
InferONNX: Practical and Privacy-preserving
Machine Learning Inference using Trusted

Execution Environments

Konstantina Papafragkaki1,2 and Giorgos Vasiliadis1,3

1 Institute of Computer Science, Foundation for Research and Technology - Hellas,
Heraklion, Greece

2 Computer Science Department, University of Crete, Heraklion, Greece
3 Department of Management Science and Technology, Hellenic Mediterranean

University, Agios Nikolaos, Greece
{papafrkon,gvasil}@ics.forth.gr

Abstract. Machine learning is increasingly applied in critical domains
where sensitive data is involved. When models are deployed on untrusted
devices, this raises significant privacy concerns for both model providers
and end-users. Trusted Execution Environments (TEEs), which offer
hardware-based protection for data during processing, can mitigate these
concerns. However, their limited memory resources pose challenges for
deploying traditional machine learning frameworks.
In this paper, we propose InferONNX, a lightweight machine learning
inference service designed to run within Intel SGX. It embeds a high-
level, portable, and framework-agnostic model format into the enclave,
enabling easy execution of a wide range of machine learning and deep
learning models. To address the memory limitations of Intel SGX, In-
ferONNX employs two key strategies: a compact runtime with a small
memory footprint, and model partitioning to reduce the memory required
during inference. By executing model partitions instead of the full model,
the system achieves 1.5× to 4× faster inference depending on the model
size.

Keywords: Confidential computing · Trusted execution · Intel SGX ·
Machine learning · Inference

1 Introduction

Machine learning and deep learning models have made significant progress and
are being used extensively across a wide range of application domains and busi-
ness sectors, such as image classification [43], speech recognition [31], natural
language processing [22], and healthcare diagnostics [37,42]. In terms of privacy
though, machine learning and deep learning inference present challenges for both
model providers and end-users [29]. Execution on untrusted end-user devices
requires maintaining the confidentiality of proprietary models. In principle, a
model can be a considerable investment and a valuable asset for a company or



organization. Such models can be leaked in untrusted host scenarios, as end-users
have full access to the hardware and the software installed on their devices. On
the contrary, the execution on the model provider premises, via cloud-enabled
services, raises serious privacy concerns for the end-users, as they are required
in many cases to outsource private or sensitive data (such as images, voices, and
text). Such data can be exposed to external threats due to vulnerabilities in
these environments.

Overall, it is imperative to provide mechanisms that satisfy the confiden-
tiality of both users’ data and models, so as to enable privacy-preserving infer-
ence on untrusted hosts. A practical approach to tackle these needs is to utilize
hardware-enabled trusted execution environments (TEE). These environments
can be used to protect data while in use, a concept known as confidential com-
puting. A TEE provided by hardware isolates programs or program fragments,
and their data from potentially malicious operating systems, hypervisors, or any
other privileged process. As a result, TEEs are becoming increasingly widespread
in the machine learning domain [14, 23, 26], and provide a compelling paradigm
for machine learning tasks, including inference. However, deploying complex ma-
chine learning workloads on TEEs has to address the limited memory resources of
TEEs. This is a major constraint for machine learning workloads, as not only the
models, but also the frameworks are quite large. For instance, PyTorch v3.9.11
is about 760 MB and TensorFlow v2.13.1 is 1.3 GB. These memory and security
constraints not only affect runtime performance, but also introduce overheads
during model initialization. As shown in Figure 1, inference tasks pay increased
overheads when models are loaded from disk (cold-start). The most straight-
forward way to mitigate cold-start latency is to keep models permanently in
memory, a strategy adopted by the majority of previous work [24,27,38]. Unfor-
tunately, this is not practical in typical scenarios where the size of the models
exceeds the system memory capacity. Therefore, it is crucial to design mecha-
nisms for efficiently loading models from disk.

This paper presents InferONNX, a lightweight machine learning inference
service designed to run within Intel SGX. InferONNX’s key insight is to embed
the runtime environment of a high-level machine learning format, namely ONNX
(Open Neural Network Exchange) [6], into Intel SGX. ONNX is chosen due to its
high-level semantics, its wide popularity, and its small memory footprint: the re-
sulting inference engine has a size of 46MB, consuming minimal enclave memory
and thus leaving more memory resources available for the machine learning and
deep learning models running atop InferONNX. To manage the limited memory
resources of the machine, we further partition those models and store them on
disk rather than keeping them in memory; the partitions are loaded from disk
at runtime and executed sequentially.

The main contributions of this paper are:

– We design and implement InferONNX, a lightweight service for Intel SGX,
that enables confidential inference using the ONNX language. InferONNX
relies on disk-based storage for machine learning models to ensure scalabil-



Mob
ileN

et

V2

Den
seN

et1
21

Inc
ep

tio
n

V3
Re

sN
et1

52

V2
Eff

icie
ntN

et

V2

0

5000

10000

15000

20000

25000

30000

Ex
ec

ut
io

n 
tim

e 
(m

s)

Load and decrypt model
Inference process

Fig. 1. Execution time breakdown for five popular machine learning models that span
different sizes. The blue portion represents the time spent loading and decrypting the
models from disk (cold start), while the red portion represents the execution of the
inference process that produces the result (warm state).

ity and manage memory constraints effectively through model partitioning
(1.5×–4× reduced overhead compared to executing the full model).

– We show that InferONNX can handle machine learning models of varying
sizes, from the lightweight SqueezeNet1.0 to the larger EfficientNet V2, with
a maximum overhead of 3.65× compared to their unprotected counterparts.

2 Background

This section provides background on Intel SGX and the use of Library Operating
Systems (libOSes) to support secure application deployment within Intel SGX
enclaves.

2.1 Intel SGX

Intel SGX (Software Guard Extensions) introduces secure enclaves to protect
the confidentiality and integrity of sensitive data and applications. These se-
cure enclaves provide isolated regions within the CPU, ensuring that sensitive
information is processed in isolation, even if the operating system, hypervisor or
other parts of the system are compromised. Code and data within an enclave are
stored in a protected region of memory called the Enclave Page Cache (EPC).

Since the EPC has limited capacity, Intel SGX includes a paging mecha-
nism to manage applications requiring more memory. This mechanism encrypts
EPC pages and transfers them to an untrusted DRAM buffer, maintaining se-
curity during this process. However, these operations involve encryption, de-
cryption, and privileged instructions executed outside the enclave, resulting in
performance overhead. Moreover, when EPC pages are reused, the Translation
Lookaside Buffer (TLB) is cleared, introducing further delays.



The creation of an enclave begins with the ECREATE instruction, which ini-
tializes its control structure within the EPC. Memory setup and cryptographic
measurements for remote attestation are managed by subsequent instructions
like EADD and EINIT. Once prepared, the enclave code is executed through the
EENTER instruction, which switches the processor to enclave mode. SGX also sup-
ports multi-threading within enclaves, with each thread’s context maintained in
a Thread Control Structure (TCS). The EEXIT instruction is used to terminate
enclave execution and return control to the untrusted application.

2.2 Library OSes for Intel SGX

Deploying only part of an application in a Trusted Execution Environment
(TEE) often requires manual code partitioning, along with recompilation and
relinking of the entire application—even for components that remain outside
the TEE. This static and tightly coupled development model limits support
for applications that depend on runtime code extensibility. Moreover, additional
complexities, such as handling cryptographic operations and enabling end-to-end
encryption, further complicate the development process.

Library Operating Systems (libOSes) help address the challenges of deploying
applications in TEEs by offering two key advantages: reducing the size of the
Trusted Computing Base (TCB) and simplifying the development workflow. A
smaller TCB improves overall system security by limiting the amount of trusted
code, thereby reducing the potential for vulnerabilities. LibOSes achieve this by
including only minimal, essential components—such as a shim C library—within
the enclave, while leaving larger system libraries and runtimes outside the trusted
boundary. At the same time, libOSes streamline secure application development
by enabling the entire application stack—including code, libraries, and system
functions—to run inside Intel SGX with minimal or no code changes. They
transparently manage interactions with untrusted system components, such as
I/O operations, making it easier to adapt existing applications to run securely
within a TEE.

3 Design objectives

The widespread adoption of machine learning and deep learning models has
led to a significant expansion of software stacks designed to improve efficiency.
Typically, frameworks, such as TensorFlow and PyTorch, are used for training
and optimizing machine learning models in an iterative process. Once a machine
learning model has been trained, it can be deployed for inference. However, in-
ference with these frameworks brings unnecessary overheads mainly due to the
bloating size of the target application. To overcome this, applications can man-
ually use optimized operators that utilize carefully-designed assembly instruc-
tions [1–3], or directly embed the model’s architecture and parameters into the
source code. By doing so, the target application is lightweight and efficient, as
it does not rely on any external library. The procedure can be performed either



manually, by porting the models on hand, or automatically, by using domain-
specific deep learning compilers, such as TVM [12]. Both approaches offer quite
improved performance, however manual porting requires substantial effort and is
time-consuming. Compiler-based approaches, such as TVM, are also scalable in
terms of model size and hardware heterogeneity, by producing appropriate exe-
cutables that are also optimized for the target hardware. However, these benefits
come at a cost when executing in an environment where the model is not fully
trusted. In such scenarios, the compiled code operates outside the user’s direct
control, meaning the binary could potentially be tampered with; creating an
opportunity for malicious code injection. This, in turn, could allow attackers
to steal sensitive data, either directly or indirectly, for example through covert
channels; even if the code is isolated within a secure enclave. One way to pre-
vent this, is to confine the untrusted compiled code into a trusted sandbox,
or have a trusted inference engine that executes machine learning models on a
unified format, such as the ONNX. Using the latter, the inference engine can
execute any machine learning model, without requiring any instrumentation or
code validation/verification. In addition, embedding an ONNX runtime inside
a TEE tackles the challenges of transparency, dynamic extensibility, and run-
time safety—by piggy-backing on the characteristics of a high-level open source
format for machine learning and deep learning models, such as ONNX.

Our approach offers significant developer economy compared to low-level
abstractions, because of the productivity benefits stemming from a high-level
widely-adopted format. Applications can leverage the ONNX model ecosystem
transparently, without having to develop them from scratch—such as image anal-
ysis, object detection, and natural language processing. Finally, since ONNX is a
high-level, declarative format for machine learning and deep learning models, its
execution is constrained, minimizing the risk of unintended behavior and helping
protect data owners from potential leaks by untrusted model providers.

4 Design

This section outlines the design of InferONNX. We describe its client-server
architecture, the use of enclaves for secure ONNX model execution, and the
partitioning strategy used to manage models that exceed the memory limits of
Intel SGX.

4.1 Client-server architecture

We design an inference server that enables an end-to-end secure environment be-
tween clients and model providers, so as to protect the sensitive data of clients
and the intellectual property of model providers. As shown in Figure 2, the
server operates within hardware-based secure enclaves, isolating the execution
environment and protecting sensitive data during processing. This data is en-
crypted and shielded from unauthorized access at the hardware level, ensuring
that information within these enclaves remains secure.



To establish secure connections between the server and clients, we use the
Transport Layer Security (TLS) protocol, which ensures encrypted communi-
cation, protecting the confidentiality and integrity of data exchanged over the
network. Along with this, we implement access control by authenticating each
client, ensuring that only clients with valid credentials can interact with the
server. For clients within Intel SGX environments, Remote Attestation (RA)
can be used to verify their authenticity. This process ensures that the client
is genuine before any sensitive data is exchanged, establishing trust between
the parties, and can also be optimized to reduce latency and enhance perfor-
mance [10]. In contrast, clients running on conventional CPUs (without Intel
SGX support) are assigned a unique private key, enabling the establishment of
a mutually authenticated TLS session.

The client-server interaction consists of two primary modes:

– Model uploading. In this mode, the server receives models, in ONNX for-
mat, securely from model providers. The models are encrypted using the
AES-256-GCM mode and stored on disk. Each model is associated with a
unique identifier (ID), through a hash table that also contains its crypto-
graphic metadata (encryption key and initialization vector). The clients can
use these IDs to submit inference requests on the corresponding models.

– Inference serving. In this mode, clients submit inference requests that
include the model’s ID and the corresponding input data. The server uses
the ID to locate the appropriate model, loads it from disk into the enclave,
decrypts it, and then initiates the inference process. Inference is performed
by the ONNX interpreter described in Section 4.2, and the resulting output
is returned to the client.

4.2 ONNX Interpreter enclaves

We deploy an interpreter within secure enclaves to execute machine learning
and deep learning models in ONNX format. Unlike compiled execution, which
requires pre-compilation of the models, the interpreter dynamically processes
any model by reading its structure and executing the respective operations se-
quentially. This approach offers flexibility in handling a variety of model architec-
tures, making it well-suited for environments where models may vary or need to
be updated without recompilation. By executing models in a secure enclave, we
ensure that sensitive data, such as inputs and model weights, remain protected
throughout the execution process, leveraging the strong isolation capabilities of
Intel SGX.

ONNX provides a universal format for machine learning and deep learning
models, allowing models trained in different frameworks (such as TensorFlow,
PyTorch, and Scikit-Learn) to be represented in a standardized form. ONNX
represents models as computational graphs, where nodes correspond to opera-
tions (referred to as operators) and edges define the data flow between these
operations. During execution, the ONNX interpreter reads the model’s graph



Untrusted Host

Clients

Enclave

Server

Inference serving

Disk

Model uploading Model partitions

Model providers

Models

Result

1

4

5
3 6

2

Inference Request

Fig. 2. Overview of InferONNX. The untrusted section (white) represents the un-
trusted device, while the trusted section (light blue) represents the enclave where the
server operates. During model uploading, the model providers upload models to the
server (step 1), which partitions, encrypts and stores them on disk (step 2). During in-
ference serving, the clients submit inference requests to the server (step 3). The server
performs inference by sequentially loading the relevant model partitions from disk into
the trusted environment (steps 4–5), executing them in order, and then returning the
final inference result to the client (step 6).

and iteratively processes each operator, applying the respective computations
and data transformations. This sequential execution ensures that the operations
are carried out in the correct order while maintaining the integrity of the model’s
intended functionality. The interpreter handles different types of operators by
using pre-implemented functions.

4.3 Model partitioning

As we experimentally verify in Section 6.4, executing entire models within the
enclave incurs performance overhead, which we mitigate through model par-
titioning. Model partitioning divides the model architecture into smaller, se-
quential components that can be processed more efficiently within the memory
constraints of hardware-based enclaves. Model partitioning can be classified into
two categories: (i) intra-operator partitioning, where the computation and in-
put data of a single operator are split into multiple segments—each processing
a subset of the data and passing intermediate results between segments; and
(ii) inter-operator partitioning, where groups of operators are treated as inde-
pendent execution units. In this work, we focus on inter-operator partitioning.
While intra-operator partitioning could be useful in scenarios where a single op-
erator exceeds the enclave’s EPC capacity, it may introduce additional overhead



due to the need for intermediate data transfers. We leave the exploration of
intra-operator partitioning to future work.

The models are divided into multiple partitions based on the EPC size
and the computational cost of individual operators, similar to [17]. To identify
memory-intensive (heavy-weight) operators, we profile each model on both Intel
SGX and a standard CPU, using execution time as a proxy for memory usage—
since memory consumption cannot be reliably inferred from the operator’s input
size alone. Once these operators are identified, we perform model partitioning.
This process involves traversing the computational graph in reverse order —
from the last operator to the first — to accommodate both simple and complex
topologies. As we iterate through the operators, we accumulate their estimated
sizes. If the combined size of the current and previous operators exceeds the EPC
capacity, we define a partition from the starting operator to the previous one.
The next partition starts at the current operator, and size accumulation resets.
If an operator is marked as heavy-weight, it is treated as a standalone partition,
and the accumulation restarts from zero.

This partitioning procedure ensures that all partitions meet the system’s
memory requirements. Once the partitions are precomputed, model providers
upload them to the server for use during inference. During inference serving,
clients send requests to execute inference tasks. Each request triggers a pipeline
of partition executions, where the output of one partition is passed as input
to the next. The output of the final partition represents the complete inference
result, which is then returned to the client.

5 Implementation

This section outlines the implementation of InferONNX, focusing on the base
runtime built with Occlum, the TLS-based secure communication layer, and the
trusted inference engine that executes models within Intel SGX enclaves.

5.1 Base runtime

To simplify the development of InferONNX, we adopt Occlum [39], a libOS tai-
lored for Intel SGX. Occlum enables secure execution of application processes
entirely within the enclave. The Occlum runtime uses a packaged file system,
known as the Occlum image, to configure and manage the enclave environment.
This image includes the InferONNX binaries, configuration files, and required
libraries, totaling approximately 59MB. At runtime, it is used to initialize the
enclave and securely execute the InferONNX server alongside the deployed mod-
els.

In its current design, InferONNX runs a single Occlum image at a time,
avoiding concurrent sessions and multi-client access. This serialized execution
model reduces the attack surface and helps mitigate side-channel threats, such
as timing and cache attacks, that are known to affect Intel SGX [9,11,19,44].



5.2 Secure communications layer

We integrate the MbedTLS library [16], which provides full support for TLSv1.2
and v1.3 and is optimized for resource-constrained environments. Each client
request is handled over a dedicated TLS session, ensuring end-to-end encryption
between the client and the InferONNX server. Upon receiving a request, the
server authenticates the client and establishes a secure channel before proceeding
with either model uploading or inference serving, depending on the request type.
This communication model ensures the security of data in transit, maintaining
both confidentiality and integrity throughout the client-server interaction.

5.3 Trusted inference engine

InferONNX performs inference operations, using Tract [32], a Rust-based in-
ference engine that supports various model formats, including ONNX. Tract
leverages Rust built-in memory-safety features, and its lightweight design, at
approximately 46MB, makes it particularly well-suited for memory-constrained
environments, such as Intel SGX.

6 Evaluation

In this section, we evaluate the performance of InferONNX, focusing on the
overheads introduced by Intel SGX and the impact of model partitioning.

6.1 Experimental Setup

Platform. We evaluate InferONNX on a single machine with an Intel Core i7-
7700 3.60 GHz CPU and 32GB RAM, running Ubuntu 20.04 and supporting Intel
SGX v1.0 [13]. In Intel SGX v1.0, each enclave is limited to 128MB, reduced to
around 100MB due to metadata and system-reserved memory, with static mem-
ory initialization for the enclave’s lifetime. Intel SGX v2.0, by contrast, supports
scalable memory through dynamic allocation and thread creation, but this flex-
ibility comes with a relaxed threat model, offering full protection against cyber-
attacks but only partial protection from physical attacks. While Intel SGX v2.0
could provide better performance and scalability in certain cases, the inference
process in our system does not require frequent memory allocations, making In-
tel SGX v1.0’s static memory model sufficient for our needs. Further exploration
is needed to assess if an Intel SGX v2.0-based solution would offer meaningful
performance gains and whether those gains would justify the security trade-offs.

Workload. We use models from image classification and general-purpose
tasks, including SqueezeNet1.0, MobileNet V2, DenseNet121, EfficientNet Lite4,
Inception V3, and ResNet101/152 V2. Most of these models were downloaded
from the ONNX Model Zoo [4], while the ResNet models were obtained from a
GitHub repository [7].



6.2 Memory usage profiling

We use the Valgrind Massif tool [5] to profile the memory usage of InferONNX.
Massif tracks cumulative memory allocations throughout a process and captures
real-time memory snapshots. The peak value among these snapshots reflects the
highest memory usage observed during inference for a given model or partition.
This peak is used to estimate the memory footprint of each operator during
partitioning. In this analysis, we focus on ’heavy-weight’ operators—those in-
curring a performance overhead of at least 12×—since partitioning offers little
to no benefit for lighter operators.

Table 1. The sizes of various models (on disk) and the corresponding number of
partitions needed for each of them to fit the EPC size.

Model Disk Size (MB) Partitions (#)
SqueezeNet1.0 4.8 3
MobileNet V2 13.5 6
DenseNet121 31.2 31
EfficientNet Lite4 49.5 36
Inception V3 90.9 23
ResNet101 V2 170 25
ResNet152 V2 230 34
EfficientNet V2 451 77

Table 1 presents details on the disk sizes of various models and the num-
ber of partitions required for each. We observe that models with similar disk
sizes do not necessarily require the same number of partitions. This is due to
the heterogeneous structure of machine learning models, where differences in
layer composition, operator memory usage, and execution patterns significantly
impact memory demands during inference. Consequently, partitioning decisions
depend not only on disk size but also on the internal characteristics of each
model.

Figure 3a illustrates the memory requirements of each model, highlighting the
percentage of snapshots that exceed the EPC capacity (∼100MB). We observe
that smaller models, such as SqueezeNet1.0 and MobileNet V2, consume less
than 100MB of memory. However, since the Occlum image occupies around
59MB, only about 41MB of usable memory remains for models. This constraint
requires partitioning for these models to fit within the available memory. As the
model size increases, the memory demands grow accordingly, with the two largest
models, ResNet152 V2 and EfficientNet V2, requiring around 470MB and 530MB
of memory at the 97th percentile. To verify the effectiveness of the partitioning
technique, we also show the memory requirements of each model’s partitions
during sequential execution in Figure 3b. We observe that, after partitioning, all
models remain under the 100MB range, confirming the technique’s efficiency.



0 200 400 600 800 1000
Memory size (MB)

0.0

0.2

0.4

0.6

0.8

1.0
%

 o
f T

ot
al

 E
xe

cu
tio

n 
Ti

m
e

(a)

0 200 400 600 800 1000
Memory size (MB)

0.0

0.2

0.4

0.6

0.8

1.0

SqueezeNet1.0
MobileNet V2
DenseNet121
EfficientNet Lite4
Inception V3
ResNet101 V2
ResNet152 V2
EfficientNet V2

(b)

Fig. 3. Memory requirements of models when running as a whole (a), and when run-
ning in partitions (b). The average percentage of memory snapshots is shown, indicating
whether they exceed the EPC capacity.

6.3 Baseline performance

In this section, we evaluate the performance of machine learning inference on
the CPU without Intel SGX, disk encryption, or TLS connections. The primary
metric is inference time, measured in milliseconds (ms), capturing the duration
from when a client sends a request to when the server returns the result over
an unencrypted, plain connection. This baseline serves as a reference point to
quantify and justify the overheads introduced by Intel SGX, secure disk access,
and TLS in subsequent experiments.

As shown in Table 2, execution is faster when models are stored in memory.
However, when models are loaded from disk, execution times increase by a factor
of 1.27× to 2×. The smallest model, SqueezeNet1.0, experiences a more pro-
nounced slowdown. A similar trend is observed with MobileNet V2, the second
smallest model, while larger models show a more moderate increase in execution
time, ranging from 1.27× to 1.4×.

Table 2. Base inference execution time (in milliseconds) on CPU without Intel SGX
or TLS, with models either stored in memory or loaded from disk.

Models Stored in memory Loaded from disk
SqueezeNet1.0 34 70
MobileNet V2 162 247
DenseNet121 381 512
EfficientNet Lite4 511 647
Inception V3 597 771
ResNet101 V2 839 1093
ResNet152 V2 1073 1374
EfficientNet V2 1257 1754



Sq
ue

eze
Net

1.0 Mob
ileN

et

V2
Den

seN
et

12
1

Eff
icie

ntN
et

Lit
e4

0

500

1000

1500

2000

2500

3000
In

fe
re

nc
e 

Ti
m

e 
(m

s)

(a)

Inc
ep

tio
n

V3
Re

sN
et1

01

V2
Re

sN
et1

52

V2
Eff

icie
ntN

et

V2

0

5000

10000

15000

20000

25000

30000 InferONNX
InferONNX (in mem)
InferONNX (in mem, w/o SGX)

(b)

Fig. 4. Performance evaluation when running inference on small (a) and large (b)
models, across three configurations: the approach where the full models are loaded from
disk and decrypted, the in-memory approach, and the baseline where the execution is
on CPU, without Intel SGX.

6.4 Performance of InferONNX during full model execution

In this section, we analyze the overheads introduced by Intel SGX, along with
the computational and I/O costs associated with loading and decrypting the
full models from disk. To isolate these effects, we run InferONNX without using
model partitioning; instead, the full model is loaded from disk on each inference
request. This setup is designed to highlight the overhead of stressing the limited
EPC memory of Intel SGX during end-to-end inference. For comparison, we
evaluate two additional configurations: (i) InferONNX running outside the Intel
SGX enclave to quantify SGX-related overheads, and (ii) InferONNX running
with models preloaded into memory, eliminating disk access and decryption to
expose only the computational cost within the enclave.

Figure 4a and 4b present the performance of InferONNX across small and
large models respectively. We define small models as those whose memory re-
quirements are within or only slightly above the EPC limit—such as SqueezeNet1.0,
MobileNet V2, DenseNet121, and EfficientNet Lite4. The remaining models ex-
ceed this threshold and are classified as large. For small models, the impact of
SGX-induced page swapping is minimal, as their memory demands fit within
the EPC capacity. In contrast, large models experience more pronounced perfor-
mance degradation due to frequent page swapping, as illustrated in Figure 4b.
The largest model, EfficientNet V2—requiring approximately five times the EPC
capacity—suffers the highest overhead, with a slowdown of 3.65×. Other large
models incur overheads ranging from 2.15× to 2.38×. These performance penal-
ties are primarily attributed to the overhead of encryption, decryption, and se-
cure data transfers between the enclave and untrusted memory. Despite this, as



shown in Table 3, the Instructions Per Cycle (IPC) remains stable across all mod-
els, ranging from 2.27 to 2.67. This consistency indicates that CPU efficiency is
largely unaffected, and that the main bottleneck stems from SGX-induced page
swapping.

Next, we compare the performance of InferONNX when models are preloaded
into memory versus when they are loaded from disk. The results highlight the
overhead introduced by disk I/O, as loading models from disk and performing
decryption during inference leads to additional latency. For small models, this
overhead results in a performance penalty of 1.37× to 1.82×. For large models,
the overhead is even more significant, with performance degradation ranging
from 3.84× to approximately 6.2×. These penalties are primarily due to the time
spent on disk access, SGX-induced page swapping, and the decryption process
during runtime.

Table 3. Instructions Per Cycle (IPC) values across different models.

Model IPC
SqueezeNet1.0 2.62
MobileNet V2 2.66
DenseNet121 2.38
EfficientNet Lite4 2.67
Inception V3 2.35
ResNet101 V2 2.46
ResNet152 V2 2.58
EfficientNet V2 2.27

6.5 Performance of InferONNX with model partitioning

We now evaluate the performance of InferONNX with model partitioning. Due
to Intel SGX’s memory constraints, model partitioning is employed to enhance
efficiency by loading large models from disk in smaller, manageable segments.
To assess its impact, we compare the execution times of full models with those
of their partitioned versions, loaded and executed sequentially.

As shown in Figure 5a, small models, such as SqueezeNet1.0 and MobileNet
V2, are not significantly affected by partitioning, as their execution times re-
main similar to when running the full model. However, as model size increases,
the benefits of partitioning become more apparent. DenseNet121, with a size
of 31.2MB, shows a 1.46× improvement, while EfficientNet Lite4, at approxi-
mately 50MB, achieves a 1.48× improvement. For large models, the impact of
partitioning is even more pronounced, as shown in Figure 5b. Partitioning leads
to further improvements in execution times, with performance gains becoming
more substantial as the model size increases. These improvements range from
2.64× for Inception V3 (90.9MB) to 4.04× for the largest model, EfficientNet
V2 (451MB).



Overall, model partitioning can significantly improve execution efficiency,
especially for larger models. However, its effectiveness is influenced by factors
such as model size and the overhead introduced by disk accesses. As a result,
clients must find the optimal balance between memory utilization and execution
time, tailoring the partitioning strategy to meet the specific needs of their use
case and system constraints.

Sq
ue

eze
Net

1.0 Mob
ileN

et

V2
Den

seN
et

12
1

Eff
icie

ntN
et

Lit
e4

0

500

1000

1500

2000

2500

3000

In
fe

re
nc

e 
Ti

m
e 

(m
s)

(a)

Inc
ep

tio
n

V3
Re

sN
et1

01

V2
Re

sN
et1

52

V2
Eff

icie
ntN

et

V2

0

5000

10000

15000

20000

25000

30000 InferONNX (full model)
InferONNX (model partitioning)

(b)

Fig. 5. Performance evaluation of InferONNX during inference on small (a) and large
(b) models, comparing full model execution with model partitioning.

7 Related work

In this section, we present existing approaches for confidential machine learning
inference, including cryptographic techniques and TEEs.

Cryptographic approaches have long been a key solution for securing sen-
sitive data. Rivest et al. [36] first introduced Homomorphic Encryption (HE),
which enables computations on encrypted data without decrypting it, ensuring
that third parties can handle data securely. Gentry [18] later developed Fully
Homomorphic Encryption (FHE), which supports arbitrary computations on ci-
phertext, making it a powerful but computationally expensive solution for secure
data processing. Multi-Party Computation (MPC) is another cryptographic ap-
proach, allowing multiple parties to perform a joint computation while keeping
their input private. Some approaches combine these methods for improved per-
formance. Bourse et al. [8] proposed Fast HE Discretized Neural Network (Fast
HE DiNN), which leverages both HE and discrete neural networks to reduce
the computation complexity of HE. Although this method sacrifices some accu-
racy, it improves efficiency in cases where DiNNs are used for training instead
of discretizing during inference. Xue et al. [46] addressed limitations in HE



by proposing a multi-key FHE scheme, which improves privacy protection for
client data but does not guarantee model privacy. Several works, such as Se-
cureML [33], MiniONN [30] and Chameleon [35] have leveraged MPC for secure
inference. Gazelle [21] combined FHE and MPC to achieve better performance,
though it requires two-party computation.

To overcome the limitations of cryptographic methods, hardware-based TEEs
like Intel SGX [13], ARM TrustZone [45], and ARM CCA [25], are being used
to create isolated execution environments for machine learning operations. One
example is GuaranTEE [40], which builds on ARM CCA to provide a secure
framework for protecting machine learning inference on edge devices. In con-
trast, our work utilizes Occlum, a libOS for Intel SGX, which simplifies the
development and deployment of applications within Intel SGX. Fortanix En-
clave Development Platform [15] is another widely used libOS for Intel SGX,
offering strong cloud-native integration and support for multiple programming
languages, particularly Rust, which offers memory safety features.

Intel SGX faces strict memory constraints, which necessitate further opti-
mization techniques, such as model partitioning, to improve performance while
staying within enclave memory limits. Slalom [41] presents a system for secure
machine learning inference that partitions model execution between a trusted
enclave (Intel SGX) and an untrusted CPU, enabling efficient execution while
maintaining model confidentiality. TEESlice [28] highlights the limitations of
existing post-training model partitioning approaches under knowledgeable ad-
versaries and proposes a partition-before-training method that isolates privacy-
sensitive weights within TEEs, while offloading the remaining, less sensitive
weights to GPUs. Soter [38] partitions sensitive model layers, executing them
inside Intel SGX enclaves, while the remaining layers run on GPUs to accel-
erate inference. While this approach reduces computation time, it introduces
performance overhead due to frequent CPU-GPU context switching, especially
for large models. Additionally, the integrity checks required to ensure correct
results can increase latency by up to 1.27x in some cases. Approaches like Soter
and TEESlice leverage GPU acceleration to address the memory constraints
of Intel SGX, however they still require careful orchestration of data movement
and memory usage to avoid performance bottlenecks and ensure security guaran-
tees. SecureTF [34] provides a secure enclave-based runtime specifically tailored
for TensorFlow models. MEDIA [27] partitions Deep Neural Networks (DNNs)
into multiple partitions in an edge cloud environment, addressing the limita-
tions posed by cyclic graphs. It optimizes inference by routing models to one
of N servers, selecting the server that achieves the best inference time. Unlike
our approach, which strictly partitions models based on EPC capacity, MEDIA
prioritizes inference time, allowing some degree of exceeding the EPC limit as
long as overall performance remains efficient. Finally, MLCapsule [20] enables
client-side execution while keeping the model and computations confidential,
allowing service providers to protect their intellectual property and business
models. Similarly, our system supports this model using ONNX, a format that
further confines execution to the client’s environment.



8 Limitations

Model partitioning is a practical method for managing execution within the
memory limitations of hardware enclaves. Nonetheless, the current approach
has certain constraints. One such limitation arises when an individual operator
in the model exceeds the capacity of the EPC. In these cases, partitioning has
limited effect, as the large operator introduces execution overhead that cannot
be avoided through inter-operator partitioning alone. The current design does
not address such cases, and support for intra-operator partitioning remains an
area for future investigation.

Another limitation concerns models in which partitions depend on interme-
diate state produced by preceding operators. Preserving and managing this state
across partition boundaries introduces additional memory requirements. When
executing model partitions sequentially, the cumulative memory footprint can
exceed the EPC capacity. In such cases, the intended benefits of partitioning
are diminished, as the overhead from enclave memory constraints—such as page
swapping—remains significant, potentially affecting overall performance.

9 Conclusions

In this work, we propose InferONNX, a lightweight machine learning inference
service designed to run within Intel SGX. Our approach enables model providers
to securely deploy their models, allowing clients to perform inference on sensitive
data while preserving both model confidentiality and data privacy. In addition,
it tackles Intel SGX’s memory constraints using two key mechanisms: a compact
runtime with a minimal memory footprint and model partitioning that reduces
memory usage during inference. Our evaluation shows that InferONNX reduces
the overhead associated with full model execution by approximately 1.5× to 4×.

Acknowledgment

We thank the shepherd and the anonymous reviewers for their helpful comments.
This work was supported by dAIEdge funded by the European Commission un-
der Grant 101120726. The source code is available at https://github.com/Konstantina155/InferONNX.

References

1. Anakin inference framework. https://github.com/PaddlePaddle/Anakin
2. Mobile AI Compute Engine (MACE) inference framework. https://github.com/

XiaoMi/mace
3. NCNN inference framework. https://github.com/Tencent/ncnn
4. ONNX Model Zoo. https://onnx.ai/models/
5. Valgrind Massif: a heap profiler. https://valgrind.org/docs/manual/

ms-manual.html

https://github.com/Konstantina155/InferONNX
https://github.com/PaddlePaddle/Anakin
https://github.com/XiaoMi/mace
https://github.com/XiaoMi/mace
https://github.com/Tencent/ncnn
https://onnx.ai/models/
https://valgrind.org/docs/manual/ms-manual.html
https://valgrind.org/docs/manual/ms-manual.html


6. Bai, J., Lu, F., Zhang, K., et al.: ONNX: Open Neural Network eXchange. https:
//github.com/onnx/onnx (2019)

7. Bao, B.: ONNX models. https://github.com/BowenBao/models-1
8. Bourse, F., Minelli, M., Minihold, M., Paillier, P.: Fast Homomorphic Evaluation

of Deep Discretized Neural Networks. In: 38th Annual International Cryptology
Conference. pp. 483–512 (2018)

9. Brasser, F., Müller, U., Dmitrienko, A., Kostiainen, K., Capkun, S., Sadeghi, A.R.:
Software grand exposure: SGX cache attacks are practical. In: Proceedings of the
11th USENIX Conference on Offensive Technologies. pp. 11–11 (2017)

10. Chalkiadakis, N., Deyannis, D., Karnikis, D., Vasiliadis, G., Ioannidis, S.: The
Million Dollar Handshake: Secure and Attested Communications in the Cloud. In:
2020 IEEE 13th International Conference on Cloud Computing (CLOUD). pp.
63–70 (2020). https://doi.org/10.1109/CLOUD49709.2020.00022

11. Chen, G., Chen, S., Xiao, Y., Zhang, Y., Lin, Z., Lai, T.H.: SgxPectre: Stealing Intel
Secrets from SGX Enclaves Via Speculative Execution. In: 2019 IEEE European
Symposium on Security and Privacy (EuroS&P). pp. 142–157 (2019)

12. Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E., Cowan, M., Shen, H., Wang, L.,
Hu, Y., Ceze, L., Guestrin, C., Krishnamurthy, A.: TVM: An Automated End-to-
End Optimizing Compiler for Deep Learning. In: Proceedings of the 13th USENIX
conference on Operating Systems Design and Implementation. pp. 579–594 (2018)

13. Costan, V., Devadas, S.: Intel SGX Explained. IACR Cryptology ePrint Archive
pp. 1–118 (2016)

14. Duy, K.D., Noh, T., Huh, S., Lee, H.: Confidential machine learning computation in
untrusted environments: A systems security perspective. IEEE Access 9, 168656–
168677 (2021)

15. FortanixEDP: Fortanix Enclave Development Platform. https://edp.fortanix.
com/

16. G. Peskine, M. Pégourié-Gonnard, et al.: Mbed-TLS library. https://github.com/
Mbed-TLS/mbedtls

17. Gallego, A., Odyurt, U., Cheng, Y., Wang, Y., Zhao, Z.: Machine Learning In-
ference on Serverless Platforms Using Model Decomposition. In: Proceedings of
the IEEE/ACM 16th International Conference on Utility and Cloud Computing.
pp. 1–6. Association for Computing Machinery (2024)

18. Gentry, C.: Fully Homomorphic Encryption Using Ideal Lattices. In: Proceedings
of the forty-first annual ACM symposium on Theory of computing. pp. 169–178
(2009)

19. Götzfried, J., Eckert, M., Schinzel, S., Müller, T.: Cache Attacks on Intel SGX. In:
Proceedings of the 10th European Workshop on Systems Security. pp. 1–6 (2017)

20. Hanzlik, L., Zhang, Y., Grosse, K., Salem, A., Augustin, M., Backes, M., Fritz,
M.: MLCapsule: Guarded Offline Deployment of Machine Learning as a Service.
In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW). pp. 3295–3304 (2021)

21. Juvekar, C., Vaikuntanathan, V., Chandrakasan, A.: GAZELLE: A Low Latency
Framework for Secure Neural Network Inference. In: Proceedings of the 27th
USENIX Conference on Security Symposium. pp. 1651–1669 (2018)

22. Lauriola, I., Lavelli, A., Aiolli, F.: An introduction to deep learning in natural
language processing: Models, techniques, and tools. Neurocomputing 470, 443–
456 (2022)

23. Lee, T., Lin, Z., Pushp, S., Li, C., Liu, Y., Lee, Y., Xu, F., Xu, C., Zhang, L., Song,
J.: Occlumency: Privacy-preserving remote deep-learning inference using sgx. In:

https://github.com/onnx/onnx
https://github.com/onnx/onnx
https://github.com/BowenBao/models-1
https://doi.org/10.1109/CLOUD49709.2020.00022
https://doi.org/10.1109/CLOUD49709.2020.00022
https://edp.fortanix.com/
https://edp.fortanix.com/
https://github.com/Mbed-TLS/mbedtls
https://github.com/Mbed-TLS/mbedtls


The 25th Annual International Conference on Mobile Computing and Networking.
pp. 1–17 (2019)

24. Li, F., Li, X., Gao, M.: Secure MLaaS with Temper: Trusted and Efficient Model
Partitioning and Enclave Reuse. In: Proceedings of the 39th Annual Computer
Security Applications Conference. pp. 621–635 (2023)

25. Li, X., Li, X., Dall, C., Gu, R., Nieh, J., Sait, Y., Stockwell, G.: Design and Verifica-
tion of the Arm Confidential Compute Architecture. In: 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 22). pp. 465–484 (2022)

26. Li, Y., Zeng, D., Gu, L., Chen, Q., Guo, S., Zomaya, A., Guo, M.: Lasagna: Accel-
erating secure deep learning inference in sgx-enabled edge cloud. In: Proceedings
of the ACM Symposium on Cloud Computing. pp. 533–545 (2021)

27. Li, Y., Zeng, D., Gu, L., Guo, S., Zomaya, A.Y.: DNN Partitioning and Assignment
for Distributed Inference in SGX Empowered Edge Cloud. In: 2024 IEEE 44th
International Conference on Distributed Computing Systems (ICDCS). pp. 635–
644 (2024)

28. Li, Ding and Zhang, Ziqi and Yao, Mengyu and Cai, Yifeng and Guo, Yao
and Chen, Xiangqun: TEESlice: Protecting Sensitive Neural Network Models in
Trusted Execution Environments When Attackers have Pre-Trained Models. ACM
Trans. Softw. Eng. Methodol. (2024)

29. Liu, B., Ding, M., Shaham, S., Rahayu, W., Farokhi, F., Lin, Z.: When machine
learning meets privacy: A survey and outlook. ACM Computing Surveys (CSUR)
54(2), 1–36 (2021)

30. Liu, J., Juuti, M., Lu, Y., Asokan, N.: Oblivious Neural Network Predictions via
MiniONN transformations. In: Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security. pp. 619–631 (2017)

31. Malik, M., Malik, M.K., Mehmood, K., Makhdoom, I.: Automatic speech recogni-
tion: a survey. Multimedia Tools and Applications 80, 9411–9457 (2021)

32. Mathieu Poumeyrol, et al.: Tract inference engine. https://github.com/sonos/
tract

33. Mohassel, P., Zhang, Y.: SecureML: A system for scalable privacy-preserving ma-
chine learning. In: 2017 IEEE Symposium on Security and Privacy (SC). pp. 19–38
(2017)

34. Quoc, D.L., Gregor, F., Arnautov, S., Kunkel, R., Bhatotia, P., Fetzer, C.: se-
cureTF: A Secure TensorFlow Framework. In: Proceedings of the 21st International
Middleware Conference. pp. 44––59 (2020)

35. Riazi, M.S., Weinert, C., Tkachenko, O., Songhori, E.M., Schneider, T., Koushan-
far, F.: Chameleon: A Hybrid Secure Computation Framework for Machine Learn-
ing Applications. In: Proceedings of the 2018 on Asia Conference on Computer and
Communications Security. pp. 707–721 (2018)

36. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomor-
phisms. Foundations of Secure Computation 4(11), 169–180 (1978)

37. Shamshirband, S., Fathi, M., Dehzangi, A., Chronopoulos, A.T., Alinejad-Rokny,
H.: A review on deep learning approaches in healthcare systems: Taxonomies, chal-
lenges, and open issues. Journal of Biomedical Informatics 113, 103627 (2021)

38. Shen, T., Qi, J., Jiang, J., Wang, X., Wen, S., Chen, X., Zhao, S., Wang, S.,
Chen, L., Luo, X., Zhang, F., Cui, H.: SOTER: Guarding Black-box Inference for
General Neural Networks at the Edge. In: Proceedings of the 2022 USENIX Annual
Technical Conference. pp. 1651–1669 (2022)

39. Shen, Y., Tian, H., Chen, Y., Chen, K., Wang, R., Xu, Y., Xia, Y., Yan, S.: Occlum:
Secure and Efficient Multitasking Inside a Single Enclave of Intel SGX. In: Pro-

https://github.com/sonos/tract
https://github.com/sonos/tract


ceedings of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems. pp. 955–970 (2020)

40. Siby, S., Abdollahi, S., Maheri, M., Kogias, M., Haddadi, H.: GuaranTEE: Towards
Attestable and Private ML with CCA. In: Proceedings of the 4th Workshop on
Machine Learning and Systems. pp. 1—-9 (2024)

41. Tramèr, F., Boneh, D.: Slalom: Fast, Verifiable and Private Execution of Neu-
ral Networks in Trusted Hardware. In: 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019)

42. Tran, K.A., Kondrashova, O., Bradley, A., Williams, E.D., Pearson, J.V., Waddell,
N.: Deep learning in cancer diagnosis, prognosis and treatment selection. Genome
Medicine 13, 1–17 (2021)

43. Wang, P., Fan, E., Wang, P.: Comparative analysis of image classification algo-
rithms based on traditional machine learning and deep learning. Pattern Recogni-
tion Letters 141, 61–67 (2021)

44. Wang, W., Chen, G., Pan, X., Zhang, Y., Wang, X., Bindschaedler, V., Tang, H.,
Gunter, C.A.: Leaky Cauldron on the Dark Land: Understanding Memory Side-
Channel Hazards in SGX. In: Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security. pp. 2421–2434 (2017)

45. Winter, J.: Trusted computing building blocks for embedded linux-based ARM
trustzone platforms. In: Proceedings of the 3rd ACM workshop on Scalable trusted
computing. pp. 21–30 (2009)

46. Xue, H., Huang, Z., Lian, H., Qiu, W., Guo, J., Wang, S., Gong, Z.: Distributed
Large Scale Privacy-Preserving Deep Mining. In: 2018 IEEE Third International
Conference on Data Science in Cyberspace (DSC). pp. 418–422 (2018)


	InferONNX: Practical and Privacy-preserving Machine Learning Inference using Trusted Execution Environments

