
1

WRIT: Web Request Integrity and Attestation
against Malicious Browser Extensions

Giorgos Vasiliadis∗†, Apostolos Karampelas†¶, Alexandros Shevtsov†, Panagiotis Papadopoulos†, Sotiris
Ioannidis†‡,and Alexandros Kapravelos§,

∗Department of Management Science and Technology, Hellenic Mediterranean University, Agios Nikolaos,
Greece †Institute of Computer Science, Foundation for Research and Technology - Hellas, Heraklion,

Greece ‡School of Electrical and Computer Engineering, Technical University of Crete, Chania, Greece
§Department of Computer Science, North Carolina State University, USA ¶Tenable Inc.

✦

Abstract—The powerful capabilities of modern browsers have pushed
the web application logic to the user side, in order to minimize latency,
increase scalability of the service and improve users’ quality of expe-
rience. What is more, browsers provide a rich toolchest for browser
extensions to provide additional functionality, but at the same time
enable them to become a powerful vehicle for malicious actors. Such
actors may spy, phish or fraud users, thus making the user’s browser
untrusted for the web servers.

In this paper, we present WRIT, a practical framework that enables
websites to protect critical functionality from abuse in the presence of
malicious extensions. In WRIT, the integrity of outgoing web requests is
attested and verified to ensure they were triggered by a user’s action and
not automatically generated by a malicious browser extension. WRIT is
immediately applicable by leveraging existing HTML5 and other native
browser features and does not require any modification of the browser.
Performance results of our prototype show that it adds a negligible 7.29
ms latency to sensitive user-triggered actions (e.g., post message).

1 INTRODUCTION

Browser extensions enable developers to augment the base-
line functionality provided by browsers and enhance the
user experience. Yet, the very same rich capabilities of theirs
can provide a powerful vehicle for attackers to perform
malicious actions [32], [8], [55]. There are various cases dis-
covered over the years, where malicious browser extensions
were used by attackers to infect users’ browsers in order to
gain control of the code that web servers sent to the users
during browsing [13], [44], [35], [59]. Focusing on recently
reported attacks though, we can see a new trend in their
functionality, in which the malicious extensions do not sim-
ply aim to steal user credentials or passwords, but instead
mask their malicious actions under the guise of typical user
activity [1], [3], [5]. A recent example involved a cluster of
scam extensions in Google’s Chrome Web Store with com-
bined installations of more than 500,000, which were able to
generate fake ad clicks in an automated way, without user
knowledge or consent [3]; the malicious extension works
by creating the same web requests that would have been
created if the advertisement was clicked by a real user. A
similar but more advanced and targeted attack scenario was

reported in early 2021, where a malicious extension was able
to perform several actions on the Gmail accounts of its vic-
tims (including reading, forwarding, deleting, and sending
e-mails) [5]. The implementation of such sophisticated types
of malicious extensions makes it very challenging for web
services to distinguish the legitimate actions of real users
from malicious actions performed by extensions within their
browser.

In this paper, we present a novel and practical frame-
work, called WRIT (Web Request Integrity and aTtestation),
that tackles exactly this problem: it enables websites to
ensure that critical requests have been created via a benign
control-flow execution path (i.e., the request was triggered
by an actual user action), and not crafted or automati-
cally generated by malicious third-party code or a browser
extension. WRIT provides the necessary security building
blocks to verify the execution flow integrity of selective code
snippets at the front-end. WRIT is implemented completely
in JavaScript and does not require any modification of the
user’s browser. To assess the effectiveness and feasibility
of our approach, we implemented a prototype of WRIT
(available in [2]). The performance evaluation results show
that our approach incurs a low overhead in terms of latency
and throughput.
Contributions: In summary, the contributions of our paper
are:

1) We implement and provide an open source prototype
of our approach (available in [2]), which is able to attest
and verify the integrity of web requests and detect any
abnormal or malicious requests that are not triggered
by the user’s actions. We further integrate our approach
within Axios [9], a lightweight HTTP client API for cre-
ating web requests that is typically used in combination
with many popular modern web frameworks, such as
ReactJS [34] and Angular [29].

2) We implement a mechanism to trace the execution of
selected JavaScript functions at run-time. These traces
can be used to verify that a function has not been called
from a potentially malicious action.

3) We conduct a thorough analysis to evaluate the security



properties and performance overheads of our approach.
The performance evaluation results show that the la-
tency added byWRIT to protect user actions considered
as security-critical1 (i.e., post a message) is practically
negligible to the user experience (7.29 ms).

2 MALICIOUS BROWSER EXTENSIONS

A malicious extension can monitor, disrupt, tamper, or
block any incoming or outgoing traffic from and to the
web service, as well as inject JavaScript code to the web
page or tamper any JavaScript snippet sent by a web server
before running on the user’s browser. A browser extension
can execute code —without any further interaction with
the user— through background scripts or content scripts. A
background script [17] runs continuously in the browser’s
background (as the name implies), as long as the browser
is running. In this global context, a malicious extension can
perform general purpose attacks (e.g., monitor all outgoing
HTTP requests), as well as have access to a plethora of
information regarding every open tab and leverage it to
perform more targeted attacks. In addition, a malicious
extension can leverage the browser API for web extensions,
i.e., executeScript [21], in order to deploy code segments
that can run as content scripts directly into one or more
open tabs. Alternatively, content scripts can be declared
into the extension’s manifest to run in tabs matching a
URL pattern (a wildcard enables injecting to all tabs) at
page load by default or after the page finishes loading;
either way, a malicious extension gains the ability to interact
with a specific tab’s page’s context through content scripts.
Through a malicious extension an attacker can send a web
request from a user’s browser using one of the following
methods:

1) By synthetically crafting a web request and manually
sending it to the server. The request should also include
any cookies or session identifiers needed, which can
easily be accessed or acquired by a malicious extension.

2) By hooking a pre-existing JavaScript function (that re-
sides either within the DOM or is browser built-in),
in which the malicious code is injected. This way, the
malicious code will be executed every time the hooked
function is invoked.

3) By mimicking a user action that ends up send-
ing a seemingly benign request. For example, auto-
completing a form and generating an artificial click
event on the button that submits the form, instead of
using a programmatic function to submit it directly,
i.e., form.submit(). This way, the request will be
sent through a normal program flow, even though it
has been triggered automatically via the malicious code
snippet.

3 THREAT MODEL

We assume an adversary who manages to run malicious
JavaScript code at the client side either by a malicious
imported third-party library or by a malicious extension

1. WRIT operates only on marked-as-sensitive web requests, leaving
the rest (such as those for getting normal web content, object fetches,
and asynchronous updates) unaffected.

installed in the victim’s browser, enabling them to hijack the
browsing sessions of the victim to perform specific actions
(e.g., web requests or transactions) on their behalf. Such
attacks have recently been reported and can be categorized
in two attack vectors: (i) click frauds, in which malicious
extensions aim to imitate their click traffic to look as be-
nign as possible [3]; and (ii) account hijacking, in which the
extensions perform several actions on users accounts (e.g.,
message posts, reading and sending of e-mails, etc), as it
was in the case for Facebook [1] and Gmail [5]. The common
pattern of both vectors is the unfair advantage of extensions
to perform actions on users behalf within the browser, where
users are already authenticated and the traffic is decrypted.
This makes it very difficult for web services to distinguish
the actions of a real user from the actions performed by an
extension within the user’s browser.
Infection. A successful infection can be achieved in many
different ways: (i) by deceiving the user that the extension
is legitimate, (ii) by attackers purchasing popular extensions
and then updating them with malicious operations, (iii) by
side-loading from a local archive, or (iv) by compromising
popular extensions or JavaScript libraries and subsequently
having them serve malicious code [15], [47], [53], [14].

Last but not least, it is important to note that WRIT
does not aim to defend against cases where the browser
extension tricks the user into performing an action through
clickjacking or UI redressing attacks. Our system aims to
assess the humanness of an action, regardless if this was
intended or not. There are many works already dealing with
such kind of user action-jacking attacks [41], [6], [51].

4 BUILDING BLOCKS

In this section, we describe the HTML features that we
mainly use to build WRIT.

4.1 HTML5 Features
Service Workers: Service Workers [24] are non-blocking
(i.e., fully asynchronous) modules that reside in the user’s
browser between the web page and the web server, iso-
lated from each visited page’s context. A Service Worker
is registered the first time the user visits the website and
runs in the background, independently from the parent
webpage. Typically, when the user browses away from a
website its Service Worker is paused by the browser; then
it is reactivated once the parent domain is visited again.
However, it is possible for the publisher of a website to
keep its Service Worker alive by implementing periodic
synchronization [25].

Service Workers have the ability to intercept and handle
network requests originating in the parent web page; this
feature allows them to be used as programmable network
proxies, allowing developers to control how network re-
quests from a web page are handled. Moreover, Service
Workers cannot access the DOM directly, however they can
communicate with web pages under their scope directly
via the postMessage interface [18] or indirectly via web
requests. A Service Worker can be registered using the
serviceWorkerContainer.register() function. This
function takes the URL of the Service Worker’s script as an

2



argument and passes it internally to the browser, where it
is fetched over HTTPS. As a result, no browser extension or
any in-browser entity can have access to the browser’s C++
implementation that handles the Service Worker’s retrieval
and registration with the first-party domain [52]. Moreover,
this JavaScript file can only be fetched from the first-party
domain (i.e., it cannot be hosted in a CDN or any other
third-party server) and cannot be registered from an iframe
or third-party script.
JavaScript Closures: Functions in JavaScript can form clo-
sures [19], which combine functions with the lexical envi-
ronment they are created in; the lexical environment in-
cludes any variables or other functions that share the same
scope with the function forming the closure. The closure
allows them to live on (i.e., to remain operational and
accessible) past their original scope through the function
that formed the closure. This property makes closures a
powerful tool that allows us to emulate private methods, in
order to regulate access to sensitive library script functions
and variables.

JavaScript closures make it feasible to generate a function
that contains one or more private variables that store secret
or sensitive data (e.g., secret tokens, private keys, etc.). At
execution time, private variables are kept hidden and cannot
be accessed by any other JavaScript scope, except the calling
function. Notice that this approach is safe in the presence of
a malicious browser extension that tries to override native
JavaScript APIs in order to extract secrets from a closure,
since the tampering of original native APIs can be easily
detected and then restored via an iframe [4].

4.2 Our approach: WRIT
WRIT utilizes both JavaScript closures and Service Workers
to form a safe component that can verify if a request was
created through a benign control flow execution path and
not by any form of automation, like originating from a ma-
licious browser extension deployed on the user’s browser.

Our approach leverages the flow of a request/response
as this was recently specified (and explained in this bug
report [12]) across all modern browsers (e.g., Chrome,
Opera, Edge, Brave, etc.). Browsers already do not allow
extensions to use or interact with Service Workers (e.g.,
monitor their execution, inspect their variables, etc.), except
for detecting their registration. Recent browser versions
restrict this further by not allowing extensions to commu-
nicate with Service Workers or monitor their messages with
the webpage, e.g., requests originated from background or
content scripts do not pass through Service Workers.

5 SYSTEM OVERVIEW

WRIT ensures that critical requests have been created via
a benign control-flow execution path, and not crafted or
automatically generated by a malicious browser extension
or injected third-party code. This is achieved by verifying
that the execution flow integrity of selective code snippets
at the front-end.

WRIT is comprised of three parts, as shown in Figure 2.
The first part is the JavaScript code that resides within the
web page that the server wants to protect; the second is

Fig. 1: The Service Worker interacts with the website, the
web server and possible browser extensions. The inability of
browser extensions to communicate with the Service Worker or
monitor their messages with the website allows WRIT to detect
requests that have been issued by a browser extension.

the Service Worker residing in the user’s browser and the
third is a server-side component, whose primary role is to
verify that any received request is properly signed. The in-
page script is the essential link that allows interaction with
the page’s context (i.e., JavaScript and DOM), since Service
Workers cannot access the content of web pages under their
registered domain by design.

5.1 Isolated environment
WRIT utilizes Service Workers in order to guarantee a
persistent environment, completely isolated and protected
against any possible malicious extensions that may be run-
ning on the user’s browser.
Setup phase: The setup phase cannot be performed arbitrar-
ily, but only right after the user signs in for the first time. In
particular, if the authentication process succeeds, the user
is redirected to a landing page where the registration of
the Service Worker takes place. The setup phase occurs only
once - after the registration, the Service Worker lives in the
background and is activated automatically every time the
user visits the website. We note that the registration of the
Service Worker can be completed even in the presence of a
malicious extension intercepting the traffic exchanged with
the server, using a continuous code update technique such
as those presented in [11], [16]. The user can optionally
verify and inspect the Service Worker anytime, via the
browser’s configuration menu.

As we described in Section 4.1, the
Service Worker is registered through the
serviceWorkerContainer.register() function,
which takes as input the URL of the Service Worker’s script.
We note that even though the corresponding JavaScript
file can be fetched from the first-party domain only, its
filename can be arbitrary. That aspect allows us to utilize a
different one-time URL per user, that is used to fetch the
Service Worker script from the server. The one-time URL
consists of a unique id that the server provides to the client.
This unique id should be appended as a string at the end
of the URL, every time a new client requests the script of
the Service Worker; the server will not respond to Service
Worker requests if they do not contain a valid id. Also,
the server will respond to Service Worker requests only
once: the first time such a request is made. If the server
receives a request with a given id for a second time, it will
trigger an alert for an abnormal situation (i.e., a malicious
extension installed in the user’s browser tried to access

3



Fig. 2: High-level overview of our approach. WRIT generates a separate in-page script at each user session, which contains a
unique, hard-coded, identifier. This identifier is used to establish a communication channel, where the exchanged messages can
be securely authenticated. Every time the user performs an action, WRIT’s in-page component uses a secret token to request
a random seed from the Service Worker. The seed is used to randomize the execution of the event handling function trace,
which can be verified by the Service Worker using the exact same seed; if the verification succeeds the Service Worker signs the
corresponding request, using a pre-established key, and forwards it to the back-end web server.

it or has already accessed it before). In such cases, the
user needs to re-run the setup phase from the beginning.
The Service Worker uses this id to exchange a key k with
the web server, that will be used for the signing of each
request. The server associates each issued key k to the
respective user that requested it and binds it internally with
the corresponding session cookie. As a result, even in the
case where a malicious party has managed to acquire the
unique key of a real user, the incident will be detected by
the server.
Attestation phase: After the Service Worker has been suc-
cessfully installed on the client’s browser, a safe working
environment has been established; The Service Worker is
running in the background and monitors every web request
that is exchanged between the webpage and the server;
each request is further signed using the unique key k. In
particular, the Service Worker employs SubtleCrypto [26] to
sign every validated request with k using one of the avail-
able options for digital signature production, e.g., HMAC
with SHA512 (configurable). When the server component
receives one of these requests, it can verify its integrity
using its signature. The requests should also include a
counter, in order to defend against replay attacks; counters
are maintained on a per-user basis, so that the same count
never repeats twice. If the signature generated by the server
differs from the one in the received request or if there is a
mismatch in the expected counter value, then the server can
safely assume a malicious extension has tampered with the
Service Worker’s request.

We notice that even though a malicious web extension
cannot access the context of the Service Worker, nor its
key k that is required for the signing process of the out-
going requests, it can still unregister it: first, by getting
a hold of the installed Service Worker through the API-
provided getRegistration function and then calling an
unregister function on it. Even in that case though, any
subsequent web request received by the server will not be
signed by the key k, which can in turn trigger an alert.
Updating the Service Worker: Typically the web browser
will occasionally check for Service Worker updates in certain
circumstances [27] and update the Service Worker’s script

1 (async () => {
2 // the WRIT library is fetched as a string from
3 // the Service Worker and NOT from the web server
4 let lib_string = await fetch("/writ_lib.js");
5 let writ, ua = navigator.userAgentString;
6 // Function() not fully supported in Safari; use
7 // eval() instead
8 if (ua.indexOf("Safari") != -1 &&
9 ua.indexOf("Chrome") == -1)

10 writ = eval(lib_string);
11 else
12 writ = (new Function("return " + lib_string))();
13 // reveal public library function(s) to the page
14 window.WRIT = writ;
15 })();

Listing 1: Initialization of WRIT’s in-page component within
closures. The closure ensures that any sensitive data is kept safe
against a malicious browser extension or third-party library
that resides in page’s scope.

automatically in case a new version is available. In order
to prevent this default behavior that could endanger new
Service Worker script versions to interception by malicious
extensions, the server never updates it directly (e.g., re-
sponds with a 404). Instead, updated Service Worker code
segments can be encrypted by the server using the unique
key k that is stored within the Service Worker script; the
latter can then use k to decrypt the update and use it as
necessary.

5.2 In-Page Access
Given that the Service Worker can neither access the DOM
of the webpage nor its JavaScript context (such as code or
variables) it is necessary to also have a JavaScript compo-
nent running in the page. The primary role of this in-page
counterpart is to monitor the integrity of selected webpage
JavaScript code, a process we discuss in detail in Section 5.3.
This component needs to be protected from potential threats
by malicious extensions that are described in Section 3.

A major challenge of the in-page component is how
to safely initialize and execute it within the page scope,
given the staggering power that browser extensions have
over the DOM of the page. Obviously, it is not sufficient to
request the in-page WRIT component from the web server,
as a malicious extension could easily tamper its code, e.g.,

4



1 async function post(callback, args, e, funcs=10) {
2 // check if the event was triggered manually
3 if (e && e.isTrusted === false)
4 return new Error("Artificial event fired!");
5 // get a new seed from the SW
6 let seed = await fetch("/seed",
7 {body: funcs, method: "POST"});
8 // run the page's protected function (callback)
9 // save the request it produces & capture stack trace

10 // add the randomly generated functions to the trace
11 let package = gen_trace(seed, callback, args, funcs);
12 // forward final trace & page's request to the SW
13 return fetch("/trace",
14 {body: JSON.stringify(package), method: "POST"

});
15 }

Listing 2: WRIT’s dispatch function for request sending.

using the webRequest API [28]. For instance, the Firefox
browser provides the filterResponseData() function2,
which allows any extension to monitor and modify the body
of a HTTP response before the page’s DOM tree is built. To
protect against such cases we follow a different approach,
in which we utilize the Service Worker to serve WRIT’s
JavaScript code that resides in the webpage. The communi-
cation between the web page and the Service Worker (both
ways) cannot be accessed by browser extensions employing
webRequest monitoring [28], as such a malicious extension
is not able to communicate with Service Workers, neither
monitor their exchanged traffic. As such, none of WRIT’s
in-page scripts can be requested (e.g., due to an imper-
sonated attack), or accessed and modified by any means
(e.g., by injecting malicious code within an in-page script
or extract any sensitive data by accessing the corresponding
variables). The Service Worker is responsible for periodi-
cally synchronizing with the web server and acquiring any
possible software updates in order to always have the last
version. These updates can be performed securely, using
the key that they have exchanged at the bootstrap phase
(Section 5.1).

At the beginning of every session, WRIT’s in-page
JavaScript component is requested, as shown in Listing 1.
The request is handled by the Service Worker instead of
the web server. The in-page script deploys a closure that
is crucial in keeping safe any sensitive or secret data (i.e.,
WRIT’s library), as well as a unique hardcoded identifier
used to provide distinguishability between WRIT’s in-page
counterpart and the Service Worker. This identifier is used
to exchange a secret token generated by the Service Worker,
which also provides mitigation against impersonation at-
tacks, where a malicious extension crafts and sends mes-
sages to the Service Worker through a page-side script, in
an attempt to imitate the page component and/or probe the
Service Worker for information. This type of impersonation
attack leverages the extension’s ability to inject code within
the page and generate requests, which blend in with the
page’s ordinary requests and become indistinguishable to a
Service Worker that intercepts them. However, since it will
not have the correct token it will fail to authenticate with
the Service Worker.

2. Apart from Mozilla Firefox, the other contemporary browsers have
removed this feature, mainly for performance reasons.

The token is stored within the secure confines of WRIT’s
closure. As described in Section 4.1, the closures allow us
to regulate access to sensitive functions and variables. In
particular, WRIT exposes a public function to the page’s
general JavaScript context (i.e., window) for other scripts
to use within the DOM context, namely post(), that takes
as argument a user-defined callback function to execute
internally. The callback function contains the code necessary
for crafting a web request or any other sensitive transaction
and sending it to the server. As shown in Listing 2, this
public function thinly wraps around inner private func-
tions to provide other page scripts access to WRIT’s core
functionality, without leaking any information about their
inner workings. The private scope prevents sensitive data
from being accessed by a malicious extension and contains
the code for mutually exchanging the secret token with
the Service Worker. This token will be used to attest the
execution of the user-defined callback function, as described
in Section 5.3.

In addition, we follow a serve-once policy for the in-page
script and also make sure that it is the first JavaScript that
will be requested and executed at page load. This ensures
that only the page will execute the in-page script and not
an untrusted third-party entity within the page or a mali-
cious browser extension; a malicious extension that hijacks
the page loading process and tries to request the in-page
script will fail, as the in-page script will have already been
requested from the Service Worker. Indeed, a content script
can actually execute before the in-page script or any other
DOM is constructed (when runs at document_start),
however even in that phase the corresponding request for
the in-page script has already been sent and received (even
though not rendered in the screen).

The procedure above, enables WRIT to achieve its pri-
mary objective in a way that is easily incorporated into
any piece of existing client-sided code, while remaining as
private and robust as possible in the page context where
malicious extensions may operate in. In practice, this means
that an attacker cannot access or change any internal WRIT
library function or variable that stores critical system infor-
mation. It could be the case though that a malicious exten-
sion overwrites (hooks) the library’s public functions with
new versions that execute malicious code before executing
the original function, and vice versa. Even in that scenario
though, the library can repel this attack by verifying the
integrity of its public functions upon use, restoring them
to their original state if necessary and optionally raising an
alarm notifying the user and/or the server for malicious
activity [45], [4]. Finally, the majority of the in-page WRIT
JavaScript is structured around and makes heavy use of the
Promise API [23], a hard requirement for many of the pro-
vided functions (e.g., fetch) and also crucial in ensuring that
the system performs efficiently without blocking function
calls.

5.3 Execution Sequence of Function Calls
Using the in-page closures described in Section 5.2, WRIT
is capable of protecting sensitive data and the code that
performs the web requests. However, the code can still be
executed by third-party JavaScript or malicious extensions,

5



by calling the corresponding public function. To protect
against such cases, it is necessary to monitor the execution
of these public functions, in order to detect any misbehavior
or malicious actions.

We notice that a static analysis of the corresponding
code snippets does not suffice, since an attacker can change
JavaScript on the client at will (e.g., dynamically hook func-
tions, inject code, etc.). Instead, it is necessary to monitor
the JavaScript execution at runtime, which is challenging
for several reasons. First, the execution model of modern
web environments should be taken into consideration, that
is based in event-driven programming. In this model, func-
tions often execute asynchronously in response to events
that are triggered by e.g., network activity or user input;
second, the monitoring needs to be performed within the
webpage, hence it should be implemented in a way that
cannot be tampered by a malicious browser extension, ei-
ther by hooking the corresponding monitoring function or
by directly changing the variable(s) where the monitoring
information is stored.

WRIT aims to take a snapshot of the current stack trace
at a critical point of execution, typically within the post()
function shown in Listing 2, that executes the user-defined
function responsible for collecting the required parameters
and then crafting the request. The main motivation for using
stack traces is that by generating them within the public API
functions that we want to protect, we can verify the integrity
of their operation and detect if they have been called from
a benign execution flow or if they are the product of a
potentially malicious action.

The majority of modern web browsers provide at least
one native implementation for stack trace generation, e.g.,
through the Error standard built-in object [20] in Firefox and
Chrome. The correct function call sequence must be known
in advance, so that any injection or alteration (caused by a
malicious browser extension) of the sequence can be spotted
by checking the function call sequence. The benign sequence
can either be extracted manually by the developer (e.g., via
a debugger [38]) or automatically (using a dynamic analysis
tool [7]). However, the inspection of the stack trace alone as
provided by the browser API is not enough, mainly because
browser APIs do not provide any further details about the
active stack frames (such as the program counter) besides
the function names. Hence, WRIT is not able to defend
against attack cases where, an adversary injects a malicious
function that (intentionally) has the same name as a benign
function residing in a different scope to avoid naming
conflicts, or in the same scope effectively overwriting that
function. As a result, the attacker would successfully spoof
a naive inspection of the stack trace, simply because in both
cases the stack trace will contain a seemingly innocuous
sequence of function calls.

To overcome this, we further enhance WRIT with the
ability to diversify the original execution trace of critical
functions, by creating a series of pseudo-randomly gen-
erated redundancy layers in the form of empty JavaScript
functions. These new functions form a chain by calling one
another in a particular sequence, dictated by a seed that has
been used to randomly generate them. Every time WRIT
needs to protect a critical function call func, which, e.g.,
sends a request to the server, it creates one such chain,

appends func to the tail of the chain followed by a stack
trace capture. By doing so, the generated stack trace will be
enriched by the sequence of newly created functions, which
uniquely identifies that particular execution of the critical
function. More importantly, the random functions add extra
levels of differentiation and entropy in the generated stack
trace, which becomes exponentially hard for an adversary
to spoof or predict (due to the added randomness). Hence,
if a malicious extension manages to inject an extra function
within the original execution path, the resulting stack trace
will not match the benign one.

The random functions are generated through
seedrandom [10] and a seed that is known only by
the Service Worker and the web page, so that both parties
end up generating the same functions. Every time a
new function chain has to be created, WRIT’s in-page
counterpart requests a new seed from the Service Worker.
The reason we request a new seed every time is to reduce
synchronization logic and the state that would otherwise
be needed to be kept in the Service Worker in order to keep
track of the asynchronous requests made from different
parts of the web site.

We note that the communication between page and
the Service Worker cannot be tampered by any browser
extension, as it is securely performed via the in-page script,
as we describe in more detail in Section 5.5. Once the
seed has arrived safely inside WRIT’s in-page component,
malicious extensions are unable to read the seed from within
it because, as we described in Section 5.2 extensions do
not have access to WRIT’s interior scope. The seed is then
used to generate a sequence of random numbers, each of
which is appended to the name of a newly created dummy
function. Each function contains a single instruction, which
is set to invoke another function that has been assigned
the next number of the sequence. The last function of the
sequence is set to invoke the real function func that WRIT
wants to protect instead, which is hooked to produce a
stack trace before it runs. This approach allows to control
the randomization levels by adjusting the number of the
resulted permutations P (n, r) = n!/(n− r)!, where n is the
number of different function names and r is the number of
random functions that we actually use each time. As we will
see in Section 7, choosing a number for r between 10 and 100
incurs minor performance overhead while the probability of
guessing the correct permutation is in the order of 10−18 for
e.g., r = 20.

At this point the chain is formed and critical function
func can be run by the page’s client-sided code normally,
setting off the chain reaction WRIT planted. After executing
func successfully, page code can use a library function
to send the stack trace that was produced to the Service
Worker, who will in turn use the same seed to generate a
sequence of numbers and compare it against the sequence
contained in the random functions previously added to
the stack trace. The Service Worker’s pivotal role must be
stressed for this part of the process: validation is performed
within the Service Worker, where no extension can observe
or hinder it. If the sequences are identical, execution of func
was successful without complications incurred by malicious
extension intervention. In case of sequence mismatch, it is
assumed that either the code segments have not executed as

6



expected or have been tweaked by an extension, resulting
in validation failure. In either case of success or failure, the
Service Worker is configured to remove the random func-
tions from the stack trace, sign the remainder and send it to
the end server including a single bit indicating the outcome
of validation. That is very useful in case of failure where a
server would want to know something went wrong, but it
could also prove useful in case of success as an indication
that the Service Worker is still functional. This feature could
be baked into the Service Worker as a more secure approach,
assuming that a clever malicious extension could entirely
block the Service Worker’s signed requests to the server.
It would also yield a small performance improvement by
minimizing the network overhead imposed due to these
(potentially numerous) requests to the end server.

5.4 Distinguishing Event Origins
The stack trace monitoring methodology described in Sec-
tion 5.3, allows us to track conformant program execution
and verify if a request has been generated through a benign
control flow path (e.g., when a user clicks a button). We
notice though that if a malicious extension tries to generate
the MouseEvent [22] that triggers the critical function func,
our methodology would not be able to distinguish if it is a
benign request created by the user or a request that has
been artificially created by a malicious extension. The reason
for that is that the resulting stack trace will neither contain
any non-benign function, nor any non-expected execution
flow; since the event has been triggered asynchronously by
a different function, its call will not be included in the same
stack trace with the function that has been registered by the
website to handle the event. Instead, the stack trace will be
the same as if it had been produced by a legitimate user
action.

In many cases, in order to successfully complete the
generation of a web request, client-sided code would also
require the completion of any other required action (e.g., in-
put text in a text form, selection of an item from a menu list,
etc.); however a malicious extension can still perform such
actions through the corresponding DOM elements a priori,
without revealing any of these actions in the stack trace that
is captured by WRIT. To protect against such actions, we
need to distinguish between human and non-human action
triggering events on DOM elements, e.g., click events.
Typically, the metadata that are included on each generated
event include several properties, whose values are different
between human and non-human DOM element interaction
(i.e., their isTrusted field has negative value, while the
corresponding mouse position coordinates have zero value
in case of a JavaScript-triggered event). In addition, the
browser protects these metadata implicitly, by restricting
their access to read-only permissions. Therefore, by check-
ing the value of a combination of properties of a triggered
event, WRIT can distinguish the source of DOM element
interaction. These checks are performed within the private
scope of WRIT’s closures, which described in Section 5.2.

5.5 Out-of-band Communications
We define two distinct communication channels in WRIT, as
shown in Figure 2. One lies between the web page and the

Service Worker, and the other between the Service Worker
and the web server. In the following two sections, we
discuss in detail the role each channel plays in the context
of WRIT’s operation.
Communication between the web page and the Service
Worker: As we describe in Section 4, the Service Worker has
the ability to intercept and handle any request originating
from the web page. In WRIT, we use custom URL requests
in order to distinguish between normal HTTP traffic and
requests that are meant for internal communication between
the JavaScript component that runs within the page and
the Service Worker. There are several unique URLs, each
linked to a specific page script operation that either needs
to request input from or send output to the Service Worker.
The most significant operations are: (a) sending the id to
the Service Worker (after it has been installed, during initial
setup), (b) requesting a new seed from the Service Worker
for stack trace generation and (c) sending a newly generated
stack trace to the Service Worker for validation. The Service
Worker is aware that these specific requests are meant for
internal communication and responds back to the page ac-
cordingly without implicating the server. To mitigate against
page-side impersonation attacks and guarantee secure com-
munication between the page and the Service Worker, we
authenticate the exchanged messages using the token that
is exchanged between the Service Worker and WRIT’s in-
page component (see Section 5.2).
Communication between the Service Worker and the Web
Server: The communication between the Service Worker
and the web server is taking place over the network, as
such it is susceptible to monitoring, interception and even
blocking by malicious extensions through the webRequest
API [28]. To overcome this threat scenario, we force the
Service Worker to explicitly sign every protected request, so
the server can verify them and safely detect if a malicious
extension has tampered with the Service Worker’s request.
In particular, the Service Worker validates that a protected
request is benign (using the procedure that is described in
Section 5.3) and then signs it using the secret key k that
is stored within the Service Worker’s isolated environment,
provided by the server during the initial setup (see Sec-
tion 5.1).

By doing so, the server can verify them and safely
detect if a signed request has been tampered by a malicious
extension or not. We note though, that a malicious extension
has the power to completely block a request (as well as
completely un-registering the Service Worker) and disrupt
the normal operation of the end service. To detect such
attacks, WRIT can be configured to use periodic heartbeats
hat are exchanged between the Service Worker and the
server (signed by the secret key k). However, it would
still not be easy to distinguish between cases that a user
went offline due to a legitimate but unfortunate event (e.g.,
system crash, network failure, etc.) or due to a malicious
action. As the main purpose of WRIT is only to attest the
integrity of web requests, providing mitigation against these
attacks is out of the scope of this work.

5.6 End-to-End Example
In this section we present a complete, step-by-step example
scenario of a user visiting a website that uses WRIT. The

7



Fig. 3: The initial setup of WRIT. The setup needs to run only
once, typically when the user visits the website for the first time.

Fig. 4: The messages exchanged during a user’s session with
WRIT.

corresponding steps are outlined in Figure 3 and Figure 4.
If this is the first time that the user visits the website, WRIT
initiates the setup phase from a separate webpage (Figure 3);
In particular, this webpage (i) asks for a randomly generated
unique id from the server, (ii) it subsequently uses id to
fetch the Service Worker via a one-time URL, (iii) then runs
register() to install the new Service Worker, and finally,
(iv) uses id to exchange a secret key k with the web server
that keeps safe in a local variable.

As described in Section 5.1, the setup phase needs to run
only once. To ensure a safe installation of WRIT’s Service
Worker, the setup needs to run from a clean environment
(typically by temporarily disabling any browser extension
that is installed in the user’s browser). After that, the Service

Worker has been registered and lives in the background
persistently, even after browser reboots. It is also re-enabled
automatically every time the user visits the website. As
shown in Figure 4, on every subsequent user visit to the
website, WRIT’s page component first needs to authenticate
the communication channel between itself and the Service
Worker. It fetches a new in-page script and then it sends its
hardcoded, unique id to the Service Worker, which is then
used between the page closure and the Service Worker to
exchange a secret token.

After this point every time the user interacts with an
element and triggers one of these events, (e.g., the user
clicks on a button) the following actions take place before
the original event handling function func: (i) a random seed
is obtained from the Service Worker and is used to generate
a sequence of functions forming a call chain with func, (ii)
the chain is invoked and a stack trace then captures the
random function sequence and func, (iii) the trace is sent
to the Service Worker for validation of the random function
sequence generated in the page against the one generated
in the Service Worker using the same seed, (iv) lastly the
Service Worker signs the request and sends it to the server.

6 IMPLEMENTATION

We developed a prototype implementation of WRIT, avail-
able at [2], in order to evaluate our approach and demon-
strate its feasibility. Listing 3 presents a code snippet that
shows how WRIT can be used to attest the requests that
originate from an input element of the web page. As we can
see, the developer only needs to provide a function that is re-
sponsible for getting the data from the corresponding DOM
element(s) and crafting the request that needs to be sent
to the web server. This function is passed as an argument
to the post() function together with the user event that
triggered this action. We also integrate our approach into
Axios version v0.19.2; Axios [9] is a lightweight HTTP client
API for creating web requests. We chose Axios as it offers
many desirable features: (i) it offers a user friendly API for
creating web requests, on top of the XMLHttpRequest API,
(ii) it has become very popular in web development and is
typically used in combination with the majority of modern
web frameworks, such as ReactJS,Angular,etc, and (iii) it is
compatible with most modern browsers.

The changes needed to integrate WRIT within
axios.js required about five lines of code in the
dispatchXhrRequest() function, which is responsible
for creating and sending a customized XMLHttpRequest
according to user input, passed via a config object.
The config object specifies, among others, the request’s
method type (GET or POST) and includes any request
parameters or body content. Axios performs several tasks
and checks after the creation of a new request inside
dispatchXhrRequest(). The last task before the request
is sent, is to check whether or not a “cancel token” is present
in the supplied config object; if one is found, then the
request is cancelled as per user request. We enrich that
check with the result of an invocation to our WRIT public
function which produces an embellished stack trace that
must be verified by the currently operating Service Worker.
If the latter verifies the trace successfully, Axios’ request is

8



1 <body>
2 <textarea id="tx">Hello World!</textarea>
3 <script>
4 function create_request() {
5 let text = document.getElementById("tx").value;
6 let config = {method: "POST", body: text};
7 return {path: "/some_path", config};
8 }
9 </script>

10 <button onclick='WRIT.post(create_request, e=event);'>
11 Send POST via WRIT
12 </button>
13 </body>

Listing 3: Protected POST via WRIT.

1 <body>
2 <textarea id="tx">Hello World!</textarea>
3 <script>
4 function create_request() {
5 let text = document.getElementById("tx").value;
6 let config = {method: "POST", body: text};
7 return {path: "/some_path", config};
8 }
9 </script>

10 <button onclick='axios.post("", event, create_request)
;'>

11 Send POST via WRIT-enabled Axios
12 </button>
13 </body>

Listing 4: Protected POST via WRIT-enabled Axios.

sent, otherwise it is cancelled. The modified, WRIT-enabled,
Axios library is served to the client through our Service
Worker, as described in Section 5.2.

Listing 4 shows an example of how the WRIT-enabled
Axios can be used to attest user requests transparently, even
for legacy web applications that already utilize the Axios
library.

7 SYSTEM EVALUATION

In this section, we evaluate our proposed architecture in
terms of performance and security. Our base setup consists
of two different machines: one server that hosts a simple
web site and one machine that acts as a web client. The
server is equipped with an AMD R5-3600 and 16GB of
RAM, the client is equipped with an Intel I5-6300U and 8GB
of RAM. The two machines are connected over a 1 GbE
connection, which we shape accordingly to evaluate how
the performance of WRIT scales on different network envi-
ronments that represent different kind of web users, such as
3G, 4G, and LAN connections. The server that is used to host
our website is running Flask v1.1.1 and uses Python v3.6.8.
We have also configured our server so that it can serve
over HTTPS, a requirement for the Service Worker API to
expose itself in the page’s context and become available to
the client.
Browser Compatibility: Our approach is based on HTML5
components, such as Service Workers, which are supported
by the majority of popular web browsers (such as Chrome,
Firefox, Opera, Edge, and Safari), as well as by many mobile
devices (including Samsung Internet, Chrome Android, iOS
Safari, and Firefox Android). A complete list of compatible
browsers can be found in [48].

7.1 Performance Evaluation
We now evaluate WRIT in terms of performance. In par-
ticular, we measure the added overhead of WRIT in two
scenarios: one under different network connection types and
one in which the client increases the number of functions
that are used for stack generation. For each scenario, we
measure the time needed to perform a simple POST request
on top of WRIT with all of its security mechanisms enabled
and we compare it with the vanilla case (in which the
request is simply sent to the server, with and without a
Service Worker installed). For all our experiments we use
Chrome with caching manually disabled. We also break
WRIT’s overhead down to four key components, listed in
order of occurrence: the request to the Service Worker for
a new seed, the generation of the stack trace in WRIT’s
closure, the processing and signing that takes place in the
Service Worker and finally the signed request that is sent to
the server.

Figure 5a shows the end-to-end time of a POST request
in the vanilla case versus the case where WRIT is enabled.
We also plot a case, where we place an empty Service
Worker in the vanilla setup to show the overhead added by
the Service Worker alone. As we can see, an empty Service
Worker adds an overhead of about 2.97 ms on average
(1.6 ms in the case of LAN). On top of that, we find that
WRIT adds an additional overhead of as low as 5.69 ms in
the case of a typical LAN setup (or 13.63 ms in the case of
wifi). As a consequence, the overall end-to-end latency that
WRIT adds to protect a sensitive POST request is as low as
7.29 ms.

In Figure 5b, we break down the above overhead across
all network presets and we see that latency is clearly affected
by the time needed to send the final request to the server.
This was expected as it is the only network-bound opera-
tion. In contrast, given that WRIT runs with a baseline of 10
added stack functions in this scenario, the three remaining
components remain nearly constant, within the margin of
error. Overall, WRIT’s network overhead increases as net-
work conditions degrade across the different presets.

This limitation becomes even more evident as we move
on to our second testing scenario, where by increasing the
number of functions added to the stack trace, the trace’s
size directly increases along with the final request’s body
size. For clarity, the request’s body size starts at 1.3 KB
(when using 5 functions), that first grows to 1.8 KB with
10 functions, then to 6 KB with 50 functions, and finally
reaches 11.3 MB with 100 functions. The results of this
scenario are shown in Figure 5c, illustrating how end-to-end
request latency is affected by the number of functions in the
stack trace, in the LAN preset. What we see is that WRIT’s
baseline of 10 added functions can be easily expanded to 50
and 100 functions for a 0.7 ms and 1.5 ms latency increase
respectively. Alternatively, halving the number of functions
to 5 yields a 1 ms latency decrease. The number of extra
functions directly affects the related WRIT components as
shown in Figure 5d. The stack trace generation itself grows
from 0.18 ms latency using 10 functions, to 0.53 ms in case
of 50 functions, and 0.68 ms in case of 100 functions. By
reducing down to 5 functions from 10, we get a latency
of 0.24 ms, which is however within our margin of error

9



(a) Network Overhead (b) Network Breakdown (c) Compute Overhead (d) Compute Breakdown

Fig. 5: WRIT’s performance under different network conditions and different added stack function quantities.

(0.1 ms). The Service Worker’s seed generation procedure
sees minor increases, taking up to 3 ms latency at both 10
and 100 added functions. Likewise, the signing procedure
starts at 1.96 ms latency with 10 functions and peaks at
2.37 ms with 100 functions. As expected, the final request
to the server remains constant at about 15-16 ms latency
throughout all four function tiers. Finally, there is a constant
2.5 ms latency not accounted for in the plot, which is
composed of miscellaneous Service Worker and browser
tasks that are out of our control.
Discussion on UI/UX: WRIT increases the latency of the
web requests that have been issued explicitly through its
API by 5-57 ms depending on the network and browser
conditions. We note though that this increase affects only
security-critical web operations (e.g., submitting a form),
which are usually generated through human-triggered ac-
tions: the effects in responsiveness are negligible, as the
added latency remains well below the limits of having the
user feel that the system is reacting instantaneously [50].
Finally, the latency of any other web request (such as those
for getting normal web content, object fetches and asyn-
chronous updates) is not affected by WRIT, hence neither
the corresponding user-experience.

7.2 Security Analysis
We now evaluate the security properties of our proposed
design by describing possible threat scenarios or attacks,
and showing how WRIT protects against them. For many of
the attacks described below, we have implemented custom
browser extensions. We also utilize the browser built-in
developer tools and the debugger to get more insights and
low-level operational details.

7.2.1 Tampering WRIT Service Worker
As described in Section 4.2, browser extensions cannot in-
teract with deployed Service Workers (e.g., monitor their
execution, inspect their variables, etc.). That means that they
cannot access the secret key k that is used for the attestation
between the Service Worker and the end web server. In
addition, the Service Worker script with the accompanied
key is served only-once. Even though a malicious browser
extension can request the corresponding JavaScript file after
the user or access it by other means (e.g., through a legit-
imate sign process), it will not obtain the targetted user’s
key. On the other hand, requesting it before the user is not

possible because the Service Worker is registered within a
clean environment, typically when the user signs in for the
first time as described in Section 5.1. Any future updates
are initiated only within its script instead of replacing it
entirely with a new one and are always signed with the
corresponding key. Furthermore the Service Worker can
be served over HTTPS only, hence its script is also well
protected against MITM attacks.

Finally, a malicious extension that has been suc-
cessfully installed on the user’s browser can unregister
WRIT’s Service Worker. This can happen by getting a
hold of the installed Service Worker through the API-
provided getRegistration function and then calling the
unregister function on it. Even in that case though, WRIT
ensures that no malicious requests will be performed on the
user’s behalf, as any subsequent requests received by the
server will not be signed by the key k, which in turn trigger
an alert.

7.2.2 Tampering WRIT’s in-page component
Similar to Service Workers a browser extension cannot in-
teract with a closure, neither interfere with their execution,
access their context or the data stored within. However,
contrary to the Service Worker which is permanent after
its first registration, a closure is instantiated every time the
user visits the web page. The most critical part is when the
in-page script is fetched from the server, since browser ex-
tensions can hook the web page in various ways in order to
tamper with the content that is received from the web server.
As described in Section 3, browser extensions can deploy
malicious code within the visited web page’s context either
directly through a content script or indirectly through a call
to executeScript from the background script. Besides
that, they can also utilize JavaScript code that is available in
the page’s context, just like any regular script fetched from
the server, including WRIT’s in-page script.

To protect the in-page script from tampering of its code
when fetched from the server, we follow a different ap-
proach: instead of having the web server serve the script, we
assign this task to our trusted Service Worker. By doing so,
the transfer is invisible to any browser extension, thus any
malicious action on it is abolished. Moreover, it eliminates
the possibility of a browser extension requesting the script
on the user’s behalf from the end server and using it to
craft non-benign requests. Since browser extensions cannot

10



communicate with the Service Worker, a background script
cannot obtain a valid in-page script, neither a content script.

Furthermore, any critical data in WRIT, i.e., the in-page
script’s id, the key, seeds and stack traces, are kept private
within appropriate closures, as described in Section 5.2.
WRIT’s library exposes only a set of public functions in the
page’s global scope, which must be used to interact with
WRIT. A malicious extension could overwrite (hook) the
library’s public functions with new versions that execute
malicious code before executing the original function and
vice versa. The library can repel this attack by verifying the
integrity of its public functions upon use, restoring them
to their original state if necessary and optionally raising an
alarm notifying the user and/or the server for malicious
activity. Alternatively, if a malicious extension prints them to
probe for information, each public function simply reveals a
call to the corresponding private library function, which is
inaccessible due to the library’s closure. If they are outright
deleted, there is no repercussion to the library’s operation
beyond denial of access to the library for other (benign) page
scripts, that can then re-fetch a fresh copy of the library’s
script (from the Service Worker).

7.2.3 Traffic Monitoring
Browser extensions can observe, intercept and modify
the requests and the responses that are exchanged be-
tween the client and the end web servers via the
webRequest, the devtools.network and the Chrome-
only chrome.debugger APIs. All these three options grant
extensions different permissions and they are required to
claim them accordingly in their manifests.

After experimentation, we have discovered that the
webRequest API in Chrome does not provide any means
of accessing the full responses, but only the headers. Even
though this can be helpful (since it decreases the risk net-
work monitoring posed by extensions) it is not the case
for Firefox, which provides the filterResponseData()
function in webRequest API. This function allows any ex-
tension to monitor and modify the body of a HTTP response
received by the web server. WRIT is not vulnerable to this
feature though, as it uses the Service Worker to serve any
sensitive JavaScript code and data at the beginning of each
session. Any communication between the web page and the
Service Worker cannot be accessed by browser extensions
employing webRequest, as such a malicious extension is
not able to monitor their exchanged traffic (both ways).
Moreover, the Service Worker uses a secret key that has
been securely exchanged with the web server, as described
in Section 5. This key is able to sign each and every request
that enters the network and as such, can sufficiently protect
it against any kind of tampering or spoofing.

Besides webRequest, many popular browsers like
Chrome and Firefox, offer devtools APIs that grant the
extensions extra capabilities (such as access to the con-
sole, network and performance tabs). These capabilities are
typically available only in the developer tools panel and
once obtained they allow a browser extension to monitor
and control different aspects of the browser, originally only
intended for development and debugging. However, ex-
tensions claiming the devtools.network permission can
gain access to the respective API only while the browser’s

developer tools panel is open, due to the fact that the API
is exposed only to very specific pages and scripts that are
used to implement new tabs for the panel. Albeit very
powerful, the danger it poses is severely limited as any
user is bound to notice that their devtools panel opens
randomly (assuming extensions are or become capable of
programmatically opening the panel, a task we have been
unable to achieve so far). In case an extension attempts
to trick the user into opening the panel manually, many
websites and popular web applications have been inserting
warnings in the devtools console that should help mitigate
self-hacking (e.g., Facebook).

Similarly, the Chrome-specific chrome.debugger API
provides extensions with functions that have elevated access
to a visited page’s network activity, DOM elements and
script execution. In essence, it provides elevated access
to response (and request) handling, in turn allowing the
inspection and modification of response bodies. Extensions
claiming the chrome.debugger permission can attach
Chrome’s debugger to an open tab, causing the browser to
display a screen-wide banner below the user’s bookmark
bar, indicating that a named extension is debugging the
browser, accompanied by a button to cancel its operation.
This visual indication is even stronger, alarming any user
to the possibility of their browser being compromised, es-
pecially after an extension’s installation. There are also JS
antidebugging tricks [36] that we can leverage in order to
detect the presence of the debugger and act accordingly.

7.2.4 Replay attacks
We defend against the replay of signed requests by includ-
ing a non-repeating count in every request (Section 5.1.
Each request is signed using the string representation of the
request, combined with the value of the current count. A
malicious extension that is eavesdropping benign requests
cannot replay them in the future, as the server will notice the
repetition of an old count. However, a malicious extension
could block a specific signed request from reaching the web
server and storing it locally; this signed request could be
sent later on to the server successfully. Even though we are
not aware —to the best of our knowledge— of a real-world
scenario that can be exploited from this hiccup, this can still
be fixed by further applying one-time passwords or even
timestamps to the signing process.

7.2.5 Blocking web requests and responses
A malicious extension has the ability to block any network
from and to the web service. To detect such types of attacks,
we could configure the Service Worker to periodically send
heartbeats (signed by the secret key k). However, it would
still not be easy to distinguish between cases that a user
went offline due to a legitimate but unfortunate event (e.g.,
system crash, network failure, etc.) or due to a malicious
action. In a case where a malicious extension selectively
blocks the web traffic flowing to the website, the heartbeats
would operate successfully. Even though WRIT is not able
to provide further protection to the already infected client, it
can still ensure that no malicious requests will be performed
on the user’s behalf. Overall, the main purpose of WRIT
is only to attest the integrity of web requests, defending
against these attacks is out of the scope of this work.

11



8 DISCUSSION

Portability: The HTML5 features (such as Service Workers)
that are required by WRIT to operate correctly are currently
supported by the vast majority of browsers, both in desktop
and mobile devices 3. In addition, WRIT has been integrated
within Axios [9], a popular lightweight HTTP client API for
creating web requests that is typically used in combination
with many modern web frameworks, such as ReactJS and
Angular.
Deployment: To protect against unauthorized execution of
JavaScript functions, WRIT monitors the stack trace and
verifies that they have not been called from a potentially
malicious action. This requires that the correct function call
sequence is known in advance. As we described in Sec-
tion 5.3, such sequences can be either extracted manually by
the developer or even automatically, using dynamic analysis
tools.

We note that the operation described above is vital for
WRIT to operate correctly. If not done properly, it can
result to either false negatives (e.g., in the case a security-
critical function is not monitored) or false positives (e.g., the
benign function call sequence has not be obtained correctly).
Even though we believe that the generation of the benign
function call sequences is a reasonable assumption, we plan
to explore mechanisms to provide further assistance as part
of our future work.

9 RELATED WORK

Malicious browser extensions. Malicious extensions have
always been used over time to infect end-user web browsers
and exfiltrate sensitive data or perform malicious actions on
users’ behalf, sometimes installed by millions of users [46],
[42]. Kapravelos et al. [46] analyzed 48K extensions from
the Chrome Web store and identified several large classes
of malicious behavior, including affiliate fraud, credential
theft, ad injection or replacement, and social network abuse.
In [42] the authors analyze multiple browser extensions and
indentify a set of 9,523 malicious ones. By using both static
and dynamic analysis techniques, they show that extensions
typically abuse contentScript permissions to perform
malicious activities, such as Facebook hijacking, ad injection,
search leakage and user tracking. To overcome this problem,
many approaches propose to analyse the extensions offline
and try to detect any malicious behavior. For example,
in [58], the authors develop a deep learning framework
that detects malicious JavaScript code, with an accuracy of
about 94%. Even though such frameworks can provide high
accuracy, they always need to feed on new data in order
to keep the accuracy high, as new obfuscation/malicious
JavaScript techniques are developed.

Malicious scripts in page context. Besides malicious ex-
tensions, abnormal behavior can originate from third party
and web applications as well. In [30], authors characterize
a dataset of 4.4 million public posts and identified 11,217
malicious posts that most of them originated from third
party web applications. As a countermeasure, they propose

3. https://caniuse.com/serviceworkers

an extensive feature set based on entity profile, textual con-
tent, metadata, and URL features in an attempt to automat-
ically identify malicious content on Facebook. Such server-
side anomaly detection approaches though, no matter how
sophisticated they become, cannot provide a full solution
for this problem. Instead, extra security mechanisms should
be deployed at the client-side, which will ensure a trusted
behavior on the user’s side.

Web page integrity. In [60], authors propose ZigZag to
strengthen JavaScript-based web applications against client-
side validation attacks. Ripley [57] tries to tackle the prob-
lem of untrusted clients by automatically replicating the
execution of client-side JavaScript on a trusted server tier,
thus preserving the integrity of a distributed computation.
However, Ripley imposes network and memory overhead,
as it transfers and replays every client event to the server.
Web Tripwires [54] is client-side JavaScript code that can
detect most in-flight modifications to a web page, and
prevent changes in the received changes (e.g., popup block-
ing scripts, advertisements, malicious code that can cause
harm). Similary, Glasstube [40] uses a lightweight approach
that protects the integrity of web applications against net-
work MITM attacks (such as session hijacking, reordering
and replay attacks). However, with the great adoption of
the HTTPS in the Internet nowadays, such techniques have
become outdated.

Recent approaches focus on utilizing software-only so-
lutions, that are also based on open standards, such as
HTML5. DOMtegrity [56] is an approach that ensures the
integrity of the web content in the client’s browser, by using
client-side code to verify that the DOM structure has not
been altered by a malicious browser extension. However,
malicious extensions or third party applications can still
perform malicious actions, such as crafting requests on a
user’s behalf. WRIT is able to attest all requests and detect
any abnormal or malicious requests that have not been
created with the user’s consent. Caja [37] is a tool that allows
to safely embed third-party HTML, CSS and JavaScript in a
website and enables developers to control the permissions
of code over user’s data. However, a browser extension can
still perform malicious actions on users’ behalf. WRIT is able
to further protect against malicious extensions, as well as
third-party libraries and code.

Requests integrity and attestation. Previous works use
a trusted execution environment to certify user requests.
The trusted environment can be hardware-based, a VM,
or within the browser. NAB [39] uses a small hardware-
based trusted software component to approximately certify
human-generated activity based on the elapsed time since
the last legitimate keyboard or mouse activity. However,
NAB is not able to link these activities to the exact request
semantics, hence it is not possible to detect forged requests
that are transmitted after a benign keyboard or mouse
activity, neither to to handle asynchronous operations (e.g.,
an email queued to be sent later). More recent works,
such as VButton [49], Fidelius [33], and ProtectIOn [31],
utilize hardware-based mechanisms (e.g., Intel SGX, ARM
TrustZone). Even though such methods provide strong secu-
rity guarantees, they have specific hardware requirements,
which are avaiable only on specialized or custom setups. In
addition, they also require browser support, which might

12



Approach No Hardware
support

No OS
support

No Browser
support

No Extensions
support

NAB [39] - ✓ - ✓
VButton [49] - - - ✓
Fidelius [33] - - - ✓
ProtectIOn [31] - - - ✓
Gyrus [43] ✓ - ✓ -
WRIT ✓ ✓ ✓ ✓

TABLE 1: Comparing WRIT with state-of-the-art approaches
for verifying the integrity and attestation of user requests.

not always be feasible or practical. Gyrus [43] is able to
handle such cases by capturing more semantics of the user’s
intent. In particular, it permits requests only when they are
attributed to text-based user input. However, it uses a VM
as an isolated environment to securely acquire the on-screen
user inputs and match them with outgoing requests, which
impose high deployment overhead.

Table 1 provides a qualitative analysis of WRIT with
previous works. In contrast with all previous works, WRIT
establishes a trusted environment using software mecha-
nisms, without requiring any hardware or browser support.

10 CONCLUSIONS

The current state-of-the-art shows a significant lack of client-
based integrity and attestation techniques. In this paper, we
presented WRIT, as a first step of a new line of security
mechanisms: a lightweight framework that is capable of
verifying the integrity of web requests and ensuring that
they have been created through a benign control flow exe-
cution path (e.g., when a user performs a request through
a specific button), and not generated by any third-party
JavaScript code nor a malicious browser extension. WRIT
is immediately applicable as it is implemented solely us-
ing HTML5 features that are available across all modern
browsers without requiring any browser modifications or
extensions. Developers can utilize WRIT’s API to protect
security-critical web requests at a practically negligible cost
of about 7.29 ms latency.

ACKNOWLEDGEMENTS

The authors would like to thank the editor-in-chief, asso-
ciate editor, and reviewers for their valuable comments and
suggestions. This work was supported by the National Sci-
ence Foundation under the grant CNS-2047260, and by the
projects dAIEdge and SecOPERA funded by the European
Commission under Grant Agreements No. 101120726 and
No. 101070599.

REFERENCES

[1] Trojan:JS/Kilim is a family of malicious browser extensions that
post unauthorized content to the user’s Facebook Wall. https:
//www.f-secure.com/v-descs/trojan_js_kilim.shtml.

[2] WRIT Project. https://anonymous.4open.science/r/WRIT-1437/.
[3] Malicious chrome extensions enable criminals to impact half a mil-

lion users and global businesses. https://atr-blog.gigamon.com/
2018/01/18/malicious-chrome-extensions-enable-criminals-to-
impact-half-a-million-users-and-global-businesses/, 2018.

[4] Chromium issue 793217: "document_start" hook on child frames
should fire before control is returned to the parent frame. https://
bugs.chromium.org/p/chromium/issues/detail?id=793217, 2019.

[5] Ta413 leverages new friarfox browser extension to target
the gmail accounts of global tibetan organizations.
https://www.proofpoint.com/us/blog/threat-insight/ta413-
leverages-new-friarfox-browser-extension-target-gmail-
accounts-global, 2021.

[6] Devdatta Akhawe, Warren He, Zhiwei Li, Reza Moazzezi, and
Dawn Song. Clickjacking Revisited: A Perceptual View of UI
Security. In 8th USENIX Workshop on Offensive Technologies (WOOT
14), USENIX WOOT, 2014.

[7] Esben Andreasen, Liang Gong, Anders Møller, Michael Pradel,
Marija Selakovic, Koushik Sen, and Cristian-Alexandru Staicu. A
Survey of Dynamic Analysis and Test Generation for JavaScript.
ACM Comput. Surv., 50(5), September 2017.

[8] Sajjad Arshad, Amin Kharraz, and William Robertson. Identify-
ing Extension-based Ad Injection via Fine-grained Web Content
Provenance. In Proceedings of the 19th International Symposium on
Research in Attacks, Intrusions, and Defenses, RAID, 2016.

[9] Axios. The axios project. https://github.com/axios/axios.
[10] David Bau. Javascript random number generator "seedrandom"

repository. https://github.com/davidbau/seedrandom.
[11] Mariano Ceccato and Paolo Tonella. CodeBender: Remote Soft-

ware Protection Using Orthogonal Replacement. IEEE Software,
28(2):28–34, 2011.

[12] Chromium Bugs. Figure out how Service Worker and Web Request
API should interact. https://bugs.chromium.org/p/chromium/
issues/detail?id=766433.

[13] Catalin Cimpanu. Google removes 500+ malicious Chrome
extensions from the Web Store. https://www.zdnet.com/article/
google-removes-500-malicious-chrome-extensions-from-the-
web-store/.

[14] Catalin Cimpanu. "Particle" Chrome Extension Sold
to New Dev Who Immediately Turns It Into Adware.
https://www.bleepingcomputer.com/news/security/-particle-
chrome-extension-sold-to-new-dev-who-immediately-turns-it-
into-adware/, 2017.

[15] Tomer Cohen. Game of Chromes:Owning the Web with Zombie
Chrome Extensions. https://www.blackhat.com/docs/us-
17/thursday/us-17-Cohen-Game-Of-Chromes-Owning-The-
Web-With-Zombie-Chrome-Extensions-wp.pdf.

[16] Christian Collberg, Sam Martin, Jonathan Myers, and Jasvir Na-
gra. Distributed Application Tamper Detection via Continuous
Software Updates. In Proceedings of the 28th Annual Computer
Security Applications Conference, ACSAC ’12. Association for Com-
puting Machinery, 2012.

[17] MDN contributors. Background. https://developer.mozilla.org/
en-US/docs/Mozilla/Add-ons/WebExtensions/manifest.json/
background.

[18] MDN contributors. Client.postmessage(). https://developer.
mozilla.org/en-US/docs/Web/API/Client/postMessage.

[19] MDN contributors. Closures. https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Closures.

[20] MDN contributors. Error. https://developer.mozilla.org/en-US/
docs/Web/JavaScript/Reference/Global_Objects/Error.

[21] MDN contributors. Javascript apis. https://developer.mozilla.
org/en-US/docs/Mozilla/Add-ons/WebExtensions/API.

[22] MDN contributors. Mouseevent. https://developer.mozilla.org/
en-US/docs/Web/API/MouseEvent.

[23] MDN contributors. Promise. https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Promise.

[24] MDN contributors. Service worker api. https://developer.
mozilla.org/en-US/docs/Web/API/Service_Worker_API.

[25] MDN contributors. Serviceworkerglobalscope.skipwaiting().
https://developer.mozilla.org/en-US/docs/Web/API/
ServiceWorkerGlobalScope/skipWaiting.

[26] MDN contributors. Subtlecrypto. https://developer.mozilla.org/
en-US/docs/Web/API/SubtleCrypto.

[27] MDN contributors. Updating the service worker. https:
//developers.google.com/web/fundamentals/primers/service-
workers/lifecycle#updates.

[28] MDN contributors. webrequest. https://developer.mozilla.org/
en-US/Add-ons/WebExtensions/API/webRequest.

[29] Google Developers. Angular: One framework. mobile & desktop.
https://angular.io.

[30] Prateek Dewan and Ponnurangam Kumaraguru. Towards auto-
matic real time identification of malicious posts on Facebook. In
2015 13th Annual Conference on Privacy, Security and Trust (PST),
pages 85–92. IEEE, 2015.

13

https://www.f-secure.com/v-descs/trojan_js_kilim.shtml
https://www.f-secure.com/v-descs/trojan_js_kilim.shtml
https://anonymous.4open.science/r/WRIT-1437/
https://atr-blog.gigamon.com/2018/01/18/malicious-chrome-extensions-enable-criminals-to-impact-half-a-million-users-and-global-businesses/
https://atr-blog.gigamon.com/2018/01/18/malicious-chrome-extensions-enable-criminals-to-impact-half-a-million-users-and-global-businesses/
https://atr-blog.gigamon.com/2018/01/18/malicious-chrome-extensions-enable-criminals-to-impact-half-a-million-users-and-global-businesses/
https://bugs.chromium.org/p/chromium/issues/detail?id=793217
https://bugs.chromium.org/p/chromium/issues/detail?id=793217
https://www.proofpoint.com/us/blog/threat-insight/ta413-leverages-new-friarfox-browser-extension-target-gmail-accounts-global
https://www.proofpoint.com/us/blog/threat-insight/ta413-leverages-new-friarfox-browser-extension-target-gmail-accounts-global
https://www.proofpoint.com/us/blog/threat-insight/ta413-leverages-new-friarfox-browser-extension-target-gmail-accounts-global
https://github.com/axios/axios
https://github.com/davidbau/seedrandom
https://bugs.chromium.org/p/chromium/issues/detail?id=766433
https://bugs.chromium.org/p/chromium/issues/detail?id=766433
https://www.zdnet.com/article/google-removes-500-malicious-chrome-extensions-from-the-web-store/
https://www.zdnet.com/article/google-removes-500-malicious-chrome-extensions-from-the-web-store/
https://www.zdnet.com/article/google-removes-500-malicious-chrome-extensions-from-the-web-store/
https://www.bleepingcomputer.com/news/security/-particle-chrome-extension-sold-to-new-dev-who-immediately-turns-it-into-adware/
https://www.bleepingcomputer.com/news/security/-particle-chrome-extension-sold-to-new-dev-who-immediately-turns-it-into-adware/
https://www.bleepingcomputer.com/news/security/-particle-chrome-extension-sold-to-new-dev-who-immediately-turns-it-into-adware/
https://www.blackhat.com/docs/us-17/thursday/us-17-Cohen-Game-Of-Chromes-Owning-The-Web-With-Zombie-Chrome-Extensions-wp.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Cohen-Game-Of-Chromes-Owning-The-Web-With-Zombie-Chrome-Extensions-wp.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Cohen-Game-Of-Chromes-Owning-The-Web-With-Zombie-Chrome-Extensions-wp.pdf
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/manifest.json/background
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/manifest.json/background
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/manifest.json/background
https://developer.mozilla.org/en-US/docs/Web/API/Client/postMessage
https://developer.mozilla.org/en-US/docs/Web/API/Client/postMessage
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Error
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Error
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API
https://developer.mozilla.org/en-US/docs/Web/API/MouseEvent
https://developer.mozilla.org/en-US/docs/Web/API/MouseEvent
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en-US/docs/Web/API/ServiceWorkerGlobalScope/skipWaiting
https://developer.mozilla.org/en-US/docs/Web/API/ServiceWorkerGlobalScope/skipWaiting
https://developer.mozilla.org/en-US/docs/Web/API/SubtleCrypto
https://developer.mozilla.org/en-US/docs/Web/API/SubtleCrypto
https://developers.google.com/web/fundamentals/primers/service-workers/lifecycle#updates
https://developers.google.com/web/fundamentals/primers/service-workers/lifecycle#updates
https://developers.google.com/web/fundamentals/primers/service-workers/lifecycle#updates
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/API/webRequest
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/API/webRequest
https://angular.io


[31] Aritra Dhar, Enis Ulqinaku, Kari Kostiainen, and Srdjan Capkun.
ProtectIOn: Root-of-trust for IO in compromised platforms. Cryp-
tology ePrint Archive, 2019.

[32] M. Dhawan and V. Ganapathy. Analyzing Information Flow in
JavaScript-Based Browser Extensions. In 2009 Annual Computer
Security Applications Conference, ACSAC, 2009.

[33] Saba Eskandarian, Jonathan Cogan, Sawyer Birnbaum, Peh
Chang Wei Brandon, Dillon Franke, Forest Fraser, Gaspar Garcia,
Eric Gong, Hung T Nguyen, Taresh K Sethi, et al. Fidelius:
Protecting user secrets from compromised browsers. In 2019 IEEE
Symposium on Security and Privacy (SP), pages 264–280. IEEE, 2019.

[34] Facebook Developers. React: A javascript library for building user
interfaces. https://reactjs.org.

[35] Nicholas Fearn. Nearly 80 chrome extensions caught spying – how
to protect yourself. https://www.tomsguide.com/news/chrome-
extension-spyware, 2020.

[36] Juan Manuel Fernández. Javascript antidebugging tricks. https:
//x-c3ll.github.io/posts/javascript-antidebugging/, 2020.

[37] Gogle Develoopers. Caja Project. https://developers.google.com/
caja/.

[38] Google Developers. chrome.debugger. https://developer.chrome.
com/extensions/debugger.

[39] Ramakrishna Gummadi, Hari Balakrishnan, Petros Maniatis, and
Sylvia Ratnasamy. Not-a-Bot: Improving Service Availability in
the Face of Botnet Attacks. In NSDI, pages 307–320, 2009.

[40] Per A. Hallgren, Daniel T. Mauritzson, and Andrei Sabelfeld.
GlassTube: A Lightweight Approach to Web Application Integrity.
In Proceedings of the Eighth ACM SIGPLAN Workshop on Program-
ming Languages and Analysis for Security, ACM PLAS, 2013.

[41] Lin-Shung Huang, Alex Moshchuk, Helen J Wang, Stuart Schecter,
and Collin Jackson. Clickjacking: Attacks and defenses. In Pre-
sented as part of the 21st {USENIX} Security Symposium ({USENIX}
Security 12), USENIX Security, 2012.

[42] Nav Jagpal, Eric Dingle, Jean-Philippe Gravel, Panayiotis
Mavrommatis, Niels Provos, Moheeb Abu Rajab, and Kurt
Thomas. Trends and Lessons from Three Years Fighting Malicious
Extensions. In Proceedings of the 24th USENIX Security Symposium,
USENIX Security, 2015.

[43] Yeongjin Jang, Simon P Chung, Bryan D Payne, and Wenke Lee.
Gyrus: A Framework for User-Intent Monitoring of Text-based
Networked Applications. In NDSS, 2014.

[44] Richi Jennings. Chrome web store fail: 300+ more scam browser
extensions. https://securityboulevard.com/2020/08/chrome-
web-store-fail-300-more-scam-browser-extensions/, 2020.

[45] Jordan Jueckstock and Alexandros Kapravelos. VisibleV8: In-
browser Monitoring of JavaScript in the Wild. In Proceedings of
the ACM Internet Measurement Conference, ACM IMC, 2019.

[46] Alexandros Kapravelos, Chris Grier, Neha Chachra, Christopher
Kruegel, Giovanni Vigna, and Vern Paxson. Hulk: Eliciting Ma-
licious Behavior in Browser Extensions. In Proceedings of the 23rd
USENIX Conference on Security Symposium, USENIX Security, 2014.

[47] Maxime Kjaer. Malware in the browser: how you might get hacked
by a chrome extension. https://kjaer.io/extension-malware/,
2016.

[48] Alexis Deveria Lennart Schoors. Can i use service workers? https:
//caniuse.com/#feat=serviceworkers.

[49] Wenhao Li, Shiyu Luo, Zhichuang Sun, Yubin Xia, Long Lu, Haibo
Chen, Binyu Zang, and Haibing Guan. VButton: Practical Attesta-
tion of User-driven Operations in Mobile Apps. In Proceedings of
the 16th annual international conference on mobile systems, applications,
and services, pages 28–40, 2018.

[50] Jakob Nielsen. Usability Engineering. Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA, 1994.

[51] Marcus Niemietz and Jörg Schwenk. Out of the Dark: UI Re-
dressing and Trustworthy Events. Cryptology and Network Security,
pages 229–249, 2018.

[52] Panagiotis Papadopoulos, Panagiotis Ilia, Michalis Polychronakis,
Evangelos P. Markatos, Sotiris Ioannidis, and Giorgos Vasiliadis.
Master of Web Puppets: Abusing Web Browsers for Persistent and
Stealthy Computation. In 26th Annual Network and Distributed
System Security Symposium, NDSS 2019, San Diego, California, USA,
February 24-27, 2019, NDSS, 2019.

[53] Alex Perekalin. Why you should be careful with browser ex-
tensions. https://www.kaspersky.com/blog/browser-extensions-
security/20886/, 2018.

[54] Charles Reis, Steven Gribble, Tadayoshi Kohno, and Nicholas
Weaver. Detecting in-flight page changes with web tripwires. In

5th USENIX Symposium on Networked Systems Design & Implemen-
tation, NSDI 2008, pages 31–44, 01 2008.

[55] Guido Schwenk, Alexander Bikadorov, Tammo Krueger, and Kon-
rad Rieck. Autonomous Learning for Detection of JavaScript
Attacks: Vision or Reality? In Proceedings of the 5th ACM Workshop
on Artificial Intelligence and Security, ACM AISEC, 2012.

[56] Ehsan Toreini, Siamak F. Shahandashti, Maryam Mehrnezhad, and
Feng Hao. DOMtegrity: ensuring web page integrity against
malicious browser extensions. International Journal of Information
Security, 18(6):801–814, 2019.

[57] K. Vikram, Abhishek Prateek, and Benjamin Livshits. Ripley:
Automatically Securing Web 2.0 Applications Through Replicated
Execution. In Proceedings of the 16th ACM Conference on Computer
and Communications Security, 2009.

[58] Yao Wang, Wan-dong Cai, and Peng-cheng Wei. A deep learning
approach for detecting malicious JavaScript code. In Security and
Communication Networks, 2016.

[59] Michael Weissbacher, Enrico Mariconti, Guillermo Suarez-Tangil,
Gianluca Stringhini, William Robertson, and Engin Kirda. Ex-ray:
Detection of history-leaking browser extensions. In Proceedings of
the 33rd Annual Computer Security Applications Conference, 2017.

[60] Michael Weissbacher, William Robertson, Engin Kirda, Christo-
pher Kruegel, and Giovanni Vigna. Zigzag: Automatically harden-
ing web applications against client-side validation vulnerabilities.
In 24th USENIX Security Symposium, 2015.

Giorgos Vasiliadis is an Assistant Professor with the Department of
Management Science and Technology at the Hellenic Mediterranean
University. He is also an Affiliated Researcher with the Institute of
Computer Science at the Foundation for Research and Technology -
Hellas (FORTH). His research interests include systems, security, and
computer networks.

Apostolos Karampelas is a Research Engineer at Tenable’s Vulnera-
bility Detection team and an alumni of the Institute of Computer Science
at the Foundation for Research and Technology - Hellas (FORTH). His
research interests are centered around security and privacy.

Alexandros Shevtsov is presently a Ph.D. candidate in the Computer
Science Department at the University of Crete, Greece. Additionally,
he holds a research fellowship at the Foundation for Research and
Technology - Hellas (FORTH). His research pursuits center around the
confluence of security, networking, and machine learning.

Panagiotis Papadopoulos is Head of Red Team at iProov Ltd and a
Visiting Researcher at the Institute of Computer Science at the Foun-
dation for Research and Technology - Hellas (FORTH). His research
interests include security, privacy-enhancing technologies, biometrics
and distributed systems.

Sotiris Ioannidis is Associate Professor with the School of Electrical
and Computer Engineering at the Technical University of Crete, and
also Affiliated Researcher with the Institute of Computer Science at
the Foundation for Research and Technology - Hellas. His research
interests include systems, networks, and security.

Alexandros Kapravelos is an Associate Professor in the Department
of Computer Science at North Carolina State University. His research
interests span the areas of systems and software security.

14

https://reactjs.org
https://x-c3ll.github.io/posts/javascript-antidebugging/
https://x-c3ll.github.io/posts/javascript-antidebugging/
https://developers.google.com/caja/
https://developers.google.com/caja/
https://developer.chrome.com/extensions/debugger
https://developer.chrome.com/extensions/debugger
https://securityboulevard.com/2020/08/chrome-web-store-fail-300-more-scam-browser-extensions/
https://securityboulevard.com/2020/08/chrome-web-store-fail-300-more-scam-browser-extensions/
https://kjaer.io/extension-malware/
https://caniuse.com/#feat=serviceworkers
https://caniuse.com/#feat=serviceworkers
https://www.kaspersky.com/blog/browser-extensions-security/20886/
https://www.kaspersky.com/blog/browser-extensions-security/20886/

	Introduction
	Malicious Browser Extensions
	Threat model
	Building blocks
	HTML5 Features
	Our approach: WRIT

	System Overview
	Isolated environment
	In-Page Access
	Execution Sequence of Function Calls
	Distinguishing Event Origins
	Out-of-band Communications
	End-to-End Example

	Implementation
	System Evaluation
	Performance Evaluation
	Security Analysis
	Tampering WRIT Service Worker
	Tampering WRIT's in-page component
	Traffic Monitoring
	Replay attacks
	Blocking web requests and responses


	Discussion
	Related Work
	Conclusions
	References
	Biographies
	Giorgos Vasiliadis
	Apostolos Karampelas
	Alexandros Shevtsov
	Panagiotis Papadopoulos
	Sotiris Ioannidis
	Alexandros Kapravelos


