
and then look in the other columns for the behavior profiler data about that module instance.

The following table describes the information displayed in each column:

Column Description

Instance Lists the hierarchical name of the module instance

Self % Indicates the percentage of the total number of samples that contain
the module instance

Cum. % Indicates the percentage of the total number of samples that contain
the module instance and the preceding module instances. Look in this
column to see if a small number of module instances use most of the
CPU time.

Samples Indicates how many samples contains the module instance

(Self + submodules) Indicates the percentage of the total number of samples, as well as
the number of samples that contain the module instance and all
module instances below it in the hierarchy
November 2008 476 Product Version 8.2

Verilog-XL Reference
The Behavior Profiler
Profile Ranking by Statement Class

The profile ranking by statement class report organizes into six categories and reports the
amount of CPU time spent in each category. The following example shows the contents of the
profile ranking by statement class produced by the behavior profiler during a simulation of the
source listing in “Behavior Profiler Sample Code” on page 468.

Profile by statement class:

Self% Cum.% Samples Statement class
----- ----- ------- --------------
41.9% 41.9% 1757 Procedural RTL
28.6% 70.5% 1197 Continuous Assignments
18.7% 89.1% 782 Other
10.9% 100.0% 455 Gates

To read this report, first look in the Statement class column to find the desired statement
class type, and then look in the other columns for the behavior profiler data about that type.

The following table describes the information displayed in each column:

The statement classes are defined as follows:

Column Description

Statement
class

Lists the type of statement using the CPU.

Self % Indicates the percent of the total number of samples that contain the
corresponding statement class.

Cum. % Indicates the percentage of the total number of samples that contain the
corresponding statement class and the preceding lines. Look in this
column to see which statement classes use most of the CPU time.

Samples Indicates how many samples of the statement class were found.

Class Description

Continuous
Assignments

Drive values onto nets, both vector and scalar. Assignments occur
whenever the simulation causes the value of the right-hand side to
change.
November 2008 477 Product Version 8.2

Verilog-XL Reference
The Behavior Profiler
Profile Ranking by Statement Type

The profile ranking by statement type reports the amount of CPU time spent in each type of
Verilog HDL construct. The following example shows the contents of the profile ranking by
statement type produced by the behavior profiler during a simulation of the source listing in
“Behavior Profiler Sample Code” on page 468.

Profile by statement type:

Self% Cum.% Samples Statement type
----- ----- ------ --------------
41.5% 41.5% 1877 assign_delay_stat
26.9% 68.4% 1217 cont_assign
18.6% 87.0% 844 event_stat
11.8% 98.8% 534 if_else_stat
1.1% 99.9% 51 OTHERS (XL)
0.0% 100.0% 1 modport

Non-Blocking
Assignments

Allow you to make several register assignments within the same time
step without regard to order or dependence upon each other. The
simulator evaluates the right-hand side immediately, but schedules the
assignment of the new value to take place at a time specified by the
Timing Control. In contrast, Blocking Procedural Assignments wait for
the time specified by the Timing Control, then evaluate the right-hand
side, and make the assignment.

 PLI The Programming Language Interface (PLI) allows you to interact with
the simulation environment. You can pass information to and from the
internal data structures of Verilog-XL. The PLI mechanism works with
utility routines to interact dynamically with the Verilog simulation
process and data structures. You write user-supplied routines in the C
high-level programming language.

Procedural RTL Occur within a structured procedural block and are specified within
one of the following statements: initial, always, task, or
function.

Others Any statement type that is not grouped into one of the other statement
classes. (Typically, there is very little time reported under this class.)

Gates One of the following:

and nand or nor xor xnor
buf bufif0 bufif1
not notif0 notif1
pulldown pullup
nmos rnmos pmos rpmos cmos rcmos
tran rtran tranif0 rtranif0 tranif1 rtranif1

Class Description
November 2008 478 Product Version 8.2

Verilog-XL Reference
The Behavior Profiler
0.0% 100.0% 1 delay_stat
0.0% 100.0% 1 assign_stat

To read this report, first look in the Statement type column to find the desired statement
type, and then look in the other columns for the behavior profiler data about that type. The
following table describes the information displayed in each column:

The following list shows the alphabetically ordered types of statements that the behavior
profiler examines and the statement class to which each type belongs. The third column takes
you to more information about the statement type.

Column Description

Statement type Lists the specific type of statement using the CPU.

Self % Indicates the percentage of the total number of samples that conatin
the corresponding statement type.

Cum. % Indicates the percentage of the total number of samples that contain
the corresponding statement type and the preceding lines. Look in
this column to see which statement types use most of the CPU time.

Samples Indicates how many samples of the statement type were found.

Statement Type Statement Class For More Information, see...

alone_stat Procedural RTL “Structured Procedures” on
page 164

and_gate Gates Items Unsupported by the Default
XL Algorithm in the Verilog-XL
User Guide

assign_delay_stat Procedural RTL “Intra-Assignment Timing Controls”
on page 186

assign_event_stat Procedural RTL “Intra-Assignment Timing Controls”
on page 186

assign_multi_stat Procedural RTL “Intra-Assignment Timing Controls”
on page 186

assign_stat Procedural RTL “Blocking Procedural Assignments”
on page 167

bit_select Procedural RTL “Net and Register Bit Addressing”
on page 63
November 2008 479 Product Version 8.2

Verilog-XL Reference
The Behavior Profiler
block_par Procedural RTL “Parallel Blocks” on page 191

buf_gate Gates Items Unsupported by the Default
XL Algorithm in the Verilog-XL
User Guide

bufif0_gate Gates Items Unsupported by the Default
XL Algorithm in the Verilog-XL
User Guide

bufif1_gate Gates Items Unsupported by the Default
XL Algorithm in the Verilog-XL
User Guide

case_stat Procedural RTL “case Statements” on page 176

casex_stat Procedural RTL “Using case Statements with
Inconsequential Conditions” on
page 178

casez_stat Procedural RTL “Using case Statements with
Inconsequential Conditions” on
page 178

cmos_gate Gates Items Unsupported by the Default
XL Algorithm in the Verilog-XL
User Guide

comb_prim Gates Items Unsupported by the Default
XL Algorithm in the Verilog-XL
User Guide

concatenate Procedural RTL “Concatenations” on page 62

cont_assign Continuous
Assignments

“The Continuous Assignment
Statement” on page 73

cont_assign_decl Continuous
Assignments

“The Net Declaration Assignment”
on page 73

contassign_stat Procedural RTL “The assign and deassign
Procedural Statements” on
page 94

deassign_stat Procedural RTL “The assign and deassign
Procedural Statements” on
page 94

Statement Type Statement Class For More Information, see...
November 2008 480 Product Version 8.2

Verilog-XL Reference
The Behavior Profiler
delay_stat Procedural RTL “Delay Control” on page 183

disable_stat Procedural RTL Chapter 10, “Disabling of Named
Blocks and Tasks.”

enable_task_stat Procedural RTL, PLI Chapter 9, “Tasks and Functions.”

Also see the PLI 1.0 User Guide
and Reference

enable_taskfunc Procedural RTL, PLI Chapter 9, “Tasks and Functions.”

Also see the PLI 1.0 User Guide
and Reference

event_stat Procedural RTL “Event Control” on page 184

for_stat Procedural RTL “for Loop” on page 181

force_stat Procedural RTL “The force and release Procedural
Statements” on page 95

forever_stat Procedural RTL “forever Loop” on page 180

full_bit_select Procedural RTL “Net and Register Bit Addressing”
on page 63

full_part_select Procedural RTL “Net and Register Bit Addressing”
on page 63

full_ref Procedural RTL “Registers” on page 32

gen_event_stat Procedural RTL “Named Events” on page 184

gt_innode Gates Items Unsupported by the Default
XL Algorithm in the Verilog-XL
User Guide

gt_inout Gates Items Unsupported by the Default
XL Algorithm in the Verilog-XL
User Guide

gt_inoutnode Gates Items Unsupported by the Default
XL Algorithm in the Verilog-XL
User Guide

gt_input Gates Items Unsupported by the Default
XL Algorithm in the Verilog-XL
User Guide

Statement Type Statement Class For More Information, see...
November 2008 481 Product Version 8.2

Verilog-XL Reference
The Behavior Profiler
gt_outnode Gates Items Unsupported by the Default
XL Algorithm in the Verilog-XL
User Guide

gt_output Gates Items Unsupported by the Default
XL Algorithm in the Verilog-XL
User Guide

if_else_stat Procedural RTL “if-else-if Statements” on page 175

if_stat Procedural RTL “Conditional Statements” on
page 174

modport Continuous
Assignments

“Port Connection Rules” on
page 224

nand_gate Gates Items Unsupported by the Default
XL Algorithm in the Verilog-XL
User Guide

nmos_gate Gates Items Unsupported by the Default
XL Algorithm in the Verilog-XL
User Guide

nor_gate Gates Items Unsupported by the Default
XL Algorithm in the Verilog-XL
User Guide

not_gate Gates Items Unsupported by the Default
XL Algorithm in the Verilog-XL
User Guide

notif0_gate Gates Items Unsupported by the Default
XL Algorithm in the Verilog-XL
User Guide

notif1_gate Gates Items Unsupported by the Default
XL Algorithm in the Verilog-XL
User Guide

null_stat Procedural RTL “Delay Control” on page 183

or_gate Gates Items Unsupported by the Default
XL Algorithm in the Verilog-XL
User Guide

Statement Type Statement Class For More Information, see...
November 2008 482 Product Version 8.2

Verilog-XL Reference
The Behavior Profiler
OTHERS (XL) Gates Items Supported by the Default XL
Algorithm in the Verilog-XL User
Guide

par_block Procedural RTL “Parallel Blocks” on page 191

part_select Procedural RTL “Net and Register Bit Addressing”
on page 63

pmos_gate Gates Items Unsupported by the Default
XL Algorithm in the Verilog-XL
User Guide

pulldown_gate Gates Items Unsupported by the Default
XL Algorithm in the Verilog-XL
User Guide

pullup_gate Gates Items Unsupported by the Default
XL Algorithm in the Verilog-XL
User Guide

rcmos_gate Gates Items Unsupported by the Default
XL Algorithm in the Verilog-XL
User Guide

refnode Procedural RTL “Registers” on page 32

release_stat Procedural RTL “The force and release Procedural
Statements” on page 95

repeat_stat Procedural RTL “repeat Loop” on page 180

rnmos_gate Gates Items Unsupported by the Default
XL Algorithm in the Verilog-XL
User Guide

rpmos_gate Gates Items Unsupported by the Default
XL Algorithm in the Verilog-XL
User Guide

rtl_delay_stat Non-Blocking
Assignments

“Non-Blocking Procedural
Assignments” on page 167

rtl_event_stat Non-Blocking
Assignments

“Non-Blocking Procedural
Assignments” on page 167

rtl_multi_stat Non-Blocking
Assignments

“Non-Blocking Procedural
Assignments” on page 167

Statement Type Statement Class For More Information, see...
November 2008 483 Product Version 8.2

Verilog-XL Reference
The Behavior Profiler
rtran_gate Gates Items Unsupported by the Default
XL Algorithm in the Verilog-XL
User Guide

rtranif0_gate Gates Items Unsupported by the Default
XL Algorithm in the Verilog-XL
User Guide

rtranif1_gate Gates Items Unsupported by the Default
XL Algorithm in the Verilog-XL
User Guide

seq_block Procedural RTL “Sequential Blocks” on page 190

seq_prim Gates Items Unsupported by the Default
XL Algorithm in the Verilog-XL
User Guide

tran_gate Gates Items Unsupported by the Default
XL Algorithm in the Verilog-XL
User Guide

tranif0_gate Gates Items Unsupported by the Default
XL Algorithm in the Verilog-XL
User Guide

tranif1_gate Gates Items Unsupported by the Default
XL Algorithm in the Verilog-XL
User Guide

vcl_trigger PLI See the PLI 1.0 User Guide and
Reference

wait_stat Procedural RTL “Level-Sensitive Event Control” on
page 186

while_stat Procedural RTL “while Loop” on page 181

xnor_gate Gates Items Unsupported by the Default
XL Algorithm in the Verilog-XL
User Guide

xor_gate Gates Items Unsupported by the Default
XL Algorithm in the Verilog-XL
User Guide

Statement Type Statement Class For More Information, see...
November 2008 484 Product Version 8.2

Verilog-XL Reference
The Behavior Profiler
Recommended Modeling Practices

This section describes the modeling practices that you should use when you plan to invoke
the behavior profiler to get the most useful information from it.

Invoke the Behavior Profiler After You Initialize Your Design

Enter $startprofile after those statements that Verilog-XL executes only when the
simulation begins, so that the behavior profiler samples only those statements that Verilog-
XL executes throughout the simulation.

Put Statements on Separate Lines

Enter your behavior statements on separate lines, so that you can see the percentage and
the number of samples for each statement individually. If a line contains more than one
statement, there is no way to determine which statement is represented by the sample.

How Verilog-XL Affects Profiler Results

Verilog-XL can alter behavior profiler data in ways described in this section.

Using a Variable to Drive Mulitple Module Instances

If you use the behavior profiler to compare the performance of two module instances, be sure
that different nets or registers drive them. When a net or register drives more than one module
instance, the behavior profiler can attribute to one module instance the CPU time Verilog-XL
uses to pass a value to the other module instance. This problem results in too high a number
and percentage of samples for one module instance and that module’s header, as well as too
low a number and percentage of samples of the other module instance and its header. This
anomaly is caused by port collapsing. There are solutions to this problem:

■ Insert buffers between the drivers and the module instances.

■ Declare different drivers for each module instance.

Expanded Vector Nets

A statement that contains an expanded vector net has multiple entries in the profile ranking
by statement report. The more bits in the net, the more entries in the report. These multiple
November 2008 485 Product Version 8.2

Verilog-XL Reference
The Behavior Profiler
entries can collectively make up a large percentage of the samples, although none of these
entries appear near the top of the report. If your source description contains an expanded
vector net, check for multiple entries for the line that contains this net.

Accelerated Events

Accelerated events are events that require Verilog-XL to evaluate an accelerate primitive. The
behavior profiler makes one entry in the profile ranking by statement report for all lines that
contain accelerated events. That entry is labeled XL in the Statement column.

Behavior Profiler Example

The following example uses the behavior profiler to see how much CPU time Verilog-XL uses
to execute two behavioral modules for a D flip-flop with a clear line. This example proves that
one module is more efficient that the other. The modules are appropriately named
inefficient and efficient and appear in the following examples:

module inefficient(clk1,d1,clr1,q1,qb1);
input clk1,d1,clr1;
output q1,qb1;
reg q1,qb1;

always
@(posedge clk1) // A rising edge of clk1 triggers
begin // the following proc. assignments:

q1=#5 d1; // 1. value of d1 to q1
qb1=#1 ~q1; // 2. unary negation of value of

end // q1 to qb1

always
wait (clr1 === 1’b0) // if clr1 goes low (active), the

// procedural continuous assignments
// of 0 to q1 and 1 to qb1 override
// the procedural assignments

begin
#5 assign q1 = 0;
#1 assign qb1 = 1;
wait (clr1 === 1’b1) // When clr1 goes high after it

// goes low, Verilog-XL deassigns the
// procedural continuous assignments
// so that d1 can once again drive q1,
// and q1 can once again drive qb1.

begin
deassign q1;
deassign qb1;

end
end

endmodule

module efficient(clk2,d2,clr2,q2,qb2);
input clk2,d2,clr2;
output q2,qb2;
reg q2,qb2;
November 2008 486 Product Version 8.2

Verilog-XL Reference
The Behavior Profiler
always
wait (clr2 === 1’b1) // when clr2 goes high (inactive),

// Verilog-XL enables a begin-end block
// named clock_trigger.

begin:clock_trigger // In clock_trigger,
forever @(posedge clk2) // a rising edge of clk2 triggers

begin // a procedural assignment of
q2=#5 d2; // the value of d2 to q2 and
qb2=#1 ~q2; // the unary negation of q2 to qb2

end
end

always
wait (clr2 ===1’b0) // When clr2 goes low, Verilog-XL

// executes another begin-end block.
// In this begin-end block, Verilog-XL
// does the following:

begin
disable clock_trigger; // disables the block clock_trigger
q2=#5 0; // procedurally assigns 0 to q2
qb2=#1 1; // procedurally assigns 1 to qb2
wait (clr2===1’b1); // waits until clr2 goes high before

// exiting the begin-end block

end
endmodule

Unlike in module inefficient, procedural assignments are never evaluated in module
efficient and then overridden by procedural continuous assignments.

The following example shows the contents of the top-level module that drives a concurrent
simulation of the previous modules:

module behavior (q1,qb1,q2,qb2);
output q1,qb1,q2,qb2;
reg clk1, clk2, d1, d2, clr1, clr2; // a separate data, clock, and

// clear line for each module

inefficient ineff (clk1,d1,clr1,q1,qb1);
efficient eff (clk2,d2,clr2,q2,qb2);

initial
fork
begin
clk1=0;
clk2=0;
forever
begin
#30
clk1=~clk1;
clk2=~clk2;

end
end
begin
d1=0;
d2=0;
#15
forever
begin
#120
November 2008 487 Product Version 8.2

Verilog-XL Reference
The Behavior Profiler
d1=~d1;
d2=~d2;

end
end
begin
clr1=0;
clr2=0;
#15
forever
begin
#240
clr1=~clr1;
clr2=~clr2;

end
end

begin
#100 $startprofile; // Behavior profiler starts after 100 time units

repeat(10000)
@(posedge clk1);
$listcounts; // The $listcounts system tasks produce

// a line-numbered source listing with
// an execution count for the stimulus
// module and for the two D flip-flop
// behavioral modules.

$listcounts(behavior.ineff);
$listcounts(behavior.eff);
$finish;

end
join

endmodule

The following example shows the $listcounts source listing for the stimulus module. Note
the large execution counts for some lines in this module.

0: 1 module behavior(q1, qb1, q2, qb2);
0: 2 output
0: 2 q1, // = St0
0: 2 qb1, // = St1
0: 2 q2, // = St0
0: 2 qb2; // = St1
0: 3 reg
0: 3 clk1, // = 1’h1, 1
0: 3 clk2, // = 1’h1, 1
0: 3 d1, // = 1’h0, 0
0: 3 d2, // = 1’h0, 0
0: 3 clr1, // = 1’h0, 0
0: 3 clr2; // = 1’h0, 0
0: 5 inefficient
0: 5 ineff(clk1, d1, clr1, q1, qb1);
0: 6 efficient
0: 6 eff(clk2, d2, clr2, q2, qb2);
1: 8 initial
1: 9 fork
1: 10 begin
1: 11 clk1 = 0;
1: 11 clk2 = 0;
1: 12 forever

20004: 12 begin
20004: 13* #30
20003: 14 clk1 = ~clk1;
November 2008 488 Product Version 8.2

Verilog-XL Reference
The Behavior Profiler
20003: 15 clk2 = ~clk2;
20004: 16 end

1: 17 end
1: 19 begin
1: 20 d1 = 0;
1: 20 d2 = 0;
1: 21 #15
1: 22 forever

5001: 22 begin
5001: 23* #120
5000: 24 d1 = ~d1;
5000: 25 d2 = ~d2;
5001: 26 end

1: 27 end
1: 29 begin
1: 30 clr1 = 0;
1: 30 clr2 = 0;
1: 31 #15
1: 32 forever

2501: 32 begin
2501: 33* #240
2500: 34 clr1 = ~clr1;
2500: 35 clr2 = ~clr2;
2501: 36 end

1: 37 end
1: 39 begin
1: 40 #100
1: 40 $startprofile;
1: 41 repeat(10000)

10000: 42 @(posedge clk1)
10000: 42 ;

1: 43* $listcounts;
0: 44 $listcounts(ineff);
0: 45 $listcounts(behavior.eff);
0: 46 $finish;
1: 47 end
1: 48 join
0: 50 endmodule

The following example shows the $listcounts source listing for module inefficient.
Note that the procedural assignments in lines 60 and 61 are executed 10,001 times. Half of
these assignments are overridden by the procedural continuous assignments in lines 67 and
69.

0: 52 module inefficient(clk1, d1, clr1, q1, qb1);
0: 53 input
0: 53 clk1, // = St0
0: 53 d1, // = St0
0: 53 clr1; // = St0
0: 54 output
0: 54 q1, // = 1’h0, 0
0: 54 qb1; // = 1’h1, 1
0: 55 reg
0: 55 q1, // = 1’h0, 0
0: 55 qb1; // = 1’h1, 1
1: 57 always

10002: 58* @(posedge clk1)
10001: 59 begin
10001: 60 q1 = #(5) d1;
November 2008 489 Product Version 8.2

Verilog-XL Reference
The Behavior Profiler
10001: 61 qb1 = #(1) ~q1;
10001: 62 end

1: 64 always
1251: 65 wait(clr1 === 1’b0)
1251: 66 begin
1251: 67 #5
1252: 67 assign q1 = 0;
1251: 68 #1
1252: 68 assign qb1 = 1;
1251: 69* wait(clr1 === 1’b1)
1250: 70 begin
1250: 71 deassign q1;
1250: 72 deassign qb1;
1250: 73 end
1251: 74 end

0: 75 endmodule

The following example shows the $listcounts source listing for module efficient. In
this example, the procedural assignments in line 88 and 89 are executed only 5,000 times.

0: 77 module efficient(clk2, d2, clr2, q2, qb2);
0: 78 input
0: 78 clk2, // = St0
0: 78 d2, // = St0
0: 78 clr2; // = St0
0: 79 output
0: 79 q2, // = 1’h0, 0
0: 79 qb2; // = 1’h1, 1
0: 80 reg
0: 80 q2, // = 1’h0, 0
0: 80 qb2; // = 1’h1, 1
1: 82 always

1251: 83* wait(clr2 === 1’b1)
1250: 84 begin :clock_trigger
1250: 85 forever
6250: 86 @(posedge clk2)
5000: 87 begin
5000: 88 q2 = #(5) d2;
5000: 89 qb2 = #(1) ~q2;
5000: 90 end
1250: 91 end

1: 93 always
1251: 94 wait(clr2 === 1’b0)
1251: 95 begin
1251: 96 disable clock_trigger;
1251: 97 q2 = #(5) 0;
1251: 98 qb2 = #(1) 1;
1251: 99* wait(clr2 === 1’b1)
1250: 99 ;
1251: 100 end

0: 101 endmodule

The following example shows the profile ranking by statement report for modules
inefficient and efficient:

Profile ranking by statement:

Self% Cum.% Samples Statement
----- ----- ------- -----------------------
11.2% 11.2% 625 behavior6.v, L14, behavio
November 2008 490 Product Version 8.2

Verilog-XL Reference
The Behavior Profiler
7.4% 18.5% 411 behavior6.v, L15, behavior
7.3% 25.9% 410 behavior6.v, L53, behavior.ineff
6.8% 32.6% 378 behavior6.v, L52, behavior.ineff
6.5% 39.2% 366 behavior6.v, L77, behavior.eff
6.2% 45.3% 344 behavior6.v, L78, behavior.eff
3.7% 49.0% 205 behavior6.v, L13, behavior
3.6% 52.6% 202 behavior6.v, L60, behavior.ineff
3.3% 55.9% 184 behavior6.v, L58, behavior.ineff
3.2% 59.1% 179 behavior6.v, L42, behavior
3.2% 62.3% 179 behavior6.v, L61, behavior.ineff
2.4% 64.7% 135 behavior6.v, L89, behavior.eff.clock_trigger
2.1% 66.9% 120 behavior6.v, L86, behavior.eff.clock_trigger
2.0% 68.9% 113 behavior6.v, L88, behavior.eff.clock_trigger
2.0% 70.9% 109 behavior6.v, L25, behavior
1.8% 72.6% 98 behavior6.v, L24, behavior
1.5% 74.1% 85 behavior6.v, L52, behavior.ineff
1.4% 75.6% 81 behavior6.v, L77, behavior.eff
1.0% 76.6% 56 behavior6.v, L53, behavior.ineff
0.9% 77.5% 51 behavior6.v, L77, behavior.eff
0.9% 78.4% 51 behavior6.v, L23, behavior
0.9% 79.3% 50 behavior6.v, L77, behavior.eff
0.9% 80.2% 48 behavior6.v, L78, behavior.eff
0.9% 81.0% 48 behavior6.v, L69, behavior.ineff
0.8% 81.8% 45 behavior6.v, L52, behavior.inef
0.8% 82.6% 42 behavior6.v, L35, behavior
0.7% 83.3% 41 behavior6.v, L52, behavior.ineff
0.7% 84.0% 40 behavior6.v, L34, behavior
0.7% 84.7% 38 behavior6.v, L52, behavior.ineff
0.7% 85.4% 38 behavior6.v, L77, behavior.eff
0.6% 86.0% 36 behavior6.v, L45, behavior
0.6% 86.6% 32 behavior6.v, L12, behavior
0.6% 87.2% 31 behavior6.v, L96, behavior.eff
0.5% 87.7% 30 behavior6.v, L2, behavior
0.5% 88.2% 30 behavior6.v, L43, behavior
0.5% 88.8% 29 behavior6.v, L94, behavior.eff
0.5% 89.3% 28 behavior6.v, L83, behavior.eff
0.5% 89.8% 28 behavior6.v, L60, behavior.ineff
0.4% 90.2% 25 behavior6.v, L13, behavior
0.4% 90.7% 25 behavior6.v, L99, behavior.eff
0.4% 91.1% 25 behavior6.v, L78, behavior.eff
0.4% 91.5% 24 behavior6.v, L98, behavior.eff
0.4% 92.0% 24 behavior6.v, L33, behavior
0.4% 92.3% 21 behavior6.v, L61, behavior.ineff
0.4% 92.7% 21 behavior6.v, L53, behavior.ineff
0.4% 93.1% 21 behavior6.v, L67, behavior.ineff
0.3% 93.4% 19 behavior6.v, L68, behavior.ineff
0.3% 93.8% 19 behavior6.v, L94, behavior.eff
0.3% 94.1% 19 behavior6.v, L67, behavior.ineff
0.3% 94.4% 18 behavior6.v, L2, behavior
0.3% 94.7% 17 behavior6.v, L69, behavior.ineff
0.3% 95.0% 17 behavior6.v, L65, behavior.ineff
0.3% 95.3% 17 behavior6.v, L97, behavior.eff
0.3% 95.6% 16 behavior6.v, L2, behavior
0.3% 95.9% 16 behavior6.v, L99, behavior.eff
0.3% 96.2% 14 behavior6.v, L58, behavior.ineff
0.3% 96.4% 14 behavior6.v, L42, behavior
0.3% 96.7% 14 behavior6.v, L83, behavior.eff
0.3% 96.9% 14 behavior6.v, L2, behavior
0.3% 97.2% 14 behavior6.v, L68, behavior.ineff
0.2% 97.4% 13 behavior6.v, L22, behavior
0.2% 97.6% 13 behavior6.v, L23, behavior
November 2008 491 Product Version 8.2

Verilog-XL Reference
The Behavior Profiler
0.2% 97.9% 13 behavior6.v, L65, behavior.ineff
0.2% 98.1% 13 behavior6.v, L59, behavior.ineff
0.2% 98.3% 13 behavior6.v, L44, behavior
0.2% 98.5% 11 behavior6.v, L87, behavior.eff.clock_trigger
0.2% 98.7% 10 behavior6.v, L86, behavior.eff.clock_trigger
0.2% 98.9% 9 behavior6.v, L88, behavior.eff.clock_trigger
0.2% 99.0% 9 behavior6.v, L89,behavior.eff.clock_trigger
0.1% 99.1% 6 behavior6.v, L67, behavior.ineff
0.1% 99.2% 6 behavior6.v, L32, behavior
0.1% 99.3% 5 behavior6.v, L97, behavior.eff
0.1% 99.4% 5 behavior6.v, L84, behavior.eff
0.1% 99.5% 5 behavior6.v, L72, behavior.ineff
0.1% 99.6% 4 behavior6.v, L71, behavior.ineff
0.1% 99.7% 4 behavior6.v, L85, behavior.eff.clock_trigger
0.1% 99.7% 3 behavior6.v, L42, behavior
0.1% 99.8% 3 behavior6.v, L33, behavior
0.0% 99.8% 2 behavior6.v, L95, behavior.eff
0.0% 99.8% 2 behavior6.v, L68, behavior.ineff
0.0% 99.9% 2 behavior6.v, L70, behavior.ineff
0.0% 99.9% 2 XL
0.0% 99.9% 2 behavior6.v, L46, behavior
0.0% 100.0% 1 behavior6.v, L84, behavior.eff.clock_trigger
0.0% 100.0% 1 behavior6.v, L66, behavior.ineff
0.0% 100.0% 1 behavior6.v, L98, behavior.eff

In the previous report, there are two listings for each of the lines numbered 60, 61, 88 and 89.

■ Line 60 has 230 samples. It has the following listings:

3.6% 52.6% 202 behavior6.v, L60, behavior.ineff

0.5% 89.8% 28 behavior6.v, L60, behavior.ineff

■ Line 61 has 200 samples. It has the following listings:

3.2% 62.3% 179 behavior6.v, L61, behavior.ineff

0.4% 92.3% 21 behavior6.v, L61, behavior.ineff

■ Line 88 has 122 samples. It has the following listings:

2.0% 68.9% 113 behavior6.v, L88, behavior.eff.clock_trigger

0.2% 98.9% 9 behavior6.v, L88, behavior.eff.clock_trigger

■ Line 89 has 144 samples. It has the following listings:

2.4% 64.7% 135 behavior6.v, L89, behavior.eff.clock_trigger

0.2% 99.0% 9 behavior6.v, L89, behavior.eff.clock_trigger

There are far more samples of the lines in module inefficient (lines 60 and 61) than there
are of the lines in module efficient (lines 88 and 89).

The previous profile ranking by statement report also contains several listings of the module
header lines numbered 52 and 77. The behavior profiler shows samples of the module
headers even though $listcounts shows no execution of these headers. These header
samples represent CPU activity used to pass values between modules that cannot be
attributed to any statement inside the modules.
November 2008 492 Product Version 8.2

Verilog-XL Reference
The Behavior Profiler
The profile ranking by module instance report for this example is as follows:

Profile ranking by module instance:

Self% Cum.% Samples (Self + submodules) Instance
----- ----- ------- ------------------- --------
36.7% 36.7% 2052 (100.0% 5586) behavior
34.1% 70.8% 1903 (34.1% 1903) behavior.ineff
29.2% 100.0% 1631 (29.2% 1631) behavior.eff

This report shows that module inefficient uses almost 5% more of the total CPU time
than module efficient. This discrepancy can be attributed to the fact that module
inefficient makes procedural assignments to q and qb twice as often as module
efficient.
November 2008 493 Product Version 8.2

Verilog-XL Reference
The Behavior Profiler
November 2008 494 Product Version 8.2

Verilog-XL Reference
20
The Value Change Dump File

This chapter describes the following:

■ Overview on page 495

■ Creating the Value Change Dump File on page 495

■ Format of the Value Change Dump File on page 500

■ Using the $dumpports System Task on page 512

Overview

Verilog-XL can produce a file called a value change dump (VCD) file that contains information
about value changes on selected variables in a design. You can use this VCD file for
developing various applications programs and postprocessing tools. Here are some
examples:

■ An applications program can graphically display the results of an overnight simulation.

■ A postprocessor can process the simulation results and forward them to a device tester
or to a board tester.

The value change dumper is more efficient than the $monitor task, both in performance and
in storage space. With the VCD feature, you can save the value changes of variables in any
portion of the design hierarchy during any specified time interval. You can also save these
results globally, without having to explicitly name all signals involved.

Creating the Value Change Dump File

The steps involved in creating the VCD file are listed below and illustrated in the following
figure:
November 2008 495 Product Version 8.2

Verilog-XL Reference
The Value Change Dump File
1. Insert the VCD system tasks in the Verilog source file to define the dump filename and
to specify the variables to be dumped. You may also choose to invoke these tasks
interactively during the simulation instead of adding them to your source file.

2. Run the simulation.

Verilog-XL produces an ASCII dump file that contains header information, variable definitions,
and the value changes for all variables specified in the task calls.

Several system tasks can be inserted in the source description or invoked interactively to
create the VCD file. The sections that follow describe the tasks listed in the following example:

$dumpfile(<filename>);
$dumpvars;
$dumpvars(<levels> <, <module_or_variable>>*);
$dumpoff;
$dumpon;
$dumpall;
$dumplimit(<filesize>);
$dumpflush;

Specifying the Dump File Name ($dumpfile)

Use the $dumpfile task to specify the name of the VCD file as follows:

initial
$dumpfile ("module1.dump")

The filename is optional. If you do not specify a dump filename, the program uses the default
name "verilog.dump".

The $dumpfile task can be invoked only once during the simulation, and it must precede all
other dump file tasks, as described in the sections that follow.

initial

$dumpfile(“dump1”);
 .
 .
 .
$dumpvars(...)
 .
 .
 .

Simulation

Verilog Source File VCD File
dump1.dump

(Header
Information)

(Node
Information)

(Value
Changes)

User
Postprocessing
November 2008 496 Product Version 8.2

Verilog-XL Reference
The Value Change Dump File
Specifying Variables for Dumping ($dumpvars)

Use the $dumpvars task to determine which variables Verilog-XL dumps into the file
specified by $dumpfile. You can invoke the $dumpvars task throughout the design as often
as necessary but these $dumpvars tasks must all execute at the same simulation time. You
cannot add variables to be dumped once dumping begins.

You can use the $dumpvars task with or without arguments. The syntax for calling the task
without arguments is as follows:

$dumpvars;

When invoked with no arguments, $dumpvars dumps all variables in the design, except
those in source-protected regions, to the VCD file. If you want to include a variable from a
source-protected region in the VCD file, you must include the variable in the $dumpvars
argument list.

The syntax for calling the $dumpvars system task with arguments is as follows:

$dumpvars(<levels> <, <module_or_variable>>*);

When you specify $dumpvars with arguments, the <levels> variable indicates the
number of hierarchical levels below each specified module instance that $dumpvars affects.
Subsequent <module_or_variable> variable arguments specify which scopes of the
design to dump. These subsequent arguments can specify entire modules or individual
variables within a module. Here is an example:

$dumpvars (1, top);

Because the first argument in the previous example is a 1, this invocation dumps all variables
within the module top; it does not dump variables in any of the modules instantiated by
module top.

Setting the first argument to 0 causes a dump of all variables in the specified module and in
all module instances below the specified module. Note that the argument 0 applies only to
subsequent arguments that specify module instances, and not to individual variables.

In the following example, the $dumpvars task dumps all variables in the module top and in
all module instances below module top in the design hierarchy:

$dumpvars (0, top);

The next example shows how the $dumpvars task can specify both modules and individual
variables:

$dumpvars (0, top.mod1, top.mod2.net1);
November 2008 497 Product Version 8.2

Verilog-XL Reference
The Value Change Dump File
This call dumps all variables in module mod1 and in all module instances below mod1, along
with variable net1 in module mod2. Note that the argument 0 applies only to the module
instance top.mod1, and not to the individual variable top.mod2.net1.

If you wish to dump individual bits of a vector net, first make sure that the net is expanded.
Declaring a vector net with the keyword scalared guarantees that it is expanded. Using the
-x command-line option expands all nets, but this procedure is not recommended due to its
negative impact on memory usage and performance.

If the $dumpvars task is invoked with no arguments, all variables in the design except those
in a source-protected region are dumped. However, if you include the name of a variable in a
source-protected region in the $dumpvars argument list, then that variable is dumped. For
example, if the $dumpvars argument list contains the variable name ’top.mod2.net1’,
then that variable is dumped even though module ’top.mod2’ may be source protected.

Stopping and Resuming the Dump ($dumpoff/$dumpon)

Executing the $dumpvars task causes value change dumping to start at the end of the
current simulation time unit. To suspend the dump, invoke the $dumpoff task. To resume the
dump, invoke $dumpon.

When $dumpoff is executed, a checkpoint is made in which every variable is dumped as an
x value. When $dumpon is later executed, each variable is dumped with its value at that time.
In the interval between $dumpoff and $dumpon, no value changes are dumped.

The $dumpoff and $dumpon tasks allow you to specify the simulation period during which
the dump takes place. Here is an example:

initial
begin

#10 $dumpvars(0, top.mod1, top.mod2.net1);
#200 $dumpoff;
#800 $dumpon;
#900 $dumpoff;

end

This example starts the value change dumper after 10 time units, stops it 200 time units later
(at time 210), restarts it again 800 time units later (at time 1010) and stops it again 900 time
units later (at time 1910).

Generating a Checkpoint ($dumpall)

The $dumpall task creates a checkpoint in the dump file that shows the current value of all
VCD variables. It has no arguments. An example is shown in “Sample Source Description
Containing VCD Tasks” on page 500.
November 2008 498 Product Version 8.2

Verilog-XL Reference
The Value Change Dump File
When dumping is enabled, the value change dumper records the values of the variables that
change during each time increment. Values of variables that do not change during a time
increment are not dumped.

Periodically during a dump, an applications program might find it useful to check the values
of all specified variables, as a convenient checkpoint. For example, a program can save
considerable time obtaining a variable value by quickly backtracking to the most recent
checkpoint, rather than returning to the last time the variable changed value.

Limiting the Size of the Dump File ($dumplimit)

Use $dumplimit to set the size of the VCD file as follows:

$dumplimit(<filesize>);

This task takes a single argument that specifies the maximum size of the dump file in bytes.
When the dump file reaches this maximum size, the dumping stops and the system inserts a
comment in the dump file indicating that the dump limit was reached. The simulation
continues uninterrupted.

Reading the Dump File During Simulation ($dumpflush)

The $dumpflush task empties the operating system’s dump file buffer and ensures that all
the data in that buffer is stored in the dump file. After executing a $dumpflush task, the
system resumes dumping as before, so that no value changes are lost.

A common application is to call $dumpflush to update the dump file so that an applications
program can read the file during a simulation.

Here is an example of using the $dumpflush task in a Verilog source file:

initial
begin

$dumpvars
...
$dumpflush
$(applications program)

end

There are two ways of flushing the dump file buffer:

■ Insert the $dumpflush task in the Verilog source description, as described above.

■ Include a call to the PLI C-function tf_dumpflush() in your applications program C
code.

The $dumpflush task and the PLI tf_dumpflush() functions are equivalent.
November 2008 499 Product Version 8.2

Verilog-XL Reference
The Value Change Dump File
Sample Source Description Containing VCD Tasks

This section contains a simple source description example that produces a value change
dump file. In this example, the name of the dump file is "verilog.dump". Verilog-XL dumps
value changes for variables in the circuit. Dumping begins when event do_dump occurs. The
dumping continues for 500 clock cycles, then stops and waits for event do_dump to be
triggered again. At every 10000 time steps, the current values of all VCD variables are
dumped.

module dump;
event do_dump;

initial $dumpfile("verilog.dump"); //Same as default file
initial @do_dump
$dumpvars; //Dump variables in the design
always @do_dump //To begin the dump at event do_dump
begin

$dumpon; //No effect the first time through
repeat (500) @(posedge clock); //Dump for 500 cycles
$dumpoff; //Stop the dump

end

initial @(do_dump)
forever #10000 $dumpall; //Dump all variables for checkpoint

endmodule

Format of the Value Change Dump File

The information in this section pertains to users who write their own application programs to
postprocess the VCD file.

Contents of the Dump File

As shown in the following figure, the VCD file starts with the header information (the date, the
version number of Verilog-XL used for the simulation, and the timescale used). Next, the file
November 2008 500 Product Version 8.2

Verilog-XL Reference
The Value Change Dump File
lists the definitions of the scope and the type of variables being dumped, followed by the
actual value changes at each time increment.

Only the variables that change value during a time increment are listed. Value changes for
non-real variables are specified by 0, 1, X, or Z values. Value changes for real variables are
specified by real numbers. Strength information and memories are not dumped.

Note: You cannot dump part of a vector. For example, you cannot dump only bits 8 through
15 (8:15) of a 16-bit vector. You must dump the entire vector (0:15). In addition, you cannot
dump expressions, such as a + b.

Structure of the Dump File

The dump file is structured in a free format. White space is used to separate commands and
to make the file easily readable by a text editor. Output data in the VCD file is case sensitive.

To simplify postprocessing of the VCD file, the value change dumper automatically generates
1- to 4-character identifier codes (taken from the visible ASCII characters) to represent
variables. The examples in “Description of Keyword Commands” on page 503 show these
identifier codes, such as *@ and (k.

Note that the value change dump file contains limited structural information, including
information about the design hierarchy, but has no interconnection information. As a result,
the VCD file by itself does not allow a postprocessor to display the drivers and loads on a net.

Formats of Dumped Variable Values

Variables may be either scalars or vectors. Each type has its own format in the VCD file.
Dumps of value changes to scalar variables contain no white space between the value and
the identifier code, as in this example:

1*@ // No space between the value 1 and the identifier code *@

(HEADER
 INFORMATION)

VCD FILE

(VARIABLE
 DEFINITIONS)

(VALUE
 CHANGES)
November 2008 501 Product Version 8.2

Verilog-XL Reference
The Value Change Dump File
Dumps of value changes to vectors contain no white space between the base letter and the
value digits, but they do contain white space between the value digits and the identifier code,
as in this example:

b1100x01z (k //No space between the b and 1100x01z, but space between b1100x01z
and (k

The output format for each value is right-justified. Vector values appear in the shortest form
possible: the VCD eliminates redundant bit values that result from left-extending values to fill
a particular vector size.

The rules for left-extending vector values are as follows:

The following table shows how the VCD shortens values:

Events are dumped in the same format as scalars (for example, 1*%). For events, however,
the value (1 in this example) is irrelevant. Only the identifier code (*% in this example) is
significant. It appears in the VCD file as a marker to indicate that the event was triggered
during the time step.

Using Keyword Commands

Much of the general information in the value change dump file is presented as a series of
keyword commands that a postprocessor can parse. Refer to “Syntax of the VCD File” on
page 508 for information about keyword commands use.

When the value is: VCD left-extends with:

1 0

0 0

Z Z

X X

The binary value: Extends to fill a 4-bit
register as: Appears in the VCD file as:

10 0010 b10

X10 XX10 bX10

ZX0 ZZX0 bZX0

0X10 0X10 b0X10
November 2008 502 Product Version 8.2

Verilog-XL Reference
The Value Change Dump File
If a postprocessor reads a keyword command that it does not recognize, it can perform error
processing such as displaying a warning message and ignoring the text that appears
between the keyword command and the $end.

Description of Keyword Commands

Keyword commands provide a means of inserting information into the VCD file. Keyword
commands can be inserted either by the dumper or by you, as shown in the example in “Value
Change Dump File Format Example” on page 509. This section deals with the following
keyword commands:

Applications programs that read the value change dump file must be able to recognize and
process the standard keyword commands defined in the following pages. You also can define
additional keyword commands for each application.

$comment

The $comment keyword provides a means of inserting a comment in the VCD file.

Syntax
$comment

<comment_text>

$end

Examples
$comment This is a single-line comment $end

$comment This is a
multiple-line comment
$end

$date

The date stamp allows the system to indicate the date on which the VCD file was generated.

$comment $dumpoff $enddefinitions $upscope

$date $dumpon $scope $var

$dumpall $dumpvars $timescale $version
November 2008 503 Product Version 8.2

Verilog-XL Reference
The Value Change Dump File
Syntax
$date
 <date_text>
$end

Example
$date

June 25, 1989 09:24:35
$end

$dumpall

$dumpall lists the current values of all the variables dumped.

Syntax

$dumpall $end

Example
$dumpall 1*@ x*# 0*$ bx (k $end

$dumpoff

$dumpoff lists all the variables dumped with X values and then stops dumping.

Syntax

$dumpoff $end

Example
$dumpoff x*@ x*# x*$ bx (k $end

$dumpon

$dumpon resumes dumping and list current values of all variables dumped.

Syntax

$dumpon $end
November 2008 504 Product Version 8.2

Verilog-XL Reference
The Value Change Dump File
Example
$dumpon x*@ 0*# x*$ b1 (k $end

$dumpvars

$dumpvars lists the initial values of all the variables dumped.

Syntax

$dumpvars <value_changes>* $end

Example
$dumpvars x*@ z*$ b0 (k $end

$enddefinitions

$enddefinitions marks the end of the header information and definitions.

Syntax

$enddefinitions $end

$scope

Scope definition defines the scope of the dump.

Syntax
$scope
 <scope_type> <identifier>
$end

Definitions

<scope_type> is one of the following keywords:

module for top-level module and module instances

task for a task

function for a function
November 2008 505 Product Version 8.2

Verilog-XL Reference
The Value Change Dump File
Example
$scope

module top
$end

$timescale

$timescale specifies the timescale that Verilog-XL used for the simulation.

Syntax

$timescale <number> <time_dimension> $end

Definitions

<number> is one of the following:

1 10 100

<time_dimension> is one of the following:

s ms us ns ps fs

For more information see Chapter 17, “Timescales.”

Example
$timescale 10 ns $end

$upscope

$upscope changes the scope to the next higher level in the design hierarchy.

Syntax

$upscope $end

begin for named sequential blocks

fork for named parallel blocks
November 2008 506 Product Version 8.2

Verilog-XL Reference
The Value Change Dump File
$var

$var prints the names and identifier codes of the variables being dumped.

Syntax
$var
 <var_type> <size> <identifier_code>
 <reference>
$end

Definitions

<var_type> specifies the variable type and can be one of the following keywords:

event integer parameter real reg
supply0 supply1 time tri triand
trior trireg tri0 tri1 wand
wire wor

<size> is a decimal number that specifies how many bits are in the variable.

<identifier_code> specifies the name of the variable using printable ASCII characters,
as described in “Structure of the Dump File” on page 501.

<reference> is a reference name you specify in the source file. More than one
<reference> name may be mapped to the same <identifier_code>. For example,
net10 and net15 may be interconnected in the circuit, and therefore will have the same
<identifier_code>. A <reference> can have the following components:

::= <identifier>
||= <identifier> [<bit_select_index>]
||= <identifier> [<MSI> : <LSI>]

■ <identifier> is the Verilog name of the saved variable, including any leading
backslash (\) characters for escape identifiers.

■ Verilog-XL dumps each bit of an expanded vector net individually. That is, each bit has
its own <identifier_code> and is dumped only when it changes, not when other
bits in the vector change.

■ <MSI> indicates the most significant index; <LSI> indicates the least significant index.

■ <bit_select_index>, <MSI>, and <LSI> are all decimal numbers.

Example
$var
 integer 32 (2 index
$end
November 2008 507 Product Version 8.2

Verilog-XL Reference
The Value Change Dump File
$version

$version indicates the version of the simulator that was used to produce the VCD file.

Syntax
$version

<version_text>
$end

Example
$version

VERILOG-XL 1.5a
$end

Syntax of the VCD File

The following example shows the syntax of the output VCD file:

<value_change_dump_definitions>
:= <declaration_command>*<simulation_command>*

<declaration_command>
::= <keyword_command>
(NOTE: Keyword_commands are described in the next section.)

<simulation_command>
::= <keyword_command>
||= <simulation_time>
||= <value_change>

<keyword_command>
::= $<keyword> <command_text> $end

<simulation_time>
::= #<decimal_number>

<value_change>
::= <scalar_value_change>
||= <vector_value_change>

<scalar_value_change>
::= <value><identifier_code>

<value> is one of the following: 0 1 x X z Z
<vector_value_change>

::= b<binary_number> <identifier_code>
::= B<binary_number> <identifier_code>
::= r<real_number> <identifier_code>
::= R<real_number> <identifier_code>

■ <binary_number> is a number composed of the following characters: 0 1 x X z Z

■ <real_number> is a real number will be dumped using a
%.16g printf() format. This format preserves the precision of the number by
outputting all 53 bits in the mantissa of a 64-bit C-code ’double’. Applications programs
can read a real number using a %g format to scanf().
November 2008 508 Product Version 8.2

Verilog-XL Reference
The Value Change Dump File
■ <identifier_code> is a code from 1 to 4 characters long composed of the printable
characters that are in the ASCII character set from ! to ~ (decimal 33 to 126).

Value Change Dump File Format Example

The following example illustrates the format of the value change dump file. A description of
the file format follows the example. With the exception of the $comment command, all other
keyword commands in this example are generated by the value change dumper.

$date
June 26, 1998 10:05:41

$end
$version

VERILOG-XL 2.7
$end

$timescale
1 ns

$end

$scope module top $end
$scope module m1 $end
$var trireg 1 *@ net1 $end
$var trireg 1 *# net2 $end
$var trireg 1 *$ net3 $end
$upscope $end
$scope task t1 $end
$var reg 32 (k accumulator[31:0] $end
$var integer 32 {2 index $end
$upscope $end
$upscope $end
$enddefinitions $end
$comment

Note: $dumpvars was executed at time ’#500’.
All initial values are dumped at this time.

$end

#500
$dumpvars x*@ x*# x*$ bx (k bx {2 $end

#505
0*@
1*#
1*$
b10zx1110x11100 (k b1111000101z01x {2
#510
0*$

#520
1*$
#530
0*$
bz (k
#535
$dumpall 0*@ 1*# 0*$
bz (k b1111000101z01x {2 $end
#540
1*$
#1000
November 2008 509 Product Version 8.2

Verilog-XL Reference
The Value Change Dump File
$dumpoff x*@ x*# x*$ bx (k bx {2 $end
#2000
$dumpon z*@ 1*# 0*$ b0 (k bx {2 $end
#2010
1*$

Note: In general, the VCD does not automatically include comments in the dump file. An
exception is when the dump file reaches the limit set by the $dumplimit task. Then, the
VCD includes a comment to that effect.

The following sections describe the keyword commands, variables, and values that appear in
the previous example.

$date. . .$end $version. . .$end $timescale. . .$end

These keyword commands are generated by the VCD to provide information about the dump
file and the simulation.

$scope . . . $end

This keyword command indicates the scope of the defined signals that follow. In this example,
the scope includes two modules (top and m1) and one task (t1).

$var . . . $end

This keyword command defines each variable that is dumped. It specifies the variable’s type
(trireg, reg, integer), size (1, 32, 32), identifier code
(*@, (k, {2), and reference name as specified by the user in the source file (net1,
accumulator, index). To make the dump file machine-independent, compact, and capable
of being edited, the VCD assigns each variable in the circuit a 1- to 4-character code called
an identifier code. These characters are taken from the visible ASCII characters ’!’ to ’~’
(decimal 33 to 126).

$upscope . . . $end

For each $scope there is a matching $upscope to signify the end of that scope.

$enddefinitions . . . $end

This keyword command indicates the end of the header information and definitions, and
marks the start of the value change data.
November 2008 510 Product Version 8.2

Verilog-XL Reference
The Value Change Dump File
#500
$dumpvars x*@ x*# x*$ bx (k bx {2 $end

At time 500, $dumpvars is executed to show the initial values of all the variables dumped.
Identification codes (such as *@, *#) are used for conciseness and are associated with user
reference names in the $var ... $end sections of the VCD file. In this example, all initial
values are X (unknown).

#505
0*@
1*#
1*$
b10zx1110x11100 (k b1111000101z01x {2

This display shows the new values of all the variables that changed at time 505: net1 (which
has an identifier code of *@) changed to 0, net2 (identifier code *#) and net3 (identifier code
*$) changed to 1, the vector accumulator[31:0] and the integer index changed to the
binary values shown.

#510
0*$
#520
1*$
#530
0*$
bz (k

At time 510, only net3 changed to a 0. All other variables remained unchanged. At time 520,
net3 changed to a 1, and at time 530 it changed back to a 0. Also at time 530, all bits of the
vector accumulator changed to the high-impedance (Z) state.

#535
$dumpall 0*@ 1*# 0*$
bz (k b1111000101z01x {2 $end

The source file calls a $dumpall task at time 535 to dump the latest values of all the specified
variables as a checkpoint.
November 2008 511 Product Version 8.2

Verilog-XL Reference
The Value Change Dump File
#540
1*$

At time 540, net3 changed to a 1.

#1000
$dumpoff x*@ x*# x*$ bx (k bx {2 $end

At time 1000, a $dumpoff is executed to dump all the variables as X values and to suspend
dumping until the next $dumpon.

#2000
$dumpon z*@ 1*# 0*$ b0 (k bx {2 $end

Dumping resumes at time 2000; $dumpon dumps all the variables with their values at that
time.

#2010
1*$

At time 2010, the value of net3 changes to 1.

Using the $dumpports System Task

The procedures described in this section are deliberately broad and generic. The
requirements for your specific design may dictate procedures slightly different from those
described here.

$dumpports Syntax

The $dumpports system task scans the (arg1) ports of a module instance and monitors the
ports for both value and drive level. The $dumpports system task also generates an output
file that contains the value, direction, and strength of all the ports of a device. The output file
generated by $dumpports is similar to the output file generated by the value change dump
(VCD). For information about the VCD file, see “Overview” on page 495. The syntax for
$dumpports is as follows:

$dumpports(<DUT> <,"filename"> <,ID>);
November 2008 512 Product Version 8.2

Verilog-XL Reference
The Value Change Dump File
The table given below describes the arguments of $dumpports.

Consider the example given below.

....

....

module top;
reg A;
integer id;
.........
.........
initial

begin
$dumpports(dut, "testVec.file", id);
#5 $dumpports_close(id);

end
endmodule

....

....

$dumpports Output

The following example shows an output from using $dumpports.

#100
pDDBF 6566 0066 <1

Arguments Description

DUT Device under test (DUT); the name of the module instance to be monitored.

filename String containing the name of the output file. The filename argument is
optional. If you do not specify a filename, then a verilog.evcd (the
default filename) file will be generated. Consider the following examples:

Example 1:

$dumpports(dut, , id);

In this example, the filename argument is not specified. No error will be
reported and a verilog.evcd file will be generated.

Example 2:

$dumpports(dut, "testVec.file", id);

In this example, as the filename argument is specified, a testVec.file
will be generated.

ID An integer data type that identifies a running $dumpports task with the
$dumpports_close system task. For more information, see
“$dumpports_close” on page 517.
November 2008 513 Product Version 8.2

Verilog-XL Reference
The Value Change Dump File
The table given below describes each component of the output.

Port Names

Port names are recorded in the output file as follows:

■ A port that is explicitly named is recorded in the output file.

■ If a port is not explicitly named, the name of the object used in the port definition is
recorded.

■ If the name of a port cannot be determined from the object used int he port definition, the
port index number is used (the first port being 0).

Drivers

A driver is anything that can drive a value onto a net including the following:

■ primitives

■ continuous assigns

■ forces

■ ports with objects of type other then net, such as the following:

module foo(out, ...)
output out;
reg out;

Component Description

#100 Simulation time

p Output type of the driver. p indicates the value, strength, and collision
detection for the ports.

DDBF Value of the port. See “Port Value Character Identifiers” on page 515 for
more information.

6566 0’s strength component of the value. See “Strength Mapping” on
page 516 for more information.

0066 1’s strength component of the value. See “Strength Mapping” on
page 516 for more information.

<1 Signal identifier
November 2008 514 Product Version 8.2

Verilog-XL Reference
The Value Change Dump File
If a net is forced, a comment is placed into the output file stating that the net connected to the
port is being forced, and the scope of the force is given. Forces are treated differently because
the existence of a force is not permanent,even though a force is a driver.

While a force is active, driver collisions are ignored and the level part of the output is
determined by the scope of the force definition.When the force is released, a note is again
placed into the log file.

Port Value Character Identifiers

The following table shows the characters (middle column) that identify the value of a port in
the $dumpports output:

Level Char. Value

DUT L (0) low

DUT l (0) low with more than 2 active drivers

DUT H (1) high

DUT h (1) high with more than 2 active drivers

DUT T (Z) tri-state

DUT X (X) unknown

DUT x (X) unknown because of a 1-0 collision

unknown ? (X) unknown state

unknown 0 (0) unknown direction; both the input and the output are active
with the same value.

unknown 1 (1) unknown direction; both the input and the output are active
with the same value.

unknown A (0-1) Input is a 0 and output is a 1.

unknown a (0-X) Input is a 0 and output is an X

unknown B (1-0) Input is a 1 and output is a 0.

unknown b (1-X) Input is a 1 and output is an X.

unknown C (X-0) Input is a X and output is a 0.

unknown c (X-1) Input is a X and output is a 1.

unknown F (Z) tri stated, nothing is driving the net.
November 2008 515 Product Version 8.2

Verilog-XL Reference
The Value Change Dump File
The level of a driver is determined by the scope of the driver’s placement on a net. Port type
has no influence on the level of a signal. Any driver whose definition is outside of the scope
of the DUT is at the test fixture level.

In the following example, because the driver is outside the scope of a DUT, the continuous
assignment is at the test fixture level:

module top;
reg regA;
assign dut1.out = regA;
dut dut1(out,);
initial

$dumpports(dut1, "testVec.file");
...

endmodule
module dut(out, ...

output out;
wire out;
...

endmodule

Strength Mapping

Strength values in the $dumpports output are as follows:

0 HiZ
1 Sm Cap
2 Md Cap
3 Weak
4 Lg Cap
5 Pull
6 Strong
7 Supply

unknown f (Z) tri stated, both internal and external.

test fixture D (0) low

test fixture d (0) low with more than 2 active drivers

test fixture U (1) high

test fixture u (1) high with more than 2 active drivers

test fixture N (X) unknown

test fixture n (X) unknown because of a 1-0 collision

test fixture Z (Z) tri-state

Level Char. Value
November 2008 516 Product Version 8.2

Verilog-XL Reference
The Value Change Dump File
$dumpports Restrictions

The following restrictions apply to the $dumpports system task:

■ The $dumpports system task does not work with the $save and $restart system
tasks.

■ Continuous assignments cannot have delays.

■ The following wire types are the only ones permitted to be connected to the ports:

wire, tri, tri0, tri1, reg, trireg

■ Directional information can be lost when a port is driven by one or more drivers of the
different tran elements (tran, rtran, rtranif0, ...).

In the following example, the direction of the port out cannot be determined because the
value that the tran gate is transporting from its other terminal is unknown.

bufif1 u1(out, 1'b1, 1'b1);
DUT udut(out);
...

module DUT(out)
tran t1(out, int);

$dumpports_close

The $dumpports_close system task stops a running $dumpports system task. The
syntax is as follows:

$dumpports_close(<ID>);

The optional <ID> argument is an integer that identifies a particular $dumpports system
task. If only one $dumpports system task is running, the <ID> can be left blank. Valid <ID>
values are specified in the syntax of the $dumpports system task.

Consider the example given below.

....

....

module top;
reg A;
integer id;
.........
.........
initial

begin
$dumpports(dut, "testVec.file", id);
#5 $dumpports_close(id);

end
endmodule
November 2008 517 Product Version 8.2

Verilog-XL Reference
The Value Change Dump File
....

....
November 2008 518 Product Version 8.2

Verilog-XL Reference
A
Formal Syntax Definition

This appendix describes the following:

■ Summary of Syntax Descriptions on page 519

■ Source Text on page 520

■ Declarations on page 523

■ Primitive Instances on page 525

■ Module Instantiations on page 525

■ Behavioral Statements on page 526

■ Specify Section on page 528

■ Expressions on page 531

■ General Syntax Definition on page 532

■ Switch-Level Modeling on page 533

Summary of Syntax Descriptions

The following items summarize the format of the formal syntax descriptions in this appendix:

1. Spaces may be used to separate lexical tokens.

2. Angle brackets around each description item are added for clarity and are not literal
symbols—that is, they do not appear in a source example of a syntax item.

3. <ITEM> in upper case is a lexical token item. Its definition is a terminal node in the
description hierarchy—that is, its definition does not contain any syntax construct items.

4. <item> in lower case is a syntax construct item defined by other syntax construct items
(<item>) or by lexical token items (<ITEM>).

5. <item>? indicates an optional item.
November 2008 519 Product Version 8.2

Verilog-XL Reference
Formal Syntax Definition
6. <item>* indicates that an item occurs zero or more times in the syntax contstruct.

7. <item>+ indicates that an item occurs one or more times in the syntax contstruct.

8. <item> <,<item>>* is a comma-separated list of items with at least one item in the
list.

9. iff [condition] is a condition placed on one of several definitions

10. ::= the right side of this syntax construct defines the <item> on the left side.

11. ||= like ::=, but this syntax construct indicates an alternative syntax definition.

12. item is a literal (a keyword). For example, the definition <event_declaration> ::=
event <name_of_event> indicates that the keyword “event” precedes the name of an
event in an event declaration.

13. (...) parenthesis symbols in a definition are required literals by the syntax being
defined. Other literal symbols can also appear in a definition (for example, the period (.)
and the colon (:).

Note: In Verilog syntax, a period (.) may not be preceded or followed by a space.

Source Text
<source_text>

::= <description>*

<description>
::= <module>
||= <primitive>

<module>
::= module <name_of_module> <list_of_ports>? ;

<module_item>*
endmodule

||= macromodule <name_of_module> <list_of_ports>? ;
<module_item>*

endmodule

<name_of_module>
::= <IDENTIFIER>

See “Identifiers, Keywords, and System Names” on page 28

<list_of_ports>
::= (<port> <,<port>>*)

<port>
::= <port_expression>?
||= . <name_of_port> (<port_expression>?)

<port_expression>
::= <port_reference>
||= { <port_reference> <,<port_reference>>* }

<port_reference>
::= <name_of_variable>
November 2008 520 Product Version 8.2

Verilog-XL Reference
Formal Syntax Definition
||= <name_of_variable> [<constant_expression>]
||= <name_of_variable>

[<constant_expression> : <constant_expression>]

<name_of_port>
::= <IDENTIFIER>

<name_of_variable>
::= <IDENTIFIER>

<module_item>
::= <parameter_declaration>

See “Wired Nets” on page 41
||= <input_declaration>

See “Port Declarations” on page 220
||= <output_declaration>

See “Port Declarations” on page 220
||= <inout_declaration>

See “Port Declarations” on page 220
||= <net_declaration>

See “Signed Objects” on page 33
||= <reg_declaration>

See “Signed Objects” on page 33
||= <time_declaration>

See “Integers and Times” on page 47
||= <integer_declaration>

See “Integers and Times” on page 47
||= <real_declaration>

See “Real Number Declaration Syntax” on page 48
||= <event_declaration>

See “Event Control” on page 184
||= <gate_declaration>

See “Gate and Switch Declaration Syntax” on page 98
||= <UDP_instantiation>

See “UDP Syntax” on page 144
||= <module_instantiation>

See “Module Instantiation” on page 211
||= <parameter_override>

See “Overriding Module Parameter Values” on page 213
||= <continuous_assign>

See “Continuous Assignments” on page 72
||= <specify_block>

See “Using Specify Blocks and Path Delays” on page 237
||= <initial_statement>

See “initial Statement” on page 165
||= <always_statement>

See “always Statement” on page 165
||= <task>
||= <function>

<UDP>
::= primitive <name_of_UDP> (<name_of_variable>

<,<name_of_variable>>*) ;
<UDP_declaration>+
<UDP_initial_statement>?
<table_definition>

endprimitive

<name_of_UDP>
::= <IDENTIFIER>

<UDP_declaration>
::= <output_declaration>

See “UDP Syntax” on page 144
November 2008 521 Product Version 8.2

Verilog-XL Reference
Formal Syntax Definition
||= <reg_declaration>
See “UDP Syntax” on page 144

||= <input_declaration>
See “UDP Syntax” on page 144

<UDP_initial_statement>
::= initial <output_terminal_name> = <init_val> ;

<init_val>
::= 1’b0
||= 1’b1
||= 1’bx
||= 1
||= 0

<table_definition>
::= table <table_entries> endtable

<table_entries>
::= <combinational_entry>+
||= <sequential_entry>+

<combinational_entry>
::= <level_input_list> : <OUTPUT_SYMBOL> ;

<sequential_entry>
::= <input_list> : <state> : <next_state> ;

<input_list>
::= <level_input_list>
||= <edge_input_list>

<level_input_list>
::= <LEVEL_SYMBOL>+

<edge_input_list>
::= <LEVEL_SYMBOL>* <edge> <LEVEL_SYMBOL>*

<edge>
::= (<LEVEL_SYMBOL> <LEVEL_SYMBOL>)
||= <EDGE_SYMBOL>

<state>
::= <LEVEL_SYMBOL>

<next_state>
::= <OUTPUT_SYMBOL>
||= - (This is a literal hyphen)

See “User-Defined Primitives (UDPs)” on page 143.

<OUTPUT_SYMBOL> is one of the following characters:
0 1 x X

<LEVEL_SYMBOL> is one of the following characters:
0 1 x X ? b B

<EDGE_SYMBOL> is one of the following characters:
r R f F p P n N *

<task>
::= task <name_of_task> ;

<tf_declaration>*<statement_or_null>
endtask

<name_of_task>
::= <IDENTIFIER>

<function>
::= function <range_or_type>? <name_of_function> ;

<tf_declaration>+
November 2008 522 Product Version 8.2

Verilog-XL Reference
Formal Syntax Definition
<statement_or_null>
endfunction

<range_or_type>
::= <range> See “Defining a Function” on page 201
||= integer
||= real

<name_of_function>
::= <IDENTIFIER>

<tf_declaration>
::= <parameter_declaration> See “Parameters” on page 50

||= <input_declaration> See “Port Declarations” on page 220
||= <output_declaration> See “Port Declarations” on page 220
||= <inout_declaration> See “Port Declarations” on page 220
||= <reg_declaration>

See “Net and Register Declaration Syntax” on page 35
||= <time_declaration> See “Integers and Times” on page 47
||= <integer_declaration> See “Integers and Times” on page 47
||= <real_declaration>

See “Real Number Declaration Syntax” on page 48
||= <event_declaration> See “Event Control” on page 184

Declarations
<parameter_declaration>

::= parameter <list_of_param_assignments> ;

<list_of_param_assignments>
::=<param_assignment><,<param_assignment>*

<param_assignment>
::=<<identifier> = <constant_expression>>

<input_declaration>
::= input <range>? <list_of_variables> ;

<output_declaration>
::= output <range>? <list_of_variables> ;

<inout_declaration>
::= inout <range>? <list_of_variables> ;

<net_declaration>
::= <NETTYPE> <expandrange>? <delay>? <list_of_variables> ;
||= trireg <charge_strength>? <expandrange>? <delay>?

<list_of_variables> ;

<NETTYPE> is one of the following keywords:
wire tri tri1 supply0 wand triand tri0
supply1 wor trior trireg

<expandrange>
::= <range>
||= scalared <range>
iff [the data type is not a trireg]

the following syntax is available:
||= vectored <range>

<delay>
::=

See “Gate and Switch Declaration Syntax” on page 98
November 2008 523 Product Version 8.2

Verilog-XL Reference
Formal Syntax Definition
<reg_declaration>
::= reg <range>? <list_of_register_variables> ;

<time_declaration>
::= time <list_of_register_variables> ;

<integer_declaration>
::= integer <list_of_register_variables> ;

<real_declaration>
::= real <list_of_variables> ;

<event_declaration>
::= event <name_of_event> <,<name_of_event>>* ;

<continuous_assign>
::= assign <drive_strength>? <delay>? <list_of_assignments> ;
||= <NETTYPE> <drive_strength>? <expandrange>? <delay>?

<list_of_assignments> ;
<parameter_override>

::= defparam <list_of_param_assignments> ;
<list_of_variables>

::= <name_of_variable> <,<name_of_variable>>*

<name_of_variable>
::= <IDENTIFIER>

<list_of_register_variables>
::= <register_variable> <,<register_variable>>*

<register_variable>
::= <name_of_register>
||= <name_of_memory>

[<constant_expression> : <constant_expression>]

<constant_expression>
::=

See “Expressions” on page 51

<name_of_register>
::= <IDENTIFIER>

See “Identifiers, Keywords, and System Names” on page 28

<name_of_memory>
::= <IDENTIFIER>

See “Identifiers, Keywords, and System Names” on page 28

<name_of_event>
::= <IDENTIFIER>

See “Identifiers, Keywords, and System Names” on page 28

<charge_strength>
::= (small)
||= (medium)
||= (large)

<drive_strength>
::= (<STRENGTH0> , <STRENGTH1>)
||= (<STRENGTH1> , <STRENGTH0>)

<STRENGTH0> is one of the following keywords:
supply0 strong0 pull0 weak0 highz0

<STRENGTH1> is one of the following keywords:
supply1 strong1 pull1 weak1 highz1

<range>
::= [<constant_expression> : <constant_expression>]
November 2008 524 Product Version 8.2

Verilog-XL Reference
Formal Syntax Definition
<list_of_assignments>
::= <assignment> <,<assignment>>*

<expression>
::=

See “Expressions” on page 51

<assignment>
::=

See “Assignments” on page 71

Primitive Instances
<gate_declaration>

::= <GATETYPE> <drive_strength>? <delay>? <gate_instance>
<,<gate_instance>>* ;

<GATETYPE> is one of the following keywords:
and buf bufif0 bufif1 cmos nand nmos nor not notif0 notif1
or pmos pulldown pullup rcmos rnmos rpmos rtran rtranif0 rtranif1
tran tranif0 tranif1 xnor xor

<drive_strength>
::= (<STRENGTH0>,<STRENGTH1>)
||=(<STRENGTH1>,<STRENGTH0>)

<delay>
::= # <number>
||= # <identifier>
||= # (<mintypmax_expression> <,<mintypmax_expression>>?

<,<mintypmax_expression>>?)
<gate_instance>

::= <name_of_gate_instance>? (<terminal> <,<terminal>>*)
<name_of_gate_instance>

::= <IDENTIFIER>
See “Identifiers, Keywords, and System Names” on page 28

<UDP_instantiation>
::= <name_of_UDP> <drive_strength>? <delay>? <UDP_instance>

<,<UDP_instance>>* ;
<name_of_UDP>

::= <IDENTIFIER>
See “Identifiers, Keywords, and System Names” on page 28

<UDP_instance>
::= <name_of_UDP_instance>? (<terminal> <,<terminal>>*)

<name_of_UDP_instance>
::= <IDENTIFIER>

See “Identifiers, Keywords, and System Names” on page 28
<terminal>

::= <expression>
||= <IDENTIFIER>

Module Instantiations
<module_instantiation>

::= <name_of_module> <parameter_value_assignment>?
<module_instance> <,<module_instance>>* ;

<name_of_module>
::= <IDENTIFIER>

See “Identifiers, Keywords, and System Names” on page 28
November 2008 525 Product Version 8.2

Verilog-XL Reference
Formal Syntax Definition
<parameter_value_assignment>
::= # (<expression> <,<expression>>*)

<module_instance>
::= <name_of_instance> (<list_of_module_connections>?)

<name_of_instance>
::= <IDENTIFIER>

See “Identifiers, Keywords, and System Names” on page 28

<list_of_module_connections>
::= <module_port_connection> <,<module_port_connection>>*
||= <named_port_connection> <,<named_port_connection>>*

<module_port_connection>
::= <expression>

See “Expressions” on page 51
||= <NULL>

<NULL>
::= nothing - this form covers the case of an empty item

in a list -for example:
(a, b, , d)

<named_port_connection>
::= .< IDENTIFIER> (<expression?>)

<expression>
::=

See “Expressions” on page 51

Behavioral Statements
<initial_statement>

::= initial <statement>

<always_statement>
::= always <statement>

<statement_or_null>
::= <statement>
||= ;

<statement>
::= <assignment> ;
||= if (<expression>) <statement_or_null>
||= if (<expression>) <statement_or_null>

else <statement_or_null>
||= case (<expression>) <case_item>+ endcase
||= casez (<expression>) <case_item>+ endcase
||= casex (<expression>) <case_item>+ endcase
||= forever <statement>
||= repeat (<expression>) <statement>
||= while (<expression>) <statement>
||= for (<assignment> ; <expression> ; <assignment>)

<statement>
||= <delay_control> <statement_or_null>

See “Delay Control” on page 183
||= <event_control> <statement_or_null>
See “Event Control” on page 184
||= <lvalue> = <delay_control> <expression> ;
||= <lvalue> = <event_control> <expression> ;
||= wait (<expression>) <statement_or_null>
||= -> <name_of_event> ;
November 2008 526 Product Version 8.2

Verilog-XL Reference
Formal Syntax Definition
||= <seq_block>
||= <par_block>
||= <task_enable>
||= <system_task_enable>
||= disable <name_of_task> ;
||= disable <name_of_block> ;
||= assign <assignment> ;
||= deassign <lvalue> ;

<assignment>
::= <lvalue> = <expression>

<lvalue>
::=

See “Procedural Assignments” on page 166

<expression>
::=

See “Expressions” on page 51

<case_item>
::= <expression> <,<expression>>* : <statement_or_null>
||= default : <statement_or_null>
||= default <statement_or_null>

<seq_block>
::= begin <statement>* end
||= begin : <name_of_block> <block_declaration>*

<statement>* end

<par_block>
::= fork <statement>* join

||= fork : <name_of_block> <block_declaration>*
<statement>* join

<name_of_block>
::= <IDENTIFIER>

<block_declaration>
::= <parameter_declaration> See “Parameters” on page 50
||= <reg_declaration>

See “Net and Register Declaration Syntax” on page 35
||= <integer_declaration> See “Integers and Times” on page 47
||= <real_declaration> See “Real Numbers” on page 48
||= <time_declaration> See “Integers and Times” on page 47
||= <event_declaration> See “Event Control” on page 184

<task_enable>
::= <name_of_task> ; See “Defining a Task” on page 198
||= <name_of_task> (<expression> <,<expression>>*) ;

<system_task_enable>
::= <name_of_system_task> ;
||= <name_of_system_task> (<expression> <,<expression>>*) ;

<name_of_system_task>
::= $<SYSTEM_IDENTIFIER>

The $ cannot be followed by a space.

<SYSTEM_IDENTIFIER>
::= An <IDENTIFIER> assigned to an existing system task or function.
November 2008 527 Product Version 8.2

Verilog-XL Reference
Formal Syntax Definition
Specify Section
<specify_block>

::= specify <specify_item>* endspecify

<specify_item>
::= <specparam_declaration>
||= <path_declaration>
||= <level_sensitive_path_declaration>
||= <edge_sensitive_path_declaration>
||= <system_timing_check>
||= <sdpd>

<specparam_declaration>
::= specparam <list_of_param_assignments> ;

<list_of_param_assignments>
::=<param_assignment><,<param_assignment>>*

<param_assignment>
::=<<identifier>=<constant_expression>>

<path_declaration>
::= <path_description> = <path_delay_value> ;

<path_description>
::= (<specify_input_terminal_descriptor> =>

<specify_output_terminal_descriptor>)
||= (<list_of_path_inputs> *> <list_of_path_outputs>)

<list_of_path_inputs>
::= <specify_input_terminal_descriptor>

<,<specify_input_terminal_descriptor>>*

<list_of_path_outputs>
::= <specify_output_terminal_descriptor>

<,<specify_output_terminal_descriptor>>*

<specify_input_terminal_descriptor>
::= <input_identifier>
||= <input_identifier> [<constant_expression>]
||= <input_identifier> [<constant_expression> :

<constant_expression>]

<specify_output_terminal_descriptor>
::= <output_identifier>
||= <output_identifier> [<constant_expression>]
||= <output_identifier> [<constant_expression> :

<constant_expression>]

<input_identifier>
::= the <IDENTIFIER> of a module input or inout terminal

<output_identifier>
::= the <IDENTIFIER> of a module output or inout terminal.

See “Describing Module Paths” on page 247.

<path_delay_value>
::= <path_delay_expression>

||= (<path_delay_expression>)
||= <path_delay_expression>, <path_delay_expression>
||= (<path_delay_expression>, <path_delay_expression>)
||= <path_delay_expression>, <path_delay_expression>,

<path_delay_expression>
||= (<path_delay_expression>, <path_delay_expression>,
November 2008 528 Product Version 8.2

Verilog-XL Reference
Formal Syntax Definition
<path_delay_expression>)
||= <path_delay_expression>, <path_delay_expression>,

<path_delay_expression>, <path_delay_expression>,
<path_delay_expression>, <path_delay_expression>

||= (<path_delay_expression>, <path_delay_expression>,
<path_delay_expression>, <path_delay_expression>,
<path_delay_expression>, <path_delay_expression>)

<path_delay_expression>
::= <expression>

<system_timing_check>
::= $setup(<timing_check_event>, <timing_check_event>,

<timing_check_limit> <,<notify_register>>?) ;
||= $hold(<timing_check_event>, <timing_check_event>,

<timing_check_limit> <,<notify_register>>?) ;
||= $period(<controlled_timing_check_event>,

<timing_check_limit> <,<notify_register>>?) ;
||= $width(<controlled_timing_check_event>,

<timing_check_limit>
<,<constant_expression>,<notify_register>>?) ;
||= $skew(<timing_check_event>, <timing_check_event>,
<timing_check_limit> <,<notify_register>>?) ;

||= $recovery(<controlled_timing_check_event>,
<timing_check_event>,
<timing_check_limit> <,<notify_register>>?) ;

||= $setuphold(<timing_check_event>, <timing_check_event>,
<timing_check_limit>, <timing_check_limit>
<,<notify_register>>?) ;

<timing_check_event>
::= <timing_check_event_control>? <specify_terminal_descriptor>

<&&& <timing_check_condition>>?

<specify_terminal_descriptor>
::= <specify_input_terminal_descriptor>
||=<specify_output_terminal_descriptor>

<controlled_timing_check_event>
::= <timing_check_event_control> <specify_terminal_descriptor>

<&&& <timing_check_condition>>?

<timing_check_event_control>
::= posedge
||= negedge

<timing_check_condition>
::= <SCALAR_EXPRESSION>
||= ~<SCALAR_EXPRESSION>
||= <SCALAR_EXPRESSION> == <scalar_constant>

||= <SCALAR_EXPRESSION> === <scalar_constant>
||= <SCALAR_EXPRESSION> != <scalar_constant>

||= <SCALAR_EXPRESSION> !== <scalar_constant>

<SCALAR_EXPRESSION> is a one bit net or a bit select
of an expanded vector net.
::= <timing_check_limit>

::= <expression>

<scalar_constant>
::= 1’b0
||= 1’b1
||= 1’B0
||= 1’B1
November 2008 529 Product Version 8.2

Verilog-XL Reference
Formal Syntax Definition
<notify_register>
::= <identifier>

<level_sensitive_path_declaration>
::= if (<conditional_port_expression>)

(<specify_terminal_descriptor> <polarity_operator>?=>
<specify_terminal_descriptor>) = <path_delay_value>

||= if (<conditional_port_expression>)
(<list_of_path_inputs> <polarity_operator>? *>
<list_of_path_outputs>) = <path_delay_value>

Note: The following two symbols are literal symbols, not syntax description conventions:

*> =>

<conditional_port_expression>
::= <port_reference>
||= <UNARY_OPERATOR><port_reference>
||= <port_reference><BINARY_OPERATOR><port_reference>

<polarity_operator>
::= +
||= -

<edge_sensitive_path_declaration>
::=<if (<expression>)>? (<edge_identifier>?

<specify_terminal_descriptor>=>
(<specify_terminal_descriptor> <polarity_operator> ?:
<data_source_expression>)) = <path_delay_value>

||=<if (<expression>)>? (<edge_identifier>?
<specify_terminal_descriptor> *>
(<list_of_path_outputs> <polarity_operator> ?:
<data_source_expression>)) =<path_delay_value>

<data_source_expression>
Any expression, including constants and lists. Its width must
be one bit or equal to the destination’s width. If the
destination is a list, the data source must be as wide as
the sum of the bits of the members.

<edge_identifier>
::= posedge
||= negedge

<edge_control_specifier>
::= edge [<edge_descriptor><,<edge_descriptor>>*]

<edge_descriptor>
::= 01
|| 10
|| 0x
|| x1
|| 1x
|| x0

<pulse_control_specparam>
::=PATHPULSE$=(<r_value>,<e_value>);
||=PATHPULSE$<module_path_source>$

<module_path_destination>=(<r_value>,<e_value>);

<sdpd>
::=if(<sdpd_conditional_expression>)(<path_description>)=

(<path_delay_value>)
||= if(<sdpd_conditional_expression>)

(<edge_sensitive_path_declaration>)
||= <ifnone_path>
November 2008 530 Product Version 8.2

Verilog-XL Reference
Formal Syntax Definition
<sdpd_conditional_expresssion>
::=<expression>

<ifnone_path>
::= ifnone(<path_description>)=(<path_delay_value>)

Expressions
<lvalue>

::= <identifier>
See “Identifiers, Keywords, and System Names” on page 28

||= <identifier> [<expression>]
||= <identifier> [<constant_expression>:<constant_expression>]

||= <concatenation>

<constant_expression>
::=<expression>

<mintypmax_expression>
::= <expression>
||= <expression> : <expression> : <expression>

<expression>
::= <primary>
||= <UNARY_OPERATOR> <primary>
||= <expression> <BINARY_OPERATOR> <expression>
||= <expression> <QUESTION_MARK> <expression> : <expression>
||= <STRING>

<UNARY_OPERATOR> is one of the following tokens:
+ - ! ~ & ~& | ^| ^ ~^

<BINARY_OPERATOR> is one of the following tokens:
+ - * / % == != === !== && || < <=
> >= & | ^ ^~ >> <<

<QUESTION_MARK> is ? (a literal question mark).

<STRING> is text enclosed in "" and contained on one line.

<primary>
::= <number>

||= <identifier>
See “Identifiers, Keywords, and System Names” on page 28

||= <identifier> [<expression>]
||= <identifier> [<constant_expression>:<constant_expression>]
||= <concatenation>
||= <multiple_concatenation>

||= <function_call>
||= (<mintypmax_expression>)

<number>
::= <DECIMAL_NUMBER>
||= <UNSIGNED_NUMBER>? <BASE> <UNSIGNED_NUMBER>
||= <DECIMAL_NUMBER>.<UNSIGNED_NUMBER>
||= <DECIMAL_NUMBER><.<UNSIGNED_NUMBER>>? E<DECIMAL_NUMBER>
||= <DECIMAL_NUMBER><.<UNSIGNED_NUMBER>>? e<DECIMAL_NUMBER>

Note: Embedded spaces are illegal in Verilog numbers, but embedded underscore
characters can be used for spacing in any type of number.
November 2008 531 Product Version 8.2

Verilog-XL Reference
Formal Syntax Definition
<DECIMAL_NUMBER>
::= A number containing a set of any of the following

characters, optionally preceded by
+ - 0 1 2 3 4 5 6 7 8 9 _

<UNSIGNED_NUMBER>
::= A number containing a set of any of the following characters:

0 1 2 3 4 5 6 7 8 9 _

<NUMBER>
Numbers can be specified in decimal, hexadecimal, octal or

binary, and may optionally start with a + or -. The <BASE>
token controls what number digits are legal. <BASE> must be
one of d, h, o, or b, for the bases decimal, hexadecimal,
octal, and binary respectively. A number can contain any set
of the following characters that is consistent with <BASE>:

0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F x X z Z ?

<BASE> is one of the following tokens:
’b ’B ’o ’O ’d ’D ’h ’H

<concatenation>
::= { <expression> <,<expression>>* }

<multiple_concatenation>
::= { <expression> { <expression> <,<expression>>* } }

<function_call>
::= <name_of_function> (<expression> <,<expression>>*)
||= <name_of_system_function> (<expression> <,<expression>>*)
||= <name_of_system_function>

<name_of_function>
::= <identifier>

<name_of_system_function>
::= $<SYSTEM_IDENTIFIER>

The $ cannot be followed by a space.

<SYSTEM_IDENTIFIER>
::= An <IDENTIFIER> assigned to an existing system task

or function

General Syntax Definition
<identifier>

::= <IDENTIFIER><.<IDENTIFIER>>*
The period cannot be preceded or followed by a space.

<IDENTIFIER>
An identifier is any sequence of letters, digits, dollar signs
($), and underscore (_) symbol, except that the first must be
a letter or the underscore; the first character may not be a digit
or $. Upper and lower case letters are considered to be different.
Identifiers may be up to 1024 characters long. Verilog-XL,
Veritime and Verifault-XL do not recognize identifier characters
beyond the 1024th as a significant part of the identifier.
Escaped identifiers start with the backslash character (\) and
may include any printable ASCII character. An escaped identifier
ends with white space. The leading backslash character is not
considered to be part of the identifier.

<delay>
::= # <number>
November 2008 532 Product Version 8.2

Verilog-XL Reference
Formal Syntax Definition
See “Numbers” on page 24
||= # <identifier>

||= # (<mintypmax_expression> <,<mintypmax_expression>>?
<,<mintypmax_expression>>?)

<mintypmax_expression>
::=

See “min/typ/max Delays” on page 136

<delay_control>
::= # <number>

See “Numbers” on page 24
||= # <identifier>

||= # (<mintypmax_expression>)
See “min/typ/max Delays” on page 136

<event_control>
::= @ <identifier>
||= @ (<event_expression>)

<event_expression>
::= <expression>

See “Expressions” on page 51
||= posedge <SCALAR_EVENT_EXPRESSION>
||= negedge <SCALAR_EVENT_EXPRESSION>

||= <event_expression> or <event_expression>*

<SCALAR_EVENT_EXPRESSION> is an expression that resolves to
a one bit value.

Switch-Level Modeling
rs_technology definition

<rs_technology_directive>+

rs_technology_directive
::=‘rs_technology <technology_statement>

technology statement
::= name <technology_name>
||= default
||= lowthresh <default_low_threshold>
||= highthresh <default_high_threshold>
||= resistance< type> <context> <width> <length>

<switch_resistance>
||= mapres <driving_strength> <map_resistance>
||= mapcap <charging_strength> <map_capacitance>
||= cox <oxide_capacitance>

||= deltal <length_change>
||= deltaw <width_change>
||= ldiff <lateral_diffusion>
||= cgo <gate_overlap_capacitance>
||= xa <default_diffusion_length>

||= cdiff <diffusion_capacitance>

<technology_name>
::= <IDENTIFIER>

<type> is one of the following keywords:
n_channel rn_channel p_channel rp_channel depletion
rdepletion pullup pulldown

<context> is one of the following keywords:
dynamic_high dynamic_low slope
November 2008 533 Product Version 8.2

Verilog-XL Reference
Formal Syntax Definition
<switch_declaration>
::= <SWITCHTYPE><drive_strength>?<delay>?

<instance_attributes>?<switch_instance>
<,<switch_instance>>*

<SWITCHTYPE> is one of the following keywords
tranif0 tranif1 rtranif0 rtranif1 pmos nmos cmos
rpmos rnmos rcmos tran rtran pullup pulldown

<drive_strength>
::= (<constant_expression>)

<instance_attributes>
::= (*const real <attribute_spec_list>;*)

<attribute_spec_list>
::= <length_spec>? , <width_spec>?

<length_spec>
::= length = <constant_expression>

<width_spec>
::= width = <constant_expression>

<net_declaration>
::= trireg <charge_strength>?<expandrange>?<delay>?

<instance_attributes>?<trireg_instance>
<,<trireg_instance>>*

||= <NETTYPE><drive_strength>?<expand_range>?<delay>?
<instance_attributes>?<net_instance>

<,<net_instance>>*

<charge_strength>
::= (small)

||= (medium)
||= (large)

||= strength (<constant_expression>)

<instance_attributes>
::= (*const real <attribute_spec_list>;*)

<attribute_spec_list>
::= <lowthresh_spec>? , <highthresh_spec>? , <capacitance_spec>?

<lowthresh_spec>
lowthresh = <constant_expression>

<highthresh_spec>
highthresh = <constant_expression>

<capacitance_spec>
capacitance = <constant_expression>
November 2008 534 Product Version 8.2

Verilog-XL Reference
B
Verilog-XL Keywords

This appendix describes words that have special meaning to Verilog-XL. Do not use them
unless you intend these special meanings.

■ Keywords from Compiler Directives on page 535

■ Keywords from Specify Blocks on page 537

■ Keywords from Neither Compiler Directives nor Specify Blocks on page 537

Keywords from Compiler Directives

define endmacro macro

optimize_data nooptimize_data

remove_gatenames noremove_gatenames

remove_netnames noremove_netnames

accelerate noaccelerate

default_nettyp e

unconnected_drive nounconnected_drive

pull0 pull1

autoexpand_vectornets expand_vectornets noexpand_vectornets

automacmods noautomacmods

timescale s ms

us ns ps

fs

typdelays mindelays maxdelays

celldefine endcelldefine
November 2008 535 Product Version 8.2

Verilog-XL Reference
Verilog-XL Keywords
nocheck_behavior check_behavior

suppress_faults nosuppress_faults

delay_mode_path delay_mode_distribute
d

delay_mode_unit delay_mode_zero

enable_portfaults disable_portfaults

default_rswitch_stren
gth

default_switch_streng
th

default_trireg_streng
th

ifdef else endif

include default_decay_time infinite

undef

pre_16a_paths end_pre_16a_paths

switch default

XL resistive

rs_technology name

lowthresh highthresh

resistance mapres

mapcap slope

dynamic_low dynamic_high

n_channel rn_channel

p_channel rp_channel

depletion rdepletion

pullup pulldown

strong1 strong0

weak1 weak0

large1 large0

medium1 medium0

small1 small0

cox
November 2008 536 Product Version 8.2

Verilog-XL Reference
Verilog-XL Keywords
Keywords from Specify Blocks

Keywords from Neither Compiler Directives nor Specify
Blocks

deltal deltaw

ldiff

cgo xa

cdiff

uselib

bpi nobpi

specify endspecify

when always

follow invert

unknown posedge

negedge latchhigh

latchlow pulselow

pulsehigh ifnone

femtosecs picosecs

nanosecs microsecs

millisecs seconds

picofarads volts

megahertz centigrade

package endpackage

module macromodule

endmodule primitive

endprimitive parameter
November 2008 537 Product Version 8.2

Verilog-XL Reference
Verilog-XL Keywords
input output

inout reg

integer time

real event

task endtask

function endfunction

table endtable

defparam when

wire wand

wor tri

triand trior

trireg tri0

tri1 supply0

supply1

buf not

and nand

or nor

xor xnor

bufif0 bufif1

notif0 notif1

nmos rnmos

pmos rpmos

cmos rcmos

pulldown pullup

rtran rtranif0

rtranif1 tran

tranif0 tranif1

strong0 strong1

pull0 pull1
November 2008 538 Product Version 8.2

Verilog-XL Reference
Verilog-XL Keywords
weak0 weak1

highz0 highz1

small medium

large

scalared vectored

signed

assign deassign

force release

initial always

begin end

fork join

if else

case casez

casex endcase

default forever

repeat while

for wait

posedge negedge

edge disable

specparam realtime

strength

attribute endattribute

const use
November 2008 539 Product Version 8.2

Verilog-XL Reference
Verilog-XL Keywords
November 2008 540 Product Version 8.2

Verilog-XL Reference
C
Verilog-XL and Standards’ Compliance

This appendix describes the following:

■ Supported Standards on page 541

■ Known Exceptions on page 541

Supported Standards

Verilog-XL supports the following Standards:

■ IEEE Standard 1364-1995 - IEEE Standard Description Language Based on the
Verilog™ Hardware Description Language

■ IEEE Standard 1499-1998 - IEEE Standard Interface for Hardware Description
Models of Electronic Components (Open Models Interface)

■ OVI Standard Delay Format (SDF) Version 3.0

Known Exceptions

VPI Routines

You cannot use the following methods for the vpi_iterate() and vpi_scan() routines:

■ vpiUse

■ vpiAttribute (This method is defined in the vpi_user.h include file, which Cadence
provides in addition to IEEE 1364 functionality.)

You cannot use the following reasons for the vpi_register_cb() routine:

■ cbError

■ cbTchkViolation
November 2008 541 Product Version 8.2

Verilog-XL Reference
Verilog-XL and Standards’ Compliance
■ cbUnresolvedSystf

Wire with same name as a Port

If you declare a wire with same name as an existing port and the wire size declaration is
different from the port size declaration, then the wire size declaration supersedes the port size
declaration.

For example, consider the following code fragment:

module (a,...)
input [4:6] a; //bus width is 3
...
wire [0:8] a; //bus width is 9

endmodule

The second declaration of a supersedes the first declaration.

This behavior is different from the IEEE 1364 interpretation.
November 2008 542 Product Version 8.2

Verilog-XL Reference
Index
-
in state table 151

Symbols
!

compared to ‘==0’ 57
evaluation of 57
logical negation operator 52

!=
logical inequality operator 52, 56

!==
case inequality operator 52
evaluation of 56

<
evaluation of 56

<<
evaluation of 60
left shift operator 53

<=
evaluation of 56
relational less-than-or-equal

operator 52
""

null string 66
$async$and$array 408
$async$and$plane 408
$async$nand$array 408
$async$nand$plane 408
$async$nor$array 408
$async$nor$plane 408
$async$or$array 408
$async$or$plane 408
$bitstoreal

definition of 380
use in port connections 223

$cleartrace 348
$compare 375

syntax 375
$countdrivers 360

syntax 360
$deposit 369
$disable_warnings 366

syntax 366
$display 333 to 340

and mnemonic strength format 130
and simulation time 346
compared to $monitor 341
compared to $write 333
escape sequences 334
format specifications 334 to 336
size of displayed data 336 to 337
syntax 333

$dlc 403, 404
$dumpall

definition and syntax 382
example 504
how to use 498

$dumpfile 496
definition and syntax 382

$dumpflush 499
definition and syntax 382

$dumplimit 499
definition and syntax 382

$dumpoff
definition and syntax 382
example 504
how to use 498

$dumpon
definition and syntax 382
example 504
how to use 498

$dumpports 512
character identifiers 515
drivers 514
output 513
restrictions 517
strength mapping 516

$dumpports_close 517
$dumpvars

definition and syntax 382
example 505
how to use 497 to 498

$enable_warnings 367
syntax 367

$eventcond 279
$fclose 343 to 345

syntax 343
$fdisplay 343 to 345

syntax 343
$finish 347
November 2008 543 Product Version 8.2

Verilog-XL Reference
syntax 347
$fmonitor 343 to 345

syntax 343
$fopen 343 to 345

syntax 343
$fstrobe 343 to 345

syntax 343
$fwrite 343 to 345

syntax 343
$getpattern 370, 371
$history 355

syntax 355
$hold 295
$incpattern_read 373

syntax 373
$incpattern_write 372

syntax 372
$incsave 352
$input 356

and asynchronous interrupts 356
and reading key files 356
and reading previous command file 356
syntax 356

$itor 380
$keepcommands 363
$key 357

syntax 357
$list

and decompiling macro modules 218
for debugging 175
syntax 363

$list_forces 364
$listcounts 363, 384

syntax and example 471
$log

syntax 357
$monitor

and fixed width format 337
and simulation time 346
compared to $display 341
syntax 341
turn off 342

$monitoroff 341
syntax 341

$monitoron 341
syntax 341

$no_show_cancelled_e 265
$nochange 297
$noeventcond 279
$nokeepcommands 363
$nokey 357

syntax 357
$nolog

syntax 357
$period 298
$post_int_delay 342
$printtimescale 448

definition and syntax 381
$pulsestyle_ondetect 260
$pulsestyle_onevent 260
$readmemb 368 to 369

and $getpattern 371
and $sreadmemb 381
and loading logic array personality 409
syntax 368

$readmemh 368 to 369
and $getpattern 371
and $sreadmemh 381
and loading logic array personality 409
syntax 368

$realtime
and triggering monitoring 346
definition and example 446
definition of 380
how to use 346

$realtobits
definition of 380
use in port connections 223

$recovery 299
$recrem 301
$removal 304
$reportfile 383, 470
$reportprofile

definition and syntax 383, 384
syntax and example 470

$reset
description, syntax, and

examples 385 to 390
$reset_count 390
$reset_value 391 to 392
$restart

description, syntax, and examples 352
$rtoi 380
$save

description, syntax, and examples 352
syntax 352

$scale
definition of 381
description, syntax, and

examples 446 to 447
$scope

syntax 358
November 2008 544 Product Version 8.2

Verilog-XL Reference
$sdf_annotate 393
$settrace

and tracing statements inside macro
modules 218

syntax 348
$setup 305
$setuphold 307
$show_cancelled_e 265
$showallinstances

syntax 358
$showexpandednets

syntax 360
$showmodes 464
$showportsnotcollapsed

syntax 360
$showscopes

syntax 358
$showvariables

syntax 358
$showvars

syntax 358
$skew 310
$sreadmemb

definition and syntax 381
$sreadmemh

definition, syntax, and example 381
$startprofile 383

how it works 467
syntax and example 469

$stime 346
and triggering monitoring 346
as parameters to $display and

$monitor 346
syntax 346

$stop 347
$stopprofile 384

definition and syntax 384
syntax and example 471

$strobe 341
syntax 340

$strobe_compare 376
syntax 376

$sync$and$array 408
$sync$and$plane 408
$sync$nand$array 408
$sync$nand$plane 408
$sync$nor$array 408
$sync$nor$plane 408
$sync$or$array 408
$sync$or$plane 408
$time

and triggering event controls 346
and triggering monitoring 346
as parameters to $display and

$monitor 346
data type used with 47
definition of 380
description and examples 445

$timeformat 448 to 451
definition and syntax 381

$width 311
use of threshold argument 312

$write 333 to 340
compared to $display 333
escape sequences 334
format specifications 334 to 336
size of displayed data 336 to 337
syntax 333

%
in format specifications 333
in format specifications for real

numbers 336
modulus operator 52

&
bit-wise AND operator 52
reduction AND operator 52

&&
evaluation of 57
logical AND operator 52

*
arithmetic multiplication operator 52

-d
effect on decompilation and tracing 218

+accu_path_delay 279
+annotate_any_time 393
+autonaming 233
+delay_mode_distributed 459
+delay_mode_path 459
+delay_mode_unit 459
+delay_mode_zero 459
-i

and reading key files 356
for simulation recovery 357
to read command input file 356

-k
for changing key file name 357

-l
to change log file name 357

+listcounts
how to use 363

+maxdelays 67
+mindelays 67
November 2008 545 Product Version 8.2

Verilog-XL Reference
+multisource_int_delays 435 to 437
+neg_tchk 304, 309
+no_cancelled_e_msg 262
+no_pulse_int_backanno 438
+no_show_cancelled_e 261, 262, 265
+nosdfwarn 395
+notimingchecks 289
+pathpulse

and overriding global pulse control 259
+pre_16a_paths 274
+pulse_e/n 438
+pulse_e_style_ondetect 261
+pulse_e_style_onevent 261
+pulse_int_e/n 438
+pulse_int_r/m 438
+pulse_r/m 438
-r

for command-line restart 355
+sdf_error_info 395
+sdf_verbose 395
+show_cancelled_e 261, 265
+transport_int_delays 267, 435 to 437

monitoring interconnect delay signal
values 342

+transport_path_delays 244, 267
+typdelays 67
-w

use with non-downward path
names 236

+x_transport_pessimism 287, 439
,,

commas in null expressions 334
/

arithmetic division operator 52
<

relational less-than operator 52
=

in assignment statement 71
==

logical equality operator 52
===

case equality operator 52
>

evaluation of 56
relational greater-than operator 52

>=
evaluation of 56
relational greater-than-or-equal

operator 52
>>

evaluation of 60

?
equivalent to z in literal number

values 25, 179
in state table 149, 151

?:
conditional operator 53

@
for addressing memory 368
for event control 184

\
for escape sequences in strings 333

^
bit-wise exclusive OR operator 52
for hierarchical names in macro module

instances 231
reduction XOR operator 53

^~
bit-wise equivalence operator 52
reduction XNOR operator 53

|
bit-wise inclusive OR operator 52
reduction OR operator 53

||
logical OR operator 52
evaluation of 57

~
bit-wise negation operator 52

~&
reduction NAND operator 52

~^
bit-wise equivalence operator 52
reduction XNOR operator 53

~|
reduction NOR operator 53

‘default_nettype
syntax 114

‘delay_mode_distributed
how to use 458

‘delay_mode_path
how to use 458

‘delay_mode_unit
how to use 459

‘delay_mode_zero
how to use 459

‘end_pre_16a_paths 274
‘noremove_gatenames

how to use 140
‘noremove_netnames

how to use 140
‘pre_16a_paths 274
‘remove_gatenames
November 2008 546 Product Version 8.2

Verilog-XL Reference
how to use 140
‘remove_netnames

how to use 140
‘timescale 442

effect on performance 444
usage rules 442, 444

Numerics
0

for minimizing bit lengths of
expressions 336

logic 0 31, 338
01 transition 151
1

logic 1 32, 338
12436

Section
4.12 127

A
accelerated continuous assignments 80

compilation speed 91
different results 92 to 93
effects 87 to ??
memory usage 91
restrictions 80

delay expressions 86
left-hand side 81 to 82
right-hand side 83 to 86

simulation speed 88 to 91
acceleration

and module path destinations 248
and specify path declarations 239

accu_path algorithm 279
applying 280
invoking 279
limitations of 285

addressing memory 368 to 369
always

and activity flow 163, 164
as structured procedure 164
syntax 165

ambiguous strength 117
and gate 105 to ??
annotating

vector bits 399
are 239

arithmetic operators
- 54
% 54
* 54
+ 54
/ 54
and unknown logic values 54

arithmetic shift left operators
<<< 60

arithmetic shift right operators
>>> 60

array of instances 99, 101
rules 102
syntax 99
UDPs 156

arrays
element 46
format 409
index 46
no multiple dimension 46
of integers 47
of time variables 47
word 46

assign keyword 94 to 95
assignment 71 to 96

continuous 72 to 79
using functions in 78
versus procedural 166

left hand side 71
of delays to module paths 247 to 253

and driving wired logic outputs 242
syntax 247

procedural 166
versus continuous 166

right hand side 71
asynchronous arrays 408
asynchronous control signal

detecting changes in 299, 304
automatic naming 233 to 234

+autonaming option 233
for gates 101
for user-defined primitives 156

B
b

binary number format 24
base format

binary 24
decimal 24
November 2008 547 Product Version 8.2

Verilog-XL Reference
hexadecimal 24
octal 24

begin-end block statement
description, syntax, and

examples 190 to 191
used with conditional statement 174

Behavior Profiler 467 to 493
data table 473 to 479

by module instance 476, 477, 478
by statement 473 to 476

example 486 to 493
system tasks 469 to 473

$listcounts 471
$reportprofile 470
$startprofile 469
$stopprofile 471

behavioral modeling 163 to 195
block statements 189 to 193
case statements 176
conditional statements 174
looping statements 179 to 182
multi-way decision statements 175
overview of 163
procedural assignments 166 to 173
procedural timing controls 182 to 189
structured procedures 164 to 195

bidirectional pass gate 110
binary display format 24

and high impedance state 337
and unknown logic value 337

binary operators 53
&&

evaluation of 57
{} 62
||

evaluation of 57
logic table for 58

bit annotation 399
bit-select

and vector ports 220
of vector net or register 63
out of bounds 63, 64
references of real numbers 49

bit-wise operators
AND 52
compared to logical operators 58
equivalence 52
exclusive OR 52
inclusive OR 52
negation 52

blank module terminal 212

block statement 189 to 193
definition 189
fork-join 190
naming of 192
parallel 190
sequential 190 to 191
start and finish times 192 to 193
timing for embedded blocks 192

blocking procedural assignment 167
processing assignments 173
syntax 167

buf gate 106 to ??
bufif gate 107

C
capacitive networks 42 to 45
case equality operator 52
case inequality operator 52
case statement 176

compared to if-else-if statement 177
with don’t-care 178

casex 178
casez 178
cells 209
changing default base in formatted output

system tasks 345
charge decay

description and examples 137 to 140
charge storage strength

strength levels for 116
checkpoints 352
cmos 112
cmos gate 112
collapsing nets 225
collapsing ports 223 to 227

chart of resulting net types 226
rules 224 to 226, 235
that connect nets of different types 225

combinational UDPs
compared to level-sensitive

sequential 150
description and examples 148 to 150
input and output fields in state table 147

combined signal strengths 116
combined signal values 116
command

history 355
input files 356

command line
November 2008 548 Product Version 8.2

Verilog-XL Reference
plus options
+annotate_any_time 393
+listcounts 363
+neg_tcheck 304
+neg_tchk 309
+nosdfwarn 395
+pathpulse

and overriding global pulse
control 259

+pre_16a_paths 274
+pulse_e/n 438
+pulse_int_e/n 438
+pulse_int_r/m 438
+pulse_r/m 438
+sdf_error_info 395
+sdf_verbose 395
+x_transport_pessimism 287

command-line restart 355
comments 24
compare

string operation 65
compilation

user-defined primitives 157
concatenation

and macro module instances 217
and repetition multiplier 62
and unsized numbers 62
of names 228
of operands 63
of terms in synchronous and

asynchronous system calls 408
string operation 65

concurrency
of activity flow 163
of procedures 201

condition
deterministic 294
non-deterministic 294

conditional operator 61
and ambiguous results 61
modeling tri-state output busses 62
syntax 61

conditional statement 174
syntax 174

conditioned event
constraints 294

conditioning signals
multiple 294

conflicts 40, 41
connecting ports

between modules 225

by name 221 to 223
by position with ordered list 220
in macro modules 227
rules 224 to 226

connection
difference between full and parallel 250
full 250
parallel 249

consistency
in user-defined primitive state

tables 157
constant expression 51
continuous assignment 72 to 79

accelerated 80 to 93
and $getpattern 371
and connecting ports 224
and driving strength 115, 339
and net variables 166
and supply nets 45
and wire nets 40
examples 73 to 74
explicit declaration 73
implicit declaration 73
syntax 72
using functions in 78
versus procedural assignment 79

continuous monitoring 341
copy

string operation 65
counting number of drivers 360

D
d

decimal number format 24
data structures 231
data types 31 to 50
deassign keyword 94 to 95
decay

charge 137
decimal display format 24

and high impedance state 337
and unknown logic value 337
compatibility with $monitor 337

decimal notation 48
declaring

events 185
multiple module paths in a single

statement 250
decompilation 363 to 365
November 2008 549 Product Version 8.2

Verilog-XL Reference
default
base in formatted output 345
in case statement 177
in if-else-if statements 176
word size 25

default delay mode 458
defparam 214

compared to module parameter
assignment 215

delay
calculating for high impedance (z)

transitions 132
calculating for unknown logic value (x)

transitions 132, 133
control

and intra-assignment delay 186
definition of 182
syntax and examples 183
zero-delay 183

distributed 240 to 244
expanding vector bits for full connection

path 400
expanding vector bits for parallel

connection path 400
expanding vector bits for path 400
fall

definition of 132
falling 136
for continuous assignment 74
gate 132 to 137
inertial 77
interconnect 423
minimum:typical:maximum

values 136 to 137
mixing distributed and module path 241
module path 239
net 132 to 135
propagation 101, 132
rise

assigning values for 136
definition of 132

specification 101
specify one value 132
specify three values 133
specify two values 132
syntax for delay control 183
trireg charge decay

description and
examples 138 to 140

turn-off 136
delay calculator 403

delay mode selection 455
and macro module expansion 464
and timescales 460 to 461
command line plus options 459
compiler directives 458
decompiling with delay modes 464
default delay mode 458
distributed delay mode 457
overriding delay values 461
path delay mode 457
precedence 459
reasons to select a delay mode 458
the $showmodes system task 464
the acc_fetch_delay_mode access

routine 464
the parameter attribute

mechanism 462 to 463
unit delay mode 456
zero delay mode 456

delays
path 239

diagnostic messages
from $stop and $finish 347

disable
and turning off monitoring tasks 342
named blocks 205 to 208
syntax 205
tasks 205 to 208
use of 205

disable timing check 289
disabling

warnings 366 to 367
displaying information 333 to 340
displaying the delay mode 362
distributed delay mode 457
dominating net 225
don’t-care bits

in case statements 179
don’t-care condition

in state table 149
drive strength specification 100
drivers

for $dumpports 514
driving strength 115

compared to charge storage
strength 339

keywords 77
dynamic file selection 333
November 2008 550 Product Version 8.2

Verilog-XL Reference
E
edge control specifiers 291
edge descriptors 49
edge-sensitive UDPs 150 to 151

compared to level-sensitive UDPs 150
element

of array 46
embedding modules

and hierarchy 209
by instantiating 211

enable 186
enabling

tasks 198 to 199
when already active 201

warnings 367
endmodule keyword 210
endprimitive keyword 145
endtable keyword 146
equality operators 56

!= 56
!== 56
== 56
=== 56
and ambiguous results 57
and operands of different sizes 56
precedence 56

escape sequences
for displaying special characters 334
inserting in string 333

espresso format 410
event

control
definition of 183
description, syntax, and

examples 184
declaration syntax 185
explicit 183
expression 182
implicit 183
in timing checks 295
level sensitive control 186
named 184 to 185
OR construct 185
syntax for event control 184
syntax of triggering statement 185

event control
repeat 188 to 189

event-driven simulation 160
examples

"joining" events 193
$hold timing check 296
$monitor 339
$printtimescale system task 448
$realtime system function 446
$recovery timing check 300
$recrem 303
$removal timing check 305
$scale system function 447
$setup timing check 306
$setuphold 309
$skew timing check 311
$strobe 341
$time system function 445
$timeformat system task 450
$width calls, legal and illegal 312
$width timing check 312
%t format specification 450
‘timescale compiler directive 443
adder

using zero-delay buf gates 255
AND-OR gate as user-defined

primitive 161
AND-OR PLA 412
array with logic equations 409
asynchronous system call 408
begin-end block 190, 191
Behavior Profiler 486 to 493
behavioral model 164
bit-select 63
case statement 178
casex 179
casez in instruction decoder 179
changing default base in formatted

output 345
combinational primitive 149
combinational UDP 149
command history 355
command line

restart 355
conditioned events 294
connecting ports by name 222
declaring memory and registers in one

statement 46
decompiling a macro module with

$list 218 to ??
defparam 214
delay control 183
delay mode selection 463 to 464
disable statement 206 to 208
disabling all timing checks 289
November 2008 551 Product Version 8.2

Verilog-XL Reference
disabling the $incpattern_write
task 372

displaying unknown logic value in
different radix formats 338

edge control specifiers 290, 291
edge-sensitive UDP 151
escaped identifiers 28
establishing simulation time with display

output 346
event OR construct 185
factorial function 203
for loop 181
for loop in multiplier 182
fork-join block 192
function definition 202
hierarchical name

in macro module instance 232
in module instance 232
referencing 230

hierarchical path names 229
identifiers 28
incremental save and restart 354
infinite zero-delay loop 165
intra-assignment timing controls 187
invoking $compare 376
J-K flip-flop 154
latch 150
latch module with tri-state

outputs 135 to 136
level-sensitive sequential primitive 150
loading memories from text files 369
logic array personality declaration 409
macro module specification 217
memory addressing 64
memory declaration 46
minimum:typical:maximum values 67,

136
mixing level- and edge-sensitive user-

defined primitives 154
module instance 211, 213
module instance parameter value

assignment 215
module parameter declaration 50
module path declarations with

polarity 254
multiplexer 149
NAND plane system 409
NOR plane system 409
notifiers 292
notifiers in edge sensitive

UDP 292 to 293

overriding module parameter
values 214

PAL16R4 418 to 422
PAL16R8 413 to 417
part-select 64
passing module parameters to

tasks 200
PATHPULSES$ 260
PLA module 409
PLA system tasks 410 to 411
port declarations 220
problem in string value padding 66
processing stimulus patterns with

$getpattern 371
race condition 187
real numbers 49
real numbers in port connections 223
reducing pessimism in a user-defined J-

K flip-flop primitive 158
reducing pessimism in a user-defined

latch UDP 158
register and net declarations 37, 38
repeat loop in multiplier 180
SDPDs 272
sized constant numbers 26
source description containing VCD

tasks 500
specify block 238
specify parameters 238
specparams 238
strength outputs 339
strings 26
synchronous PLA 411
synchronous system call 408
template of a data structure 231
timescales 451 to 454
time-sequenced waveform 191, 192
traffic light sequencer 194
traffic light sequencer using tasks 200
tri-state output bus 62
turn off monitoring 342
two sequential events working in

parallel 193
two-channel multiplexer as user-defined

primitive 161
use of multi-channel descriptors 344
user-defined primitive instance 156
using $realtobits and $bitstoreal in port

connections 380
value change dump file format 509
variable delays for synchronizing
November 2008 552 Product Version 8.2

Verilog-XL Reference
clock 194 to 195
vector XOR 77
waveform 165
while loop in counter 181
writing formatted output to files 344
zero-delay control 183

exit simulator 347
expansion

of macro modules
definition of 216
when expanded 228

of vector nets
specified in port definition 220

explicit event 183
expressions

bit lengths 67
constant 51
self-determined 68

F
fall delay

assigning values for 136
definition of 132

files
output to 343 to 345

filtering pulses
and cancelled schedules 262

filtering pulses on module path delays 263
finish time

in parallel block statements 192
in sequential block statements 192

for loop
syntax 180

force keyword 93 to 96
precedence over assign 95

forever loop
syntax 180

fork-join block statement 190
format specifications 334 to 336

ASCII character 335
b or B 335
binary 335
c or C 335
d or D 334
decimal 334
h or H 334
hexadecimal 334
hierarchical name 335
m or M 335

net signal strength 338 to 340
escape sequences for 335

o or O 335
octal 335
s or S 335
string 335, 340
t or T 335
time format 335
timescales 335
v or V 335

formats
array 409
of logic array personality 409 to 411
plane 410

formatted output system tasks 345
full connection 250

expanding vector bits 400
function

syntax 201
functions 201 to 204

and scope 235
as structured procedures 164
definition 164
in continuous assignments 78
purpose 197
returning a value 202
rules 203
syntax 198
syntax for function call 202

G
g 201
gate level modeling 97 to 141

logic gate syntax 98 to 102
gate type specification 100
gates

and 105 to ??
bidirectional pass 110
buf 106 to ??
bufif 107
cmos 112
compared to continuous

assignments 98
connection list 101, 102
delay 132 to 137
keywords for types 100
MOS 108 to ??
nand 105 to ??
nor 105 to ??
November 2008 553 Product Version 8.2

Verilog-XL Reference
not 106 to ??
notif 107
notif0 107
notif1 107
or 105 to ??
pulldown 113
pullup 113
removal of names 140 to 141
syntax 98 to 102
terminal list 101, 102
xnor 105 to ??
xor 105 to ??

ground 45

H
H

logic 1 or high impedance state in
strength format 338

h
hexadecimal number format 24

hexadecimal display format 24
and high impedance state 337
and unknown logic value 337

Hi
high impedance in strength format 339

hierarchy
display of 358
effect of macro modules on path

names 231
level 228
name referencing 228 to 236

escape sequence for 335
of modules

assigning 358
definition of 209

path names for defining abstract data
structures 231

running backannotation 393
scope 228
scope rules for naming 234 to 236
structures 209 to 236
top level names 228
traversal of 358

high impedance state 114
and numbers 25
and trireg nets 42
display formats 337 to 338
effect in different bases 25
strength display format 339

symbolic representation 32
highz0 100
highz1 100
history of commands 355

I
identifiers 28

definition 28
if-else statement

interactive mode 175
omitting else from nested if 174
purpose 174

if-else-if statement
compared to case statement 177
syntax 175

implicit
declarations

for nets 113
for variables 39

event 183
incremental pattern files 372 to 379
incremental restart 354
index

of array 46
of memory 47

inertial delay 77, 244
initial 165

and activity flow 163, 164
for specifying waveforms 165
syntax 165

initial statements
in UDPs 151 to 154

inout
port declaration 220

input
port declaration 220

input file option
and the key file 357

instance
array 101

rules 102
UDPs 156

instantiation
macro module 217
of modules

and hierarchy 209
integers 47 to 48

division 54
interactive
November 2008 554 Product Version 8.2

Verilog-XL Reference
mode 347
source listing 363 to 365

interconnect delay 423
monitoring a signal value 342

inter-module port connection 225
intra-assignment timing

controls 186 to 189

K
key file

description, syntax, and example 357
keywords

gatetype list 100
negedge 291
posedge 291

keywords list 535

L
L

logic 0 or high impedance state in
strength format 338

La
large capacitor in strength format 339

left shift operator 60
legal module paths

one output driver 243
level-sensitive

event control 186
sequential UDPs 150
versus combinational UDP 150

level-sensitive UDPs
compared to edge-sensitive UDPs 150

lexical conventions ?? to 30
lexical token

comment 24
definition of 23
operator 23 to 24
white space 24

limitations
saving simulation data 355

list of formatted output system tasks 345
list of keywords 535
loading memories from text

files 368 to 369
log file 356
logic array personality 409 to 411

declaration 409

formats 409 to 411
loading 409

logic gates
and 105 to ??
bidirectional pass 110
buf 106 to ??
bufif 107
cmos 112
compared to continuous

assignments 98
delay 132 to 137
MOS 108 to ??
nand 105 to ??
nor 105 to ??
not 106 to ??
notif 107
or 105 to ??
pulldown 113
pullup 113
syntax 98
xnor 105 to ??
xor 105 to ??

logic one 32
logic planes 408
logic strength modeling 114 to 132
logic zero 31
logical operators

! 57
&& 57
|| 57
AND 52
and ambiguous results 57
and unknown logic value 57
compared to bit-wise operators 58
equality 52
inequality 52
negation 52
OR 52
precedence 57

looping statements 179 to 182
for loop 181
forever loop 180
repeat loop 180
while loop 181

lsb (least significant bit) 38

M
macro module 216 to 217

and hierarchical names 231
November 2008 555 Product Version 8.2

Verilog-XL Reference
and module parameters 217
and specify blocks 239
expansion

and delay modes 464
definition of 216
effect of net type combinations

on 228
instances containing part-selects or

concatenations 217
instantiation 217
macromodule keyword 217
port connections in 227
syntax 217

macros
text substitution 29

Me
medium capacitor in strength

format 339
memory 46 to 47

assigning values to 47
declaration syntax 46
index 47
real number memories 49
reducing virtual storage

requirements 140
using temporary registers for bit- and

part-selects 64
minimum:typical:maximum values

delay 136 to 137
format 66 to 67

minus sign(-)
arithmetic subtraction operator 52

MIPDs 423 to 432
application 433
hierarchical effects 426
how they work 425
on inputs and outputs only 426
specifying with PLI 430
unidirectionality 428

MITD 423
and pulse handling 438
creating 435
definition 434

mnemonic strength notation 130
modeling

asynchronous clear/preset on an edge-
triggered D flip-flop 94

behavioral 163 to 195
logic strength 114 to 132
sequential circuits with simultaneous

input changes 159

module 210 to 213
and user-defined primitives 145
definition 210
hierarchy 209
instance parameter value

assignment 215
instantiation 211
keyword 210
macro 216 to 217
overriding parameter values 213 to 216
parameter dependencies 216
port 212
syntax 210

for specifying instantiations 211
terminal 212
top-level

definition of 211
module input port delays, see MIPDs 423
module parameter

as delay 50
as width of variables 50
compared to specify parameter 238
dependencies 216
overriding values 213 to 216
passing to tasks 199 to 200
syntax 50
use with macro modules 217

module path
definition 239
delay 239
description syntax 248, 265
destination

and pulse control 259
in declaration of multiple paths 250
requirements for 248

in behavioral descriptions 255 to 256
polarity 254 to 255
source

and pulse control 259
in declaration of multiple paths 250
requirements for 248
used to calculate delays 240

transport delays 244
module path delays

pulse handling 260
module path pulse control

for specific modules and
paths 259 to 260

global 257
modulus operator 52

definition 55
November 2008 556 Product Version 8.2

Verilog-XL Reference
monitor flag 341
monitoring

continuous 341
strobed 340

monitoring interconnect delay signal
values 342

MOS gate 108 to ??
MOS strength handling 131
msb (most significant bit) 38
multi-channel descriptor 343
multiple drivers

at same strength level 127
driving the same net 41
inside a module 242 to 243
outside a module 243

multiple module path delays
assigning in one statement 250

multi-source interconnect transport
delays 423

and pulse handling 438
creating 435
definition 434

multi-way decision statements 175
multi-way decisions

case statement 176
if-else-if statement 175

N
named blocks

and hierarchical names 228
and scope 235
purpose 192

named events 184 to 185
used with event expressions 184

names
of hierarchical paths 228 to 236

nand gate 105 to ??
negative timing checks

$recrem 303
$setuphold 309

negedge 291
net and register bit addressing 63
nets 40

collapsing 225
delay 132 to 137
implicit declaration 113
initialization 40
names referenced in a hierarchical

name 141

not driven by a source 114
removal of names 140 to 141
scalar 224
syntax 35 to 36
trireg strength 116
types of 40 to 45
wired logic 127

newlink displayandwrite 333
nmos 108 to 110
node

in hierarchical name tree 228
non-blocking procedural

assignment 167 to 173
evaluating assignments 168
multiple assignments 171
processing assignments 173
syntax 168

nor gate 105 to ??
not gate 106 to ??
notif gate 107
notifier in edge sensitive UDP 292 to 293
null

expression 334
string 66

numbers
base format 24
size specification 24
unsized 25

O
o

octal number format 24
octal display format 24
on/off control

of monitoring tasks 341
operands 62 to 66

bit-select 62
concatenation 63
definition 51
function call 63
part-select 62
strings 64 to 66

Operators
logic table for 59

operators 52 to 62
- 52
! 57
!= 56
!==
November 2008 557 Product Version 8.2

Verilog-XL Reference
evaluation of 56
% 52
& 52
&& 57
* 52
*> 250
+ 52
/ 52
< 56
<< 60
<=

evaluation of 56
used in non-blocking procedural

assignment 168
= 71
== 56
===

evaluation of 56
=> 250
> 56
>= 56
>>

evaluation of 60
?: 53
^ 52, 53
^~ 52
{} 62
| 52
|| 57
~ 52
~& 52
~^ 52
~| 53
and real numbers 49
arithmetic 54
binary 53

conventions for 24
bit-wise 58
bit-wise AND 52
bit-wise equivalence 52
bit-wise exclusive OR 52
bit-wise inclusive OR 52
bit-wise negation 52
case equality 52
case inequality 52
conditional 61
definition 23
equality 56
left shift 60
logic table for 58
logical AND 52

logical equality 52
logical inequality 52
logical negation 52
logical OR 52
modulus 52
reduction 59
reduction AND 52
reduction NAND 52
reduction NOR 53
reduction OR 53
reduction XNOR 53
reduction XOR 53
relational 56
right shift 60
ternary 24
unary 24

optimization
of processing stimulus

patterns 370 to 371
or gate 105 to ??
output

port declaration 220
to files 343 to 345

overriding global module path pulse
control 259 to 260

overriding module parameter
values 213 to 216

assigning values in-line within module
instances 215

defparam 214 to 216
compared to assignments 215

P
parallel block statement

finish time 192
fork-join 190
start time 192
syntax 191

parallel connection 249
expanding vector bits 400

parameter
keyword for module parameters 238
module type 50
syntax 50

parentheses
and changing operator precedence 54

part-select
and macro module instances 217
and vector ports 220
November 2008 558 Product Version 8.2

Verilog-XL Reference
of vector net or register 63
references of real numbers 49
syntax 63

path delay mode 457
path delays 239

enhancing accuracy 279 to 287
expanding vector bits 400
expanding vector bits for full

connection 400
expanding vector bits for parallel

connection 400
multiple 275

PATHPULSE$ 259 to 260
Pearl command file 403
personality

memory 408
of logic array 409 to 411

PLA devices 407 to 422
array logic types 408
array types 408
list of system tasks 408
logic array personality declaration 409
logic array personality

formats 409 to 411
logic array personality loading 409

plane
format 410
in programmable logic arrays 408

plus options
+annotate_any_time 393
+autonaming 233
+listcounts 363
+maxdelays 67
+mindelays 67
+multisource_int_delays 435
+neg_tcheck 309
+neg_tchk 304
+nosdfwarn 395
+notimingchecks 289
+pathpulse

and overriding global pulse
control 259

+pre_16a_paths 274
+pulse_e/n 438
+pulse_int_e/n 438
+pulse_int_r/m 438
+pulse_r/m 438
+sdf_error_info 395
+sdf_verbose 395
+transport_int_delays 435
+typdelays 67

+x_transport_pessimism 287
plus sign(+)

arithmetic addition operator 52
pmos 108 to 110
polarity 254 to 255

positive 255
unknown 254

port 219 to 228
collapsing 223
connecting

by name 221 to 223
by position with ordered list 220
in macro modules 227
rules for 224 to 226

declaration 220
definition 219
inter-module connections 225
module 212
of user-defined primitives 146
rules for collapsing 224 to 226, 235

port value character identifiers 515
posedge 291
power supplies

modeled by supply nets 34, 45
precedence

equality operators 56
logical operators 57
relational operators 56

predefined plus options
+maxdelays 67
+mindelays 67
+typdelays 67

primitive instance identifier 101
primitive keyword 145
printing command history 355
procedural assignment 166

and integers 48
and time variables 48
blocking 167
non-blocking 167 to 173
versus continuous assignment 79

procedural continuous
assignments 93 to 96

assign 94 to 95
deassign 94 to 95
definition 93
force 95
precedence 95
release 95
syntax 94

procedural statements
November 2008 559 Product Version 8.2

Verilog-XL Reference
in behavioral models 163
procedural timing controls 182 to 189

delay control 183 to 184
event control 182
fork-join block 193
intra-assignment timing

controls 186 to 189
zero-delay control 183

procedure
always statement 164
function 164
initial statement 164
task 164

Profiler 467
programmable logic arrays 407 to 422

list of system tasks 408
logic types 408
personality

declaration 409
formats 409 to 411
loading 409

types 408
propagation delay

for gates and nets 132
in logic gate syntax 101

protection
of data in memory 381

Pu
pull drive in strength format 339

pull0 100
pull1 100
pulldown source 113
pullup source 113
pulse filtering

and cancelled schedules 262
on module path delays 264
syntax 261

pulse handling
for SITDs and MITDs 438

R
race condition

and intra-assignment timing
control 187

random access memory(RAM)
modeled by register arrays 46

random number generators
$random 347

range

syntax 37 to 38
range specification 99, 101
rcmos 112
reading input commands from a file 356
read-only memory(ROM)

modeled by register arrays 46
real numbers 48 to 49

and operators 49
format specifications used with 336
functions and tasks that handle 380
in port connections 223

recursive task calls 201
reducing pessimism

with a case statement 178
with user-defined primitives 158

reduction operators 59
~& 59
unary NAND 59
unary NOR 59
XNOR 59
XOR 59

redundancy
in user-defined primitive state

tables 157
registers 32

and level-sensitive sequential
UDPs 150

declaration syntax 46
for modeling memories 46
notifier 292
syntax 35 to 36
used in procedural assignments 79

relational operators
< 56
<= 56
> 56
>= 56
and unknown bit values 56
precedence 56

release keyword 95 to 96
repeat event control 188 to 189
repeat loop

syntax 180
repetition multiplier 62
resistive devices

modeled with tri0 and tri1 nets 45
restart file option 355
restarting

from command line 355
from full save 354
from incremental save 354
November 2008 560 Product Version 8.2

Verilog-XL Reference
the simulator 352
restrictions on data types

in continuous assignments
for port connections 224
right-hand versus left-hand 71

in port collapsing 223 to 224
in procedural assignments

right-hand versus left-hand 166
when connecting ports 224

right shift operator 60
rise delay

assigning values for 136
definition of 132

rnmos 108 to 110
rpmos 108 to 110
rtran 110
rtranif0 110
rtranif1 110

S
s

in string display format 340
saving simulation data 352

limitations 355
scalared keyword 38
scalars

compared to vectors 37
scalar nets and driving strength of

continuous assignment 77
schedule

showing or hiding cancelled 265
schedules

cancellation dilemma 266
cancelled 262, 263

scientific notation 48
scope

and hierarchical names 228
rules 234 to 236

SDF annotation 392
configuration file 393
creating new delay triplets 396
delay values 394
examples of running 395
for vector bits 400
interconnect delay 397
log file 394
multiple task invocations 396
options controlling output 395
scaling timing data 394

SDF Annotator warning suppression 395
SDPDs 269

effects of unknowns 276, 277
internal logic effects 277

self-determined expression 68
sequential block statement 190 to 191

finish time 192
start time 192
syntax 190

sequential UDP initialization 151 to 154
sequential UDPs

input and output fields in state table 147
set of values (0, 1, x, z) 31
setting a net to a logic value 369 to 370
shift operators

<< 60
>> 60

signals
detecting changes in asynchronous

control 299, 304
multiple conditioning 294

signed arithmetic
shift operators 60

simulating module path delays
one path output driving another 256
when driving wired logic 242 to 243

simulation
event-driven 160
going back with incremental restart 354
simulation time and timing controls 182
time 346

single-source interconnect transport
delays 423

and pulse handling 438
creating 435
definition 434

SITD 423
and pulse handling 438
creating 435
definition 434

size of displayed data 336 to 337
sized numbers 24
Sm

small capacitor in strength format 339
source

pulldown 113
pullup 113

source protection
effect on dump file 500

specify block 237 to 293
specify blocks 237
November 2008 561 Product Version 8.2

Verilog-XL Reference
specify parameters 238 to 239
specifying transition delays on module

paths 251
assigning one value 252
assigning six values 252
assigning three values 252
assigning two values 252
x transitions 253

specparam 239
syntax 238
versus module parameter 239

St
strong drive in strength format 338

standard output 343
start time

in parallel block statements 192
in sequential block statements 192

state dependent path delays 269
status

of expanded nets 359
of module ports 360
of variables 358 to 359

strength 100 to 101
ambiguous 117
and logic conflicts 40
and MOS gates 131
and scalar net variables 32
charge storage

strength levels for 116
driving 115
gates that accept specifications 100
of combined signals 116
on trireg nets 42
range of possible values 118
reduction by non-resistive devices 131
reduction by resistive devices 131
scale of strengths 116
specifying 114 to 116
supply net 132
trace messages 130
tri0 131
tri1 131
trireg 132

strength display format 338 to 340
high impedance 339
large capacitor 339
logic value 0, 1, H, L, X, Z 338
medium capacitor 339
pull drive 339
small capacitor 339
strong drive 338

supply drive 338
weak drive 339

strength values for $dumpports 516
strings

as operands 65
definition 26
display format 335, 340
in vector variables 65
manipulation of 26
padding 27
value padding 65

strobed monitoring 340
strong0 100
strong1 100
structured procedure 164 to 195

always statement 164
function 164
initial statement 164
task 164

Su
supply drive in strength format 338

supply net strength 132
supply0 100

net 34, 45
supply1 100

net 34, 45
switches

MOS 108 to 110
symbolic debugging

and hierarchical name referencing 230
synchronous arrays 408
syntax

$cleartrace 348
$compare 375
$countdrivers 360
$deposit 369
$disable_warnings 366
$display 333
$enable_warnings 367
$fclose 343
$fdisplay 343
$finish 347
$fmonitor 343
$fopen 343
$fstrobe 343
$fwrite 343
$getpattern 371
$history 355
$incpattern_read 373
$incpattern_write 372
$incsave 352
November 2008 562 Product Version 8.2

Verilog-XL Reference
$keepcommands 363
$key 357
$list 363
$list_forces 364
$listcounts 363, 384
$log 357
$monitor 341
$monitoroff 341
$monitoron 341
$nochange 297
$nokey 357
$nolog 357
$random 347
$readmemb 368
$readmemh 368
$recovery 299
$recrem 290
$removal 290, 304
$reportprofile 384
$reset 386
$scope 358
$settrace 348
$setup 306
$setuphold 307
$showallinstances 358
$showexpandednets 360
$showmodes 362
$showportsnotcollapsed 360
$showscopes 358
$showvariables 358
$showvars 358
$startprofile 383
$stime 346
$stopprofile 384
$strobe 340
$strobe_compare 376
$time 346
$write 333
‘default_nettype 114
always 165
array of instances 99
assign 94
behavioral statements 526 to 527
conditional operator 61
conditional statement 174
conditioned event 293
continuous assignment 72
deassign 94
declarations 523 to 525
declaring events 185
delay control 183

disable statement 205
event control 184
event triggering statement 185
expressions 531 to 532
for addressing memory 64
for enabling tasks 199
for loop 180
force 94
forever loop 180
formal definition 519 to 534
function 198, 201
function call 202
general 532
if-else-if statement 175
initial statement 165
integer declaration 47
logic gates 98
macro module 217
memory declaration 46
module 210
module instantiation 211, 525
module parameter 50
module path description 248
net declaration 35 to 36
parallel block statement 191
part-select 63
PATHPULSES$ 259
period 298
port

declaration 220
definition 219

primitive instances 525
procedural continuous assignments 94
pulse filtering tasks 261
range 38
register declaration 35 to 36

for memories 46
release 94
repeat loop 180
SDPD 270
sequential block statement 190
source text 520 to 523
specify block 238
specify parameter 238
specify section 528 to 530
specparam 238
state dependent path delays 270
switch-level modeling 533
task 198
text macro

definitions 29
November 2008 563 Product Version 8.2

Verilog-XL Reference
usage 29
time variable declaration 47
UDPs 144
user-defined primitives 144 to 145
wait statement 186
while loop 180

system tasks 331
file name arguments 332
for changing base in formatted

output 345
for continuous monitoring 341
for displaying information 333 to 340
for displaying the delay mode 362
for fetching simulation time 346
for generating key files 357
for generating random numbers 347
for loading memories from text

files 368 to 369
for printing command history 355
for processing stimulus patterns

faster 370 to 371
for producing an interactive source

listing 363 to 365
for reading input commands from a

file 356
for resetting Verilog-XL 384 to 392
for restarting the simulator 352
for running the behavior

profiler 383 to 384
for saving simulation data 352
for setting a net to a logic value 369
for showing hierarchy 358
for showing module port status 360
for showing number of drivers 360
for showing status of expanded

nets 359
for showing variable status 358 to 359
for storing interactive commands 362
for writing formatted output to

files 343 to 345
generating a checkpoint in the value

change dump file 498
limiting the size of the value change

dump file 499
list of formatted output system

tasks 345
reading the value change dump file

during a simulation 499
resuming the dump into the value change

dump file 498
showing the timescale of a module 448

specifying how %t reports time
information 448 to 451

specifying the name of the value change
dump file 496

specifying the time unit of delays entered
interactively 448 to 451

specifying the variables to be dumped in
the value change dump
file 497 to 498

stopping the dump into the value change
dump file 498

T
t

timescale format
example of use 450

table keyword 146
tasks 197 to 204

and hierarchical names 228
and scope 234
as structured procedures 164
definition 164
disabling within a nested chain 206
enabling 198 to 200

when already active 201
passing parameters 199 to 200
purpose 198
syntax 198

for enabling 199
terminal

in logic gate syntax 102
module 212

ternary operators
?: 53

text macro substitutions 29 to 30
definition syntax 29
in interactive mode 29
redefinition 30
usage syntax 29

time
and incremental restart 354
arithmetic operations performed on time

variables 48
simulation 346

and timing controls 182
variables 47

time precision 442
time unit 442
timescales
November 2008 564 Product Version 8.2

Verilog-XL Reference
displaying 448
example 451 to 454
setting 451
supporting functions and tasks 380
system tasks for 447 to 451

timing check
violations 290

timing checks 289
$hold system task 295
$nochange 297
$period 298
$recovery 299
$recrem 301
$removal 304
$setup 305
$setuphold 307
$skew 310
$width 311
and detecting simultaneous input

transitions 160
annotating vector bits 401
in behavioral descriptions 255 to 256
negative time specifications 295
system tasks 295
using edge-control specifiers 291
using notifiers for timing violations 292
using with conditioned events 293
warning messages 290
with multiple conditioning signals 294

too few module port connections
warning 213

top-level module
definition of 211

trace
$cleartrace 348
$settrace 348

tracing statements inside macro
modules 218

single step 218
tran 110
tranif0 110
tranif1 110
transistors 110
transitions

01 151
unspecified 151

transport delay 244
tree structure

of hierarchical names 228
tri nets 45
trireg 41 to 45

and capacitive networks 42
and charge decay 45
and charge storage strength 116, 132
and high impedance state 42
example 42
vectored keyword inapplicable 38

turn-off delay 136
types of nets

tri nets 40
tri0 131
tri1 131
triand 41
trior 41
wire 40
wired AND 41
wired logic 127
wired OR 41

U
UDPs 143 to 162

and memory considerations 160
and performance 144
combinational UDPs 148 to 150
compilation 157
definition 145 to 147
edge-sensitive UDPs 150 to 151
instances 156 to 157
level-sensitive dominance 155 to 156
level-sensitive sequential UDPs 150
mixing level- and edge-sensitive

descriptions 154 to 155
ports 146
processing simultaneous input

changes 159
reducing pessimism 158
state table 146 to 147
summary of symbols in state table 148
syntax 144 to 145

unary operators
! 57
<< 60
>> 60

unconnected port 212
underline character 26
unit delay mode

and timescales and time units 460
definition of 456
overriding with the parameter attribute

mechanism 462
November 2008 565 Product Version 8.2

Verilog-XL Reference
unknown logic value
and numbers 25
display formats 337 to ??
effect in different bases 25
in UDP state table 147
symbolic representation 32

unsized numbers 25
unspecified transitions 151
upwards name referencing 232 to 236
user-defined primitives 143 to 162

and performance 144
combinational 148 to 150
compilation 157
definition 145 to 147
edge-sensitive 150 to 151
instances 156 to 157
level-sensitive dominance 155 to 156
level-sensitive sequential 150
mixing level- and edge-sensitive

descriptions 154 to 155
ports 146
processing simultaneous input

changes 159
reducing pessimism 158
state table 146 to 147
summary of symbols in state table 148
syntax 144 to 145

V
value change dump file 495 to 512

contents 500
creating 495 to 498
effect of source protection 500
format 500 to 512

example 509 to 510
formats of variable values 501 to 502
generating a checkpoint 498
keyword commands 502 to 506

$comment 503
$date 504
$dumpall 504
$dumpon 504
$dumpvars 505
$enddefinitions 505
$scope 505
$timescale 506
$upscope 506
$var 507
$version 507, 508

limiting the size 499
reading the value change dump file

during a simulation 499
resuming the dump 498
specifying the name 496
specifying the variables to be

dumped 497 to 498
stopping the dump 498
structure 501
syntax of VCD file 508

value set (0, 1, x, z) 31
values

of combined signals 116
Vcc 45
VCD file

syntax 508
VCD, see value change dump file
Vdd 45
vectored keyword 38
vectors 37

and timing violations 291
violations

timing checks 290
Vss 45

W
wait statement

as level-sensitive event control 186
syntax 186
to advance simulation time 183

warning messages
enabling and disabling 365 to 367
timing checks 290
too few module port connections 213

warning suppression 259
warning suppression option

for non-downward path names 236
warnings

disabling 366 to 367
enabling 367

We
weak drive in strength format 339

weak0 100
weak1 100
while loop

syntax 180
white space 24
wired logic nets

wand 127
November 2008 566 Product Version 8.2

Verilog-XL Reference
wired-AND configurations 41
wired-OR configurations 41

wires 40
word

of array 46
writing formatted output to files 343 to 345

X
X

unknown logic value in strength
format 338

x
as display format for unknown logic

value 337
in state table 147
unknown logic value 32

XL algorithm
and specify blocks 239

xnor gate 105 to ??
xor gate 105 to ??

Z
Z

as display format for high impedance
state 337

high impedance state in strength
format 338

z
as display format for high impedance

state 337
high impedance state 32

zero delay mode
definition of 456
overriding with the parameter attribute

mechanism 462
zero-delay

control 183
November 2008 567 Product Version 8.2

Verilog-XL Reference
November 2008 568 Product Version 8.2

	Contents
	Introduction
	Overview
	The Verilog Hardware Description Language
	The Verilog�XL Logic Simulator
	Major Features of Verilog�XL
	Verilog�XL Licenses

	Lexical Conventions
	Overview
	Operators
	White Space and Comments
	Numbers
	Strings
	String Variable Declaration
	String Manipulation
	Special Characters in Strings

	Identifiers, Keywords, and System Names
	Escaped Identifiers
	Keywords

	Text Substitutions

	Data Types
	Overview
	Value Set
	Registers and Nets
	Nets
	Registers
	Signed Objects
	Net and Register Declaration Syntax
	Declaration Examples

	Vectors
	Specifying Vectors
	Vector Net Accessibility

	Strengths
	Charge Strength
	Drive Strength

	Implicit Declarations
	Net Initialization
	Net Types
	wire and tri Nets
	Wired Nets
	trireg Net
	tri0 and tri1 Nets
	Supply Nets

	Memories
	Integers and Times
	Real Numbers
	Real Number Declaration Syntax
	Specifying Real Numbers
	Operators and Real Numbers
	Conversion

	Parameters

	Expressions
	Overview
	Operators
	Binary Operator Precedence
	Numeric Conventions in Expressions
	Arithmetic Operators
	Arithmetic Expressions with Registers and Integers
	Relational Operators
	Equality Operators
	Logical Operators
	Bit-Wise Operators
	Reduction Operators
	Syntax Restrictions
	Shift Operators
	Arithmetic Shift Operators for Signed Objects
	Conditional Operator
	Concatenations

	Operands
	Net and Register Bit Addressing
	Memory Addressing
	Strings
	String Operations
	String Value Padding and Potential Problems
	Null String Handling

	Minimum, Typical, Maximum Delay Expressions
	Expression Bit Lengths
	An Example of an Expression Bit Length Problem
	Verilog Rules for Expression Bit Lengths

	Assignments
	Overview
	Continuous Assignments
	The Continuous Assignment Statement
	The Net Declaration Assignment
	Delays
	Strength
	Calling Functions in a Continuous Assignment

	Procedural Assignments
	Accelerated Continuous Assignments
	Restrictions on Accelerated Continuous Assignments
	Controlling the Acceleration of Continuous Assignments
	The Effects of Accelerated Continuous Assignments

	Procedural Continuous Assignments
	The assign and deassign Procedural Statements
	The force and release Procedural Statements

	Gate and Switch Level Modeling
	Overview
	Gate and Switch Declaration Syntax
	The Gate Type Specification
	The Drive Strength Specification
	The Delay Specification
	The Primitive Instance Identifier
	The Range Specification
	Primitive Instance Connection List
	Rules for Using an Array of Instances

	and, nand, nor, or, xor, and xnor Gates
	buf and not Gates
	bufif1, bufif0, notif1, and notif0 Gates
	MOS Switches
	Bidirectional Pass Switches
	cmos Switches
	pullup and pulldown Sources
	Implicit Net Declarations
	Logic Strength Modeling
	Strengths and Values of Combined Signals
	Combined Signals of Unambiguous Strength
	Ambiguous Strengths: Sources and Combinations
	Ambiguous Strength Signals and Unambiguous Signals
	Wired Logic Net Types

	Strength Resolution for Continuous Assignments
	Mnemonic Format
	Strength Reduction by Non-Resistive Devices
	Strength Reduction by Resistive Devices
	Strengths of Net Types
	tri0 and tri1 Net Strengths
	trireg Strength
	supply0 and supply1 Net Strengths

	Gate and Net Delays
	min/typ/max Delays
	trireg Net Charge Decay

	Gate and Net Name Removal

	User-Defined Primitives (UDPs)
	Overview
	UDP Syntax
	UDP Definition
	UDP Terminals
	UDP Declarations
	Sequential UDP initial Statement
	UDP State Table

	Summary of UDP Symbols
	Combinational UDPs
	Level-Sensitive Sequential UDPs
	Edge-Sensitive UDPs
	Sequential UDP Initialization
	Mixing Level�Sensitive and Edge-Sensitive Descriptions
	Level-Sensitive Dominance
	UDP Instances
	Compilation
	Reducing Pessimism
	Processing of Simultaneous Input Changes
	Memory Usage and Performance Considerations
	UDP Examples

	Behavioral Modeling
	Overview
	Structured Procedures
	always Statement
	initial Statement

	Procedural Assignments
	Blocking Procedural Assignments
	Non�Blocking Procedural Assignments
	Processing Blocking and Non�Blocking Procedural Assignments

	Conditional Statements
	Multi-Way Decision Statements
	if-else-if Statements
	case Statements
	Using case Statements with Inconsequential Conditions

	Looping Statements
	forever Loop
	repeat Loop
	while Loop
	for Loop

	Procedural Timing Controls
	Delay Control
	Zero-Delay Control
	Event Control
	Named Events
	Event OR Construct
	Level�Sensitive Event Control
	Intra-Assignment Timing Controls

	Block Statements
	Sequential Blocks
	Parallel Blocks
	Block Names
	Start and Finish Times

	Behavior Model Examples

	Tasks and Functions
	Overview
	Distinctions Between Tasks and Functions
	Tasks and Task Enabling
	Defining a Task
	Task Enabling and Argument Passing
	Task Example
	Effect of Enabling an Already Active Task

	Functions and Function Calling
	Defining a Function
	Returning a Value from a Function
	Calling a Function
	Function Rules
	Function Example

	Disabling of Named Blocks and Tasks
	Overview
	Syntax
	disable Statement Examples

	Hierarchical Structures
	Overview
	Modules
	Top�Level Modules
	Module Instantiation
	Module Definition and Instance Example

	Overriding Module Parameter Values
	Using the defparam Statement
	Using Module Instance Parameter Value Assignment
	Parameter Dependence

	Macro Modules
	Constructs Allowed in Macro Modules
	Specifying Macro Modules
	Instances of Macro Modules
	Using Parameters with Macro Modules
	Effect on Decompilation and Tracing

	Ports
	Port Definition
	Port Declarations
	Connecting Module Ports by Ordered List
	Connecting Module Ports by Name
	Real Numbers in Port Connections
	Port Collapsing
	Port Connection Rules
	Port Connections in Macro Modules

	Hierarchical Names
	Data Structures
	Macro Modules and Hierarchical Names
	Upwards Name Referencing

	Automatic Naming
	Scope Rules

	Using Specify Blocks and Path Delays
	Understanding Specify Blocks
	Specparam Declarations

	Understanding Path Delays
	Driving Wired Logic Outputs
	Simulating Distributed Delays as Inertial and Transport Delays
	Simulating Path Delays

	Describing Module Paths
	Establishing Parallel or Full Connections
	Specifying Transition Delays on Module Paths
	Calculating Delay Values for X Transitions
	Specifying Module Path Polarity
	Using Path Delays in Behavioral Descriptions
	Simulating Path Outputs that Drive Other Path Outputs
	Understanding Strength Changes on Path Inputs
	Specifying Global Pulse Control on Module Paths
	Specifying Local Pulse Control for Module Paths
	Pulse Filtering for Module Path Delays
	Pulse Filtering and Cancelled Schedules
	Pulse Filtering and Cancelled Schedule Dilemmas

	Using State-Dependent Path Delays (SDPDs)
	Evaluating SDPD Expressions
	Using Edge Keywords in SDPDs
	Making SDPDs Function as Unconditional Delays
	Working with Distributed Delays and SDPDs

	Working with Multiple Path Delays
	Effects of Unknowns on SDPDs
	Effects of Unknowns on Edge-Sensitive Delays
	Possible Effects of Internal Logic

	Enhancing Path Delay Accuracy
	Invoking the accu_path Algorithm
	Comparing the Default and accu_path Delay Selection Algorithms
	Limits of the accu_path Algorithm

	Timing Checks
	Overview
	Using Timing Checks
	Understanding Timing Violation Messages
	Using Edge-Control Specifiers
	Using Notifiers for Timing Violations
	Enabling Timing Checks with Conditioned Events

	Using the Timing Check System Tasks
	$hold
	$nochange
	$period
	$recovery
	$recrem
	$removal
	$setup
	$setuphold
	$skew
	$width

	Using Negative Timing Check Limits in $setuphold and $recrem
	Effects of Delayed Signals on Timing Checks
	Calculation of Delayed Signals and Limit Modification
	Explicitly Defining Delayed Signals
	Non-Convergence in Timing Checks
	Explicitly Defining Delayed Signals
	Effects of Delayed Signals on Path Delays
	Restrictions
	Exception Handling

	System Tasks and Functions
	Filename Parameters
	Display and Write Tasks
	Escape Sequences for Special Characters
	Format Specifications
	Size of Displayed Data
	Unknown and High-Impedance Values
	Strength Format
	Hierarchical Name Format
	String Format

	Strobed Monitoring
	Continuous Monitoring
	Monitoring Interconnect Delay Signal Values
	File Output
	Default Base
	Signed Expressions
	Simulation Time
	Stop and Finish
	Random Number Generation
	Tracing
	Saving and Restarting Simulations
	Incremental Save and Restart
	Command-Line Restart
	Limitations for Saving and Restarting

	Command History
	Command Input Files
	Log File
	Key File
	Setting the Interactive Scope
	Showing the Hierarchy
	Showing Variable Status
	Showing Net Expansion Status
	Showing Module Port Status
	Showing Number of Drivers
	Displaying the Delay Mode
	Storing Interactive Commands
	Interactive Source Listing—Decompilation
	$list
	$listcounts
	$list_forces

	Disabling and Enabling Warnings
	$disable_warnings
	$enable_warnings

	Loading Memories from Text Files
	Setting a Net to a Logic Value
	Fast Processing of Stimulus Patterns
	Incremental Pattern File Tasks
	$incpattern_write
	$incpattern_read
	$compare
	$strobe_compare
	Examples of Response Checking

	Functions and Tasks for Reals
	Functions and Tasks for Timescales
	Protecting Data in Memory
	Value Change Dump File Tasks
	Running the Behavior Profiler
	$startprofile
	$reportprofile
	$listcounts
	$stopprofile

	Resetting Verilog�XL—Starting Simulation Over Again
	$reset
	$reset_count
	$reset_value

	SDF Annotation
	$sdf_annotate
	Controlling $sdf_annotate Output
	$sdf_annotate Examples
	Annotating Path Delay or Timing Check Vector Bits in Specify Blocks

	Using the $dlc System Task
	Using the $system System Task
	Using the $simvision System Task

	Programmable Logic Arrays
	Overview
	Syntax
	Array Types
	Array Logic Types
	Logic Array Personality Declaration and Loading
	Logic Array Personality Formats
	PLA Examples
	Synchronous Example
	And-Or Array Example
	PAL16R8 Example
	PAL16R4 Example

	Interconnect Delays
	Overview
	Module Import Port Delays (MIPDs)
	How MIPDs Work
	Specifying MIPDs
	Restrictions on Ports for MIPDs
	Monitoring Nets Internal to MIPDs
	Displaying Status Information for Nets Internal to MIPDs
	An Application of MIPDs

	Single-Source/MultiSource Interconnect Transport Delays (S/MITDs)
	Controlling MIPD and S/MITD Creation
	S/MITDs and Pulse Handling
	Resolving Ambiguous S/MITD Events
	PLI Tasks for S/MITDs

	Timescales
	Overview
	The ‘timescale Compiler Directive
	Usage Rules
	Syntax
	Effects of Timescales on Simulation Performance

	Timescale System Functions
	$time
	$realtime
	$scale

	The Timescale System Tasks
	$printtimescale
	$timeformat
	Timescales Examples

	Delay Mode Selection
	Overview
	Delay Modes
	Unit Delay Mode
	Zero Delay Mode
	Distributed Delay Mode
	Path Delay Mode
	Default Delay Mode

	Reasons to Select a Delay Mode
	Setting a Delay Mode
	Compiler Directives
	Command-Line Plus Options

	Precedence in Selection
	Timescales and Simulation Time Units
	Overriding Delay Values
	PLI 1.0 or VPI Access Routines and Delays
	Parameter Attribute Mechanism

	Delay Mode Example
	Decompiling with Delay Modes
	$showmodes
	acc_fetch_delay_mode Access Routine
	Macro Module Expansion and Delay Modes
	Summary of Delay Mode Rules

	The Behavior Profiler
	How the Behavior Profiler Works
	Behavior Profiler System Tasks
	$startprofile
	$reportprofile
	$stopprofile
	$listcounts

	Behavior Profiler Data Report
	Profile Ranking by Statement
	Profile Ranking by Module Instance
	Profile Ranking by Statement Class
	Profile Ranking by Statement Type

	Recommended Modeling Practices
	Invoke the Behavior Profiler After You Initialize Your Design
	Put Statements on Separate Lines

	How Verilog-XL Affects Profiler Results
	Using a Variable to Drive Mulitple Module Instances
	Expanded Vector Nets
	Accelerated Events

	Behavior Profiler Example

	The Value Change Dump File
	Overview
	Creating the Value Change Dump File
	Specifying the Dump File Name ($dumpfile)
	Specifying Variables for Dumping ($dumpvars)
	Stopping and Resuming the Dump ($dumpoff/$dumpon)
	Generating a Checkpoint ($dumpall)
	Limiting the Size of the Dump File ($dumplimit)
	Reading the Dump File During Simulation ($dumpflush)
	Sample Source Description Containing VCD Tasks

	Format of the Value Change Dump File
	Contents of the Dump File
	Structure of the Dump File
	Formats of Dumped Variable Values
	Using Keyword Commands
	Description of Keyword Commands
	Syntax of the VCD File
	Value Change Dump File Format Example

	Using the $dumpports System Task
	$dumpports Syntax
	$dumpports Output
	$dumpports Restrictions
	$dumpports_close

	Formal Syntax Definition
	Summary of Syntax Descriptions
	Source Text
	Declarations
	Primitive Instances
	Module Instantiations
	Behavioral Statements
	Specify Section
	Expressions
	General Syntax Definition
	Switch�Level Modeling

	Verilog�XL Keywords
	Keywords from Compiler Directives
	Keywords from Specify Blocks
	Keywords from Neither Compiler Directives nor Specify Blocks

	Verilog-XL and Standards’ Compliance
	Supported Standards
	Known Exceptions
	VPI Routines
	Wire with same name as a Port

	Index

