
1

Design and Implementation of a Stateful Network Packet Processing

Framework for GPUs

Giorgos Vasiliadis1, Lazaros Koromilas4, Michalis Polychronakis2, and Sotiris Ioannidis3,
1Qatar Computing Research Institute - HBKU, 2Stony Brook University, 3FORTH

Abstract

Graphics processing units (GPUs) are a powerful platform

for building high-speed network traffic processing applications

using low-cost hardware. Existing systems tap the massively

parallel architecture of GPUs to speed up certain computa-

tionally intensive tasks, such as cryptographic operations and

pattern matching. However, they still suffer from significant

overheads due to critical-path operations that are still being

carried out on the CPU, and redundant inter-device data

transfers.

In this paper we present GASPP, a programmable net-

work traffic processing framework tailored to modern graphics

processors. GASPP integrates optimized GPU-based imple-

mentations of a broad range of operations commonly used

in network traffic processing applications, including the first

purely GPU-based implementation of network flow tracking

and TCP stream reassembly. GASPP also employs novel

mechanisms for tackling control flow irregularities across

SIMT threads, and for sharing memory context between

network interfaces and the GPU. Our evaluation shows that

GASPP can achieve multi-gigabit traffic forwarding rates even

for complex and computationally intensive network operations

such as stateful traffic classification, intrusion detection, and

packet encryption. Especially when consolidating multiple

network applications on the same system, GASPP achieves

up to 16.2× speedup compared to different monolithic GPU-

based implementations of the same applications.

I. INTRODUCTION

Computer networks have been growing in size, complexity,

and connection speeds [6], [13]. Especially in access and

backbone links, speeds typically reach tens or hundreds of

Gbit/s rates. At the same time, networking applications be-

come diversified and traffic processing gets more sophisti-

cated, requiring data-plane operations beyond the traditional

operations of the lower networking layers, such as forwarding

and routing. Coping with the increasing network capacity and

complexity necessitates pushing the performance of network

packet processing applications as high as possible.

Previously programmable special-purpose hardware solu-

tions, such as FPGAs, Network Processors (NPUs), and

TCAMs, have greatly reduced both the cost and time to

develop network traffic processing systems, and have been

successfully used in routers [4], [7] and network intrusion

§Work performed while at FORTH.

detection systems [15], [29], [37]. These systems offer a

scalable method of processing network packets in high-speed

environments. However, implementations based on special-

purpose hardware are very difficult to extend and program,

and prohibit them from being widely adopted by the industry.

In contrast, the emergence of commodity many-core archi-

tectures, such as multicore CPUs and modern graphics proces-

sors (GPUs) has proven to be a good solution for accelerating

many network applications, and has led to their successful

deployment in high-speed environments [17], [20], [22], [23],

[41]. Recent trends have shown that certain network packet

processing operations can be implemented efficiently on GPU

architectures. Typically, such operations are either computa-

tionally intensive (e.g., encryption [23]), memory-intensive

(e.g., IP routing [20]), or both (e.g., intrusion detection and

prevention [22], [39], [41]). These operations are facilitated

by modern GPU architectures, which offer high computational

throughput and hide excessive memory latencies.

Unfortunately, the lack of programming abstractions and

libraries for GPU-based network traffic processing—even for

simple tasks such as packet decoding and filtering—increases

significantly the programming effort needed to build, extend,

and maintain high-performance GPU-based network applica-

tions. More complex critical-path operations, such as flow

tracking and TCP stream reassembly, currently still run on

the CPU, negatively offsetting any performance gains by the

offloaded GPU operations. The absence of adequate OS sup-

port also increases the cost of data transfers between the host

and I/O devices. For example, packets have to be transferred

from the network interface to the user-space context of the

application, and from there to kernel space in order to be

transferred to the GPU. Although programmers can explicitly

optimize data movements, this increases the design complexity

and code size of even simple GPU-based packet processing

programs.

As a step towards tackling the above challenges, we present

GASPP, a network traffic processing framework tailored to

modern graphics processors. GASPP integrates into a purely

GPU-powered implementation many of the most common

operations used by different types of network traffic processing

applications, including the first GPU-based implementation of

network flow tracking and TCP stream reassembly. By hiding

complicated network processing tasks while providing a rich

and expressive interface that exposes only the data that matters

to applications, GASPP allows developers to build complex

GPU-based network traffic processing applications in a flexible

and efficient way.

We have developed and integrated into GASPP novel tech-

niques for sharing memory context between network interfaces

and the GPU to avoid redundant data movement, and for

scheduling packets in an efficient way that increases the uti-

lization of the GPU and the shared PCIe bus. Overall, GASPP

allows applications to scale in terms of performance, and carry

out on the CPU only infrequently occurring operations.

The main contributions of our work are:

• We have designed, implemented, and evaluated GASPP,

a novel GPU-based framework for high-performance net-

work traffic processing, which eases the development of

applications that process data at multiple layers of the

protocol stack.

• We present the first (to the best of our knowledge) purely

GPU-based implementation of flow state management

and TCP stream reconstruction.

• We present a novel packet scheduling technique that

tackles control flow irregularities and load imbalance

across GPU threads.

• We present a zero-copy mechanism between the network

interfaces and the GPU, which in certain cases avoids

redundant memory copies increasing significantly the

throughput of cross-device data transfers.

II. MOTIVATION

A. The Need for Modularity

The rise of general-purpose computing on GPUs (GPGPU)

and related frameworks, such as CUDA and OpenCL, has

made the implementation of GPU-accelerated applications

easier than ever. Unfortunately, the majority of GPU-assisted

network applications follow a monolithic design, lacking both

modularity and flexibility. As a result, building, maintaining,

and extending such systems eventually becomes a real burden.

In addition, the absence of libraries for core network process-

ing operations—even for basic tasks like packet decoding or

filtering—increases development costs even further. GASPP

integrates a broad range of operations that different types

of network applications rely on, with all the advantages of

a GPU-powered implementation, into a single application

development platform. This allows developers to focus on core

application logic, alleviating the low-level technical challenges

of data transfer to and from the GPU, packet batching,

asynchronous execution, synchronization issues, connection

state management, and so on.

B. Eliminating Redundant Data Transfers

A major drawback of heterogeneous computing in current

OSes is the number of data transfers required between the host

and I/O devices. The problem of data transfers between the

CPU and the GPU is well-known in the GPGPU community,

and several mechanisms have been introduced to hide the

overhead of excessive data transfers. For example, page-

locked memory buffers and asynchronous transfer mechanisms

using DMA can decrease transfer latencies by overlapping

communication with computation. However, an application

may need to copy data from one page-locked memory area to

Post-process
modules

Pcap wrapper

NIC

chips
NIC

chips
NIC

chips

NIC

chips
NIC

chips
NIC

chips

State
Tracking

Session
Management

Modules

Legacy
Apps

PCIe PCIe

PCIe PCIe

Fast forwarding path

Slow path

GPU

CPU

User Space

Fig. 1. GASPP architecture.

another, which is actually the case in network traffic processing

applications. A GPU-accelerated network application has to

move packets from the NIC’s memory to the GPU’s memory.

Addressing such redundancy for cross-device communication

requires OS-level support and an appropriate programming

interface.

C. The Need for Stateful Processing

Flow tracking and TCP stream reconstruction are mandatory

operations required by a broad range of network applications.

For instance, intrusion detection and traffic classification sys-

tems typically inspect the application-layer stream to identify

patterns that span multiple packets and to thwart evasion

attacks [16], [43]. Existing GPU-assisted network processing

applications, however, just offload to the GPU certain data-

parallel tasks, and are saturated by the many computationally

heavy operations that are still being carried out on the CPU,

such as network flow tracking, TCP stream reassembly, and

protocol parsing [22], [41].

The most common approach for stateful processing is

to buffer incoming packets, reassemble them, and deliver

“chunks” of the reassembled stream to higher-level processing

elements [10], [12]. A major drawback of this approach is that

it requires several data copies and significant extra memory

space. In Gigabit networks, where packet intervals can be

as short as 1.25 µsec (in a 10GbE network, for a MTU of

1.5KB), packet buffering requires large amounts of memory

even for very short time windows. To address these challenges,

the primary objectives of our GPU-based stateful processing

implementation are: (i) process as many packets as possible on

the fly (instead of buffering them), and (ii) ensure that packets

of the same connection are processed in-order.

III. DESIGN

The high-level design of GASPP is shown in Figure 1. Pack-

ets are transferred to the memory space of the GPU in batches.

To prevent packets of the same connection to be processed by

different GPU devices (which would break locality and require

the sharing of state between different GPUs), the network

traffic that is received by each NIC is transferred, statically, to

a specific GPU device. The GPU then classifies the captured

Rx

HtoD

Tx

GPU DtoH

Rx

HtoD

Tx

GPU DtoH

Rx

HtoD

Tx

GPU DtoH

Fig. 2. The I/O and processing pipeline. Rx and Tx denote the reception and
transmission of network packets by the NIC, while the HtoD and DtoH denote
the transfer of the aforementioned packets to and from the GPU memory
space.

packets according to their protocol and processes them in

parallel. For stateful protocols, connection state management

and TCP stream reconstruction are supported for delivering a

consistent application-layer byte stream.

GASPP applications consist of modules that control all

aspects of the traffic processing flow. Modules are represented

as GPU device functions, and take as input a network packet or

stream chunk. Internally, each module is executed in parallel

on a batch of packets. After processing is completed, the

packets are transferred back to the memory space of the host,

and depending on the application, to the appropriate output

network interface.

A. Packet Capturing

Modern network cards partition incoming traffic into several

Rx-queues [32] to avoid contention when multiple cores access

the same 10GbE port. To scale with multi-core CPUs, GASPP

spawns one worker thread per CPU core. The worker threads

are responsible for fetching packets from the Rx-queues and

transferring them to the GPU. To avoid costly packet copies

and context switches between user and kernel space, we use

the netmap module [34].

Incoming traffic is transferred to the memory space of the

GPU in batches. As we discuss in Section VII-A, small trans-

fers result in significant PCIe throughput degradation, hence

we batch lots of data together to reduce the PCIe transaction

overhead. In addition, we allocate a different buffer for each

worker thread, to avoid locking overheads. Whenever a buffer

gets full, it is transferred to the GPU with a single operation.

Instead of having a separate CPU thread for interfacing with

a GPU, each worker thread is responsible for transferring the

data and launching the GPU kernel functions independently.

As of CUDA v4.0 and later, multiple CPU threads can share

a single GPU context, in which requests to the GPU such as

data transfers and kernel launches can overlap.

The buffer where network packets are collected is allocated

as a special type of memory, called page-locked or “pinned

down” memory. Page-locked memory is a physical memory

area that does not map to the virtual address space, and

thus cannot be swapped out to secondary storage. The use of

this memory area results in higher data transfer throughput

between the host and the GPU device, because the GPU

driver does not have to copy it to a non-pageable buffer

before transferring it to the GPU, neither swap it from disk.

Data transfers between page-locked memory and the GPU are

performed through DMA, without occupying the CPU.

The forwarding path requires the transmission of network

packets after processing is completed, and this is achieved

using a triple-pipeline solution for each CPU worker thread,

as shown in Figure 2. Specifically, we use a double buffering

scheme that allows for pipelining the execution of CPU cores

and the GPUs. For each worker thread, when the first buffer

becomes full, it is copied to the memory space of the GPU.

While the GPU processes the packets of the first buffer, the

CPU processes newly arrived packets, as shown in Figure 2.

B. Packet Filtering

Packet filtering is used to control what packets will be

processed, and it is typically performed by the OS at an

early stage, i.e., before they are delivered to the user-space

application. To perform packet filtering in GASPP, we load the

filter program to be executed at startup. We have implemented

the BSD Packet Filter (BPF) [31] which is the most widely

used protocol-independent packet filter, and is tailored for ef-

ficient execution on register-based processors. It uses a virtual

RISC (Reduced Instruction Set Computing) pseudomachine,

to rapidly execute arbitrary low-level filter programs over

incoming packet data, which internally are treated as an array

of bytes. Supported instructions include various load, store,

jump, comparison, and arithmetic operations, as well as a

return statement which specifies if the packet is discarded

entirely or the portion of the packet to be saved.

The pseudo-machine consists of an accumulator, an index

register, a scratch memory store, and an implicit program

counter, and is responsible for decoding each BPF instruction

and performing the requested action on the pseudo-machine

state. It is implemented as a separate GASPP processing mod-

ule that will execute the resulting BPF code on each incoming

packet. For simplicity, we use the same BPF program for all

different threads, however a user has the ability to program a

separate module that will allow different GPU threads to use

different BPF programs.

C. Processing Modules

A central concept of NVIDIA’s CUDA [5] that has in-

fluenced the design of GASPP is the organization of GPU

programs into kernels, which in essence are functions that

are executed by groups of threads. GASPP allows users to

specify processing tasks on the incoming traffic by writing

GASPP modules, applicable on different protocol layers, which

are then mapped into GPU device functions. Modules can be

implemented according to the following prototypes:
__device__ uint processEth(unsigned pktid,

ethhdr *eth, uint cxtkey);

__device__ uint processIP(unsigned pktid,

ethhdr *eth, iphdr *ip, uint cxtkey);

__device__ uint processUDP(unsigned pktid,

ethhdr *eth, iphdr *ip, udphdr *udp, uint cxtkey);

__device__ uint processTCP(unsigned pktid,

ethhdr *eth, iphdr *ip, tcphdr *tcp, uint cxtkey);

__device__ uint processStream(unsigned pktid,

ethhdr *eth, iphdr *ip, tcphdr *tcp, uchar *chunk,

unsigned chunklen, uint cxtkey);

The framework is responsible for decoding incoming pack-

ets and executing all registered process*() modules by

passing the appropriate parameters. Packet decoding and

stream reassembly is performed by the underlying system,

eliminating any extra effort from the side of the developer.

Each module is executed at the corresponding layer, with

IP Classification
TCP/UDP

Processing

IP Module

IP Module

IP Module

GPU
TCP Flow State Management

Packet Reordering

Stream

Processing

TCP Module

TCP Module

TCP Module

Stream Module

Stream Module

Stream Module

UDP Module

UDP Module

UDP Module

Fig. 3. GPU packet processing pipeline. The pipeline is executed by a
different thread for every incoming packet.

pointer arguments to the encapsulated protocol headers. Both

packet headers and data can be modified by modules; however,

the size of each packet can not be expanded more than the

number of bytes that is used as padding when packets are

stored back-to-back (16-bytes by default). Arguments also

include a unique identifier for each packet and a user-defined

key that denotes the packet’s class (described in more detail in

Section V-D). Currently, GASPP supports the most common

network protocols, such as Ethernet, IP, TCP and UDP. Other

protocols can easily be handled by explicitly parsing raw

packets. Modules are executed per-packet in a data-parallel

fashion. If more than one modules have been registered, they

are executed back-to-back in a packet processing pipeline,

resulting in GPU module chains, as shown in Figure 3.

The processStream() modules are executed whenever a

new normalized TCP chunk of data is available. These mod-

ules are responsible for keeping internally the state between

consecutive chunks—or, alternatively, for storing chunks in

global memory for future use—and continuing the processing

from the last state of the previous chunk. For example, a

pattern matching application can match the contents of the

current chunk and keep the state of its matching algorithm to

a global variable; on the arrival of the next chunk, the matching

process will continue from the previously stored state.

As modules are simple to write, we expect that users will

easily write new ones as needed using the function prototypes

described above. In fact, the complete implementation of

a module that simply passes packets from an input to an

output interface takes only a few lines of code. More complex

network applications (described in Section VI), such as NIDS,

L7 traffic classification, and packet encryption, require a few

dozen lines of code.

D. API

To cover the needs of a broad range of network traffic

processing applications, GASPP offers a rich GPU API with

data structures and algorithms for processing network packets.

1) Shared Key-Value Store

GASPP enables applications to access the processed data

through a global key-value store. Data stored in an instance of

the key-value store is persistent across GPU kernel invocations,

and is shared between the host and the device. The key-value

store is implemented as a hash-table that allows insertion,

acquisition, deletion, and updates of data objects from both

the host and the device, allowing applications to easily access

any data that needs to be processed further or stored on disk.

Internally, data objects are hashed and mapped to a given

bucket. If the bucket is already occupied, the thread allocates

a new bucket node, using the on-GPU malloc(), and inserts

the entry at the front of the bucket’s list. To enable GPU

threads to add or remove nodes from the table in parallel,

we associate an atomic lock with each bucket, so that only a

single thread can make changes to a given bucket at a time.

2) Pattern Matching

Our framework provides a GPU-based API for matching

fixed strings and regular expressions. We have ported a variant

of the Aho-Corasick algorithm for string searching, and use a

DFA-based implementation for regular expression matching.

Both implementations have linear complexity over the input

data, independent of the number of patterns to be searched.

To utilize efficiently the GPU memory subsystem, packet

payloads are accessed 16-bytes at a time, using an int4

variable [42].

3) Cipher Operations

Currently, GASPP provides AES (128-bit to 512-bit key

sizes) and RSA (1024-bit and 2048-bit key sizes) functions

for encryption and decryption, and supports all modes of AES

(ECB, CTR, CFB and OFB). Again, packet contents are read

and written 16-bytes at a time, as this substantially improves

GPU performance. The encryption and decryption process

happens in-place and as packet lengths may be modified, the

checksums for IP and TCP/UDP packets are recomputed to

be consistent. In cases where the NIC controller supports

checksum computation offloading, GASPP simply forwards

the altered packets to the NIC.

4) Network Packet Manipulation Functions

GASPP provides special functions for dropping network

packets (Drop()), ignoring any subsequent registered user-

defined modules (Ignore()), passing packets to the host for

further processing (ToLinux()), or writing their contents to a

dump file (ToDump()). Each function updates accordingly the

packet index array, which holds the offsets where each packet

is stored in the packet buffer, and a separate “metadata” array.

IV. STATEFUL PROTOCOL ANALYSIS

The stateful protocol analysis component of GASPP is de-

signed with minimal complexity so as to maximize processing

speed. This component is responsible for maintaining the state

of TCP connections, and reconstructing the application-level

byte stream by merging packet payloads and reordering out-

of-order packets.

A. Flow Tracking

GASPP uses a connection table array stored in the global

device memory of the GPU for keeping the state of TCP

connections. Each record is 17-byte long. A 4-byte hash of

the source and destination IP addresses and TCP ports is used

to handle collisions in the flow classifier. Connection state is

stored in a single-byte variable. The sequence numbers of the

most recently received client and server segments are stored

h(seq)

Packet B

h(seq+len)

Packet A

h(seq+len) h(seq)

Packet C

Thread N-1 Thread N

CBA B

CBA

A

Thread N+1

Barrier

next_packet :

h(seq+len)h(seq)

Bindex :

Fig. 4. Ordering sequential TCP packets in parallel. The resulting next packet
array contains the next in-order packet, if any (i.e., next packet[A] = B).

in two 4-byte fields, and are updated every time the next in-

order segment arrives. Hash table collisions are handled using

a locking chained hash table with linked lists (as described in

detail in Section III-D). A 4-byte pointer points to the next

record (if any).

The connection table can easily fill up with adversarial

partially-established connections, benign connections that stay

idle for a long time, or connections that failed to terminate

properly. For this reason, connection records that have been

idle for more than a certain timeout, set to 60 seconds by

default, are periodically removed. As current GPU devices

do not provide support for measuring real-world time, we

resort to a separate GPU kernel that is initiated periodically

according to the timeout value. Its task is to simply mark each

connection record by setting the first bit of the state variable.

If a connection record is already marked, it is removed from

the table. A marked record is unmarked when a new packet

for this connection is received before the timeout expires.

B. Parallelizing TCP Stream Reassembly

Maintaining the state of incoming connections is simple

as long as the packets that are processed in parallel by the

GPU belong to different connections. Typically, however, a

batch of packets usually contains several packets of the same

connection. It is thus important to ensure that the order of

connection updates will be correct when processing packets

of the same connection in parallel.

TCP reconstruction threads are synchronized through a

separate array used for pairing threads that must pro-

cess consecutive packets. When a new batch is re-

ceived, each thread hashes its packet twice: once using

hash(addr s, addr d, port s, port d, seq), and a second time

using hash(addr s, addr d, port s, port d, seq+len), as shown

in Figure 4. A memory barrier is used to guarantee that all

threads have finished hashing their packets. Using this scheme,

two packets x and y are consecutive if: hashx(4-tuple, seq +

len) = hashy(4-tuple, seq). The hash function is unidirectional

to ensure that each stream direction is reconstructed separately.

The SYN and SYN-ACK packets are paired by hashing the

sequence and acknowledge numbers correspondingly. If both

the SYN and SYN-ACK packets are present, the state of the

a) b)

e)d)

c)

f)

Received and forwarded packet New packet

Fig. 5. Subsequent packets (dashed line) may arrive in-sequence ((a)–(d)) or
out of order, creating holes in the reconstructed TCP stream ((e)–(f)).

connection is changed to ESTABLISHED, otherwise if only the

SYN packet is present, the state is set to SYN_RECEIVED.

Having hashed all pairs of consecutive packets in the hash

table, the next step is to create the proper packet ordering for

each TCP stream using the next_packet array, as shown

in Figure 4. Each packet is uniquely identified by an id,

which corresponds to the index where the packet is stored in

the packet index array. The next_packet array is set at the

beginning of the current batch, and its cells contain the id of

the next in-order packet (or -1 if it does not exist in the current

batch), e.g., if x is the id of the current packet, the id of the

next in-order packet will be y = next_packet[x]. Finally,

the connection table is updated with the sequence number of

the last packet of each flow direction, i.e., the packet x that

does not have a next packet in the current batch.

C. Packet Reordering

Although batch processing handles out-of-order packets that

are included in the same batch, it does not solve the problem

in the general case. A potential solution for in-line applications

would be to just drop out-of-sequence packets, forcing the host

to retransmit them. Whenever an expected packet would be

missing, subsequent packets would be actively dropped until

the missing packet arrives. Although this approach would en-

sure an in-order packet flow, it has several disadvantages. First,

in situations where the percentage of out-of-order packets is

high, performance will degrade. Second, if the endpoints are

using selective retransmission and there is a high rate of data

loss in the network, connections would be rendered unusable

due to excessive packet drops.

To deal with TCP sequence hole scenarios, GASPP only

processes packets with sequence numbers less than or equal

to the connection’s current sequence number (Figure 5(a)–(d)).

Received packets with no preceding packets in the current

batch and with sequence numbers larger than the ones stored

in the connection table imply sequence holes (Figure 5(e)–(f)),

and are copied in a separate buffer in global device memory.

If a thread encounters an out-of-order packet (i.e., a packet

with a sequence number larger than the sequence number

stored in the connection table, with no preceding packet in the

current batch after the hashing calculations of Section IV-B),

it traverses the next_packet array and marks as out-of-

order all subsequent packets of the same flow contained in

the current batch (if any). This allows the system to identify

sequences of out-of-order packets, as the ones shown in the

examples of Figure 5(e)–(f). The buffer size is configurable

and can be up to several hundred MBs, depending on the

network needs. If the buffer contains any out-of-order packets,

these are processed right after a new batch of incoming packets

is processed.

Although packets are copied using the very fast device-to-

device copy mechanism, with a memory bandwidth of about

145 GB/s, an increased number of out-of-order packets can

have a major effect on overall performance. For this reason, by

default we limit the number of out-of-order packets that can be

buffered to be equal to the available slots in a batch of packets.

This size is enough under normal conditions, where out-of-

order packets are quite rare [16], and it can be configured as

needed for other environments. If the percentage of out-of-

order packets exceeds this limit, our system starts to drop out-

of-order packets, causing the corresponding host to retransmit

them.

V. OPTIMIZING PERFORMANCE

A. Inter-Device Data Transfer

The problem of data transfers between the CPU and the

GPU is well-known in the GPGPU community, as it results

in redundant cross-device communication. The traditional ap-

proach is to exchange data using DMA between the memory

regions assigned by the OS to each device. As shown in

Figure 6(a), network packets are transferred to the page-locked

memory of the NIC, then copied to the page-locked memory

of the GPU, and from there, they are finally transferred to the

GPU.

To avoid costly packet copies and context switches, GASPP

uses a single buffer for efficient data sharing between the

NIC and the GPU, as shown in Figure 6(b), by adjusting

the netmap module [34]. The shared buffer is added to the

internal tracking mechanism of the CUDA driver to auto-

matically accelerate calls to functions, as it can be accessed

directly by the GPU. The buffer is managed by GASPP

through the specification of a policy based on time and size

constraints. This enables real-time applications to process

incoming packets whenever a timeout is triggered, instead of

waiting for buffers to fill up over a specified threshold. Per-

packet buffer allocation overheads are reduced by transferring

several packets at a time. Buffers consist of fixed-size slots,

with each slot corresponding to one packet in the hardware

queue. Slots are reused whenever the circular hardware queue

wraps around. The size of each slot is 1,536 bytes, which is

consistent with the NIC’s alignment requirements, and enough

for the typical 1,518-byte maximum Ethernet frame size.

Although making the NIC’s packet queue directly acces-

sible to the GPU eliminates redundant copies, this does not

always lead to better performance. As previous studies have

shown [20], [41] (we verify their results in Section VII-A),

contrary to NICs, current GPU implementations suffer from

poor performance for small data transfers. To improve PCIe

throughput, we batch several packets and transfer them at

once. However, the fixed-size partitioning of the NIC’s queue

leads to redundant data transfers for traffic with many small

packets. For example, a 64-byte packet consumes only 1/24th

of the available space in its slot. This introduces an interesting

trade-off, and as we show in Section VII-A, occasionally it is

GPU

NIC

DMA

Buffer

DMA

Buffer

Main Memory

DMA

Buffer

Main Memory

NIC GPUCPU

(a) (b)

Fig. 6. Normal (a) and zero-copy (b) data transfer between the NIC and the
GPU.

better to copy packets back-to-back into a second buffer and

transferring it to the GPU. GASPP dynamically switches to

the optimal approach by monitoring the actual utilization of

the slots.

B. Exploiting GPU Memory Hierarchies

GPUs are equipped with different memory hierarchies—

including global memory, texture memory, constant memory,

and various levels of caches— which offer different properties

and different performance characteristics. In GASPP, we chose

to use texture memory for storing the network packets, as it

is optimized for 2D spatial locality and offers about 20%-

50% improvement over global memory, as we have shown

previously [42].

In addition, the user has the option to use the small

programmable cache that is equipped to all NVIDIA GPU

models—referred to as shared memory–explicitly inside each

GASPP processing module. Still, we do not make use of

shared memory in any of our representative applications

described in Section VI, due to the following reasons. First,

we found that the tradeoff of staging the data to the shared

memory and the corresponding serialization that occurs when

accessing the same bank of shared memory* is not tolerated

by the benefit that the shared memory can provide for our

workloads. Second, by not using the shared memory, the

performance of data accesses that reside in global memory

is boosted, since shared memory resides in the same on-chip

storage with the hardware-managed cache.

C. Packet Decoding

Memory alignment is a major factor that affects the packet

decoding process, as GPU execution constrains memory ac-

cesses to be aligned for all data types. For example, int

variables should be stored to addresses that are a multiple

of sizeof(int). Due to the layered nature of network

protocols, however, several fields of encapsulated protocols are

not aligned when transferred to the memory space of the GPU.

To overcome this issue, GASPP reads the packet headers from

global memory, parses them using bitwise logic and shifting

operations, and stores them in appropriately aligned structures.

To optimize memory usage, input data is accessed in units of

16 bytes (using an int4 variable).

*The shared memory has an important feature called bank conflict: If
multiple addresses of a memory request map to the same memory bank, the
accesses are serialized.

D. Packet Scheduling

Registered modules are scheduled on the GPU, per protocol,

in a serial fashion. Whenever a new batch of packets is

available, it is processed in parallel using a number of threads

equal to the number of packets in the batch (each thread

processes a different packet). As shown in Figure 3, all

registered modules for a certain protocol are executed serially

on decoded packets in a lockstep way.

Network packets are processed by different threads, grouped

together into logical units known as warps (in current NVIDIA

GPU architectures, 32 threads form a warp) and mapped to

SIMT units. As threads within the same warp have to execute

the same instructions, load imbalance and code flow diver-

gence within a warp can cause inefficiencies. This may occur

under the following primary conditions: (i) when processing

different transport-layer protocols (i.e., TCP and UDP) in the

same warp, (ii) in full-packet processing applications when

packet lengths within a warp differ significantly, and (iii) when

different packets follow different processing paths, i.e., threads

of the same warp execute different user-defined modules.

As the received traffic mix is typically very dynamic, it is

essential to find an appropriate mapping between threads and

network packets at runtime. It is also crucial that the overhead

of the mapping process is low, so as to not jeopardize overall

performance. To that end, our basic strategy is to group the

packets of a batch according to their encapsulated transport-

layer protocol and their length. In addition, module developers

can specify context keys to describe packets that belong to the

same class, which should follow the same module execution

pipeline. A context key is a value returned by a user-defined

module and is passed (as the final parameter) to the next

registered module. GASPP uses context keys to further group

packets of the same class together and map them to threads

of the same warp after each module execution, so that they

execute concurrently. This gives developers the flexibility to

build complex packet processing pipelines that will be mapped

efficiently to the underlying GPU architecture at runtime. For

example, suppose a programmer writes one module to inspect

all traffic destined to web servers differently from the traffic

destined to other ports. This can be achieved using a top-level

module with a simple policy consisting of a simple check

on the destination IP address, based on which it dispatches

different packets to different modules, using different context

keys.†

To group a batch of packets on the GPU, we have adapted

a GPU-based radix sort implementation [1]. Specifically, we

assign a separate weight for each packet, consisting of the

byte concatenation of the ip_proto field of its IP header, the

value of the context key returned by the previously executed

module, and its length. Weights are calculated on the GPU

after each module execution using a separate thread for each

packet, and are used by the radix sort algorithm to group the

packets. In particular, the radix algorithm sorts the packets by

grouping the corresponding weights based on the individual

†We note that execution control flow divergence can still occur inside

modules, hence they should be implemented according to the SIMT model of
GPUs to avoid performance penalties.

TCP TCP TCP TCPTCP TCP UDP TCPUDP UDP TCP

Thread-Packet Redirection Array

UDP

App1 App2 App1 App1 App2 App1 App2 App1 App1 App2 App1 App1

TCP TCP TCP TCPTCP UDP UDP UDPTCP TCP UDPTCP

Warp 1 Warp 2 Warp 3

App1 App1 App1 App1 App1 App1 App1 App1 App2 App2 App2 App2

Warp 1 Warp 2 Warp 3

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11

Fig. 7. Packet scheduling for eliminating control flow divergences and load
imbalances. Packet brightness represents packet size.

bits which share the same significant position and value. That

is, the algorithm starts from the most significant bit (MSB)

and moves towards the least significant bit (LSB). At each

step, packets are split in two bins (the 0s bin and the 1s bin)

based on the value of the current bit.

The stability property of radix sort algorithm allows us to

group the packets in more coarse-grained granularities, e.g.,

instead of fully sorting a batch of packets, we can group them

to bins, in which only a subset of bits are compared. For

instance, by ignoring the five LSBs of the packets size, the

packets are placed in bins of width equal to 64, i.e., the first bin

contains all packets with length between 0 and 63, the second

bin all packets with length between 64 and 127, and so on. The

packets in each bin are not further sorted though. Choosing

the bit subset affects both the efficiency and effectiveness

of the radix sort algorithm. When the bit subset increases,

our algorithm will produce a more fine-grained sorting, while

at the same time the extra overhead of sorting will increase

accordingly. Moreover, instead of copying each packet to the

appropriate (sorted) position, we simply change their order in

the packet index array. We also attempted to relocate packets

by transposing the packet array on the GPU device memory,

so as to benefit from memory coalescing [5]. Unfortunately,

the overall cost of the corresponding data movements was

not amortized by the resulting memory coalescing gains. In

Section VII-B we evaluate how grouping granularity affects

GPU execution.

Using the above process, GASPP assigns dynamically to the

same warp any similar-sized packets meant to be processed

by the same module, as shown in Figure 7. Packets that

were discarded earlier, or of which the processing pipeline

has been completed, are grouped and mapped to warps that

contain only idle threads—otherwise warps would contain both

idle and active threads, degrading the utilization of the SIMT

processors. To prevent packet reordering from taking place

during packet forwarding, we also preserve the initial (pre-

sorted) packet index array. In Section VII-B we analyze in

detail how control flow divergence affects the performance of

the GPU, and show how our packet scheduling mechanisms

tackle irregular code execution at a fixed cost.

VI. DEVELOPING WITH GASPP

In this section we present simple examples of representative

applications built using the GASPP framework.

1) L3/L4 Firewall

Firewalls operate at the network layer (port-based) or the

application layer (content-based). For our purposes, we have

built a GASPP module that can drop traffic based on Layer-

3 and Layer-4 rules. An incoming packet is filtered if the

corresponding IP addresses and port numbers are found in the

hash table; otherwise the packet is forwarded.

2) L7 Traffic Classification

We have implemented a L7 traffic classification tool (similar

to the L7-filter tool [2]) on top of GASPP. The tool dynami-

cally loads the pattern set of the L7-filter tool, in which each

application-level protocol (HTTP, SMTP, etc.) is represented

by a different regular expression. At runtime, each incoming

flow is matched against each regular expression independently.

In order to match patterns that cross TCP segment boundaries

that lie on the same batch, each thread continues the processing

to the next TCP segment (obtained from the next_packet

array). The processing of the next TCP segment continues until

a final or a fail DFA-state is reached, as suggested in [40]. In

addition, the DFA-state of the last TCP segment of the current

batch is stored in a global variable, so that on the arrival

of the next stream chunk, the matching process continues

from the previously stored state. This allows the detection of

regular expressions that span (potentially deliberately) not only

multiple packets, but also two or more stream chunks.

3) Signature-based Intrusion Detection

Modern NIDS, such as Snort [12], use a large number

of regular expressions to determine whether a packet stream

contains an attack vector or not. To reduce the number of

packets that need to be matched against a regular expression,

typical NIDS take advantage of the string matching engine and

use it as a first-level filtering mechanism before proceeding to

regular expression matching. We have implemented the same

functionality on top of GASPP, using a different module for

scanning each incoming traffic stream against all the fixed

strings in a signature set. Patterns that cross TCP segments

are handled similarly to the L7 Traffic Classification module.

Only the matching streams are further processed against the

corresponding regular expressions set.

4) AES

Encryption is used by protocols and services, such as SSL,

VPN, and IPsec, for securing communications by authenti-

cating and encrypting the IP packets of a communication

session. While stock protocol suites that are used to secure

communications, such as IPsec, actually use connectionless

integrity and data origin authentication, for simplicity, we only

encrypt all incoming packets using the AES-CBC algorithm

and a different 128-bit key for each connection.

VII. PERFORMANCE EVALUATION

a) Hardware Setup: Our base system is equipped with

two Intel Xeon E5520 Quad-core CPUs at 2.27GHz and

12 GB of RAM (6 GB per NUMA domain). Each CPU is

connected to peripherals via a separate I/O hub, linked to

TABLE I
SUSTAINED PCIE THROUGHPUT (GBIT/S) FOR TRANSFERRING DATA TO A

SINGLE GPU, FOR DIFFERENT BUFFER SIZES.

Buffer 1KB 4KB 64KB 256KB 1MB 16MB

Host to GPU 2.04 7.12 34.4 42.1 45.7 47.8

GPU to Host 2.03 6.70 21.1 23.8 24.6 24.9

TABLE II
SUSTAINED THROUGHPUT (GBIT/S) FOR VARIOUS PACKET SIZES, WHEN

BULK-TRANSFERRING DATA TO A SINGLE GPU.

Packet size (bytes) 64 128 256 512 1024 1518

Copy back-to-back 13.76 18.21 20.53 19.21 19.24 20.04

Zero-copy 2.06 4.03 8.07 16.13 32.26 47.83

several PCIe slots. Each I/O hub is connected to an NVIDIA

GTX480 graphics card via a PCIe v2.0 x16 slot, and one

Intel 82599EB with two 10 GbE ports, via a PCIe v2.0 8×

slot. The system runs Linux 3.5 with CUDA v5.0 installed.

After experimentation, we have found that the best placement

is to have a GPU and a NIC on each NUMA node. We also

place the GPU and NIC buffers in the same memory domain,

as local memory accesses sustain lower latency and more

bandwidth compared to remote accesses. We also modified the

NIC driver to carefully place packet buffers on the respective

local memory domain.

For traffic generation we use a custom packet generator built

on top of netmap [34]. Test traffic consists of both synthetic

traffic, as well as real traffic traces.

A. Data Transfer

We evaluate the zero-copy mechanism by taking into ac-

count the size of the transferred packets. The system can effi-

ciently deliver all incoming packets to user space, regardless

of the packet size, by mapping the NIC’s DMA packet buffer.

However, small data transfers to the GPU incur significant

penalties. Table I shows that for transfers of less than 4KB,

the PCIe throughput falls below 7 Gbit/s. With a large buffer

though, the transfer rate to the GPU exceeds 45 Gbit/s, while

the transfer rate from the GPU to the host decreases to about 25

Gbit/s.‡

To overcome the low PCIe throughput, GASPP transfers

batches of network packets to the GPU, instead of one at

a time. However, as packets are placed in fixed-sized slots,

transferring many slots at once results in redundant data

transfers when the slots are not fully occupied. As we can see

in Table II, when traffic consists of small packets, the actual

PCIe throughput drops drastically. Thus, it is better to copy

small network packets sequentially into another buffer, rather

than transfer the corresponding slots directly. Direct transfer

pays off only for packet sizes over 512 bytes (when buffer

occupancy is over 512/1536 = 33.3%), achieving 47.8 Gbit/s

for 1518-byte packets (a 2.3× speedup).

Consequently, we adopted a simple selective offloading

scheme, whereby packets in the shared buffer are copied to

‡The PCIe asymmetry in the data transfer throughput is related to the
interconnection between the motherboard and the GPUs [20].

Effective

Packet size (bytes)

64 128 256 512 1024 1518

T
h

ro
u

g
h

p
u

t
(G

b
it
/s

)

0

10

20

30

40

Rx+Tx Rx+GPU+Tx

Fig. 8. Data transfer throughput for different packet sizes when using two
dual-port 10GbE NICs, compared to the maximum theoretical throughput
(Effective) that can be achieved at the data-link layer.

TABLE III
STATIC FILTERS AND THEIR INSTRUCTION COUNTS.

Filter Description Instr.

1 “ip” 4

2 “ip src net 192.168.2.0/24 and dst net 10.0.0.0/8” 10

3 “ip and tcp port (ssh or http or imap or smtp or pop3 or ftp)” 23

another buffer sequentially (in 16-byte aligned boundaries) if

the overall occupancy of the shared buffer is sparse. Otherwise,

the shared buffer is transferred directly to the GPU. Occupancy

is computed—without any additional overhead—by simply

counting the number of bytes of the newly arrived packets

every time a new interrupt is generated by the NIC.

Figure 8 shows the throughput for forwarding packets with

all data transfers included, but without any GPU computations.

We observe that the forwarding performance for 64-byte

packets reaches 21 Gbit/s, out of the maximum 29.09 Gbit/s,

while for large packets it reaches the maximum full line

rate. We also observe that the GPU transfers of large packets

are completely hidden on the Rx+GPU+Tx path, as they are

performed in parallel using the pipeline shown in Figure 2, and

thus they do not affect overall performance. Unfortunately, this

is not the case for small packets (less than 128-bytes), which

suffer an additional 2–9% performance hit due to memory

contention.

B. Raw GPU Processing Throughput

Having examined data transfer costs, we now evaluate the

computational performance of a single GPU—excluding all

network I/O transfers—for packet decoding, connection state

management, TCP stream reassembly, and some representative

traffic processing applications. We plot both the performance

achieved by the GPU only (Figure 9), and the performance

achieved with all PCIe transfers included (Figure 10).

1) Packet Filtering

We use three sets of filters with increasing complexity, as

shown in Table III, for static filtering performance evaluation.

The instruction numbers of these filters are also listed. Fig-

ures 9(a) and 10(a) show the raw GPU performance for each

filter. For both CPU and GPU, the number of the produced

instruction increases—almost linearly—the processing time.

Still, the GPU is about 16.2–37.7 times faster than a single

CPU core, and about 3.1–4.8 times faster with all PCIe

transfers included, when having a sufficient number of packets

that are processed in parallel.

2) Packet Decoding

Decoding a packet according to its protocols is one of the

most basic packet processing operations, and thus we use

it as a base cost of our framework. Figure 10(b) shows the

GPU performance, with all PCIe transfers included, for fully

decoding incoming UDP packets into appropriately aligned

structures, as described in Section V-C (throughput is very

similar for TCP). As expected, the throughput increases as

the number of packets processed in parallel increases. When

decoding 64-byte packets, the GPU performance with PCIe

transfers included, reaches 48 Mpps, which is about 4.5 times

faster than the computational throughput of the tcpdump

decoding process sustained by a single CPU core, when

packets are read from memory. For 1518-byte packets, the

GPU sustains about 3.8 Mpps and matches the performance

of 1.92 CPU cores.

3) Connection State Management and TCP Stream Re-

assembly

In this experiment we measure the performance of main-

taining connection state on the GPU, and the performance of

reassembling the packets of TCP flows into application-level

streams. Figures 10(c) and 9(c) show the packets processed per

second for both operations, with and without PCIe transfers ac-

cordingly. Test traffic consists of real HTTP connections with

random IP addresses and TCP ports. Each connection fetches

about 800KB from a server, and comprises about 870 packets

(320 minimum-size ACKs, and 550 full-size data packets). We

also use a trace-driven workload (“Equinix”) based on a trace

captured by CAIDA’s equinix-sanjose monitor [3], in which

the average and median packet length is 606.2 and 81 bytes

respectively.

Keeping state and reassembling streams requires several

hash table lookups and updates, which result to marginal

overhead for a sufficient number of simultaneous TCP connec-

tions and the Equinix trace; about 20–25% on the raw GPU

performance sustained for packet decoding, that increases to

45–50% when the number of concurrent connections is low.

The reason is that smaller numbers of concurrent connec-

tions result to lower parallelism. To compare with a CPU

implementation, we measure the equivalent functionality of the

Libnids TCP reassembly library [10], when packets are read

from memory. Although Libnids implements more specific

cases of the TCP stack processing, compared to GASPP, the

network traces that we used for the evaluation enforce exactly

the same functionality to be exercised. We can see that the

throughput of a single CPU core is about 94× lower than our

GPU implementation, at about 0.55 Mpps (Figure 9(c)). Even

when all PCIe data transfers are included (Figure 10(c)), the

GPU version achieves performance comparable to about 10

CPU cores (assuming ideal parallelization).

4) Removing Expired Connections

Removal of expired connections is very important for pre-

venting the connection table from becoming full with stale

adversarial connections, idle benign connections, or connec-

tions that failed to terminate cleanly [43]. Table IV shows the

GPU time spent for connection expiration. The time spent to

traverse the table is constant when occupancy is lower than

100%, and analogous to the number of buckets; for larger

Batch size (1000s of packets)

0 5 10 15 20 25 30

M
p

p
s

160

80

40

20

10

5

2

1

F1 (GPU)

F2 (GPU)

F3 (GPU)

F1 (CPU)

F2 (CPU)

F3 (CPU)

(a) BPF Filtering

Batch size (1000s of packets)

0 5 10 15

M
p

p
s

80

40

20

10

5

2

1

GPU (64−byte packets)

CPU (tcpdump, 64−byte packets)

GPU (1518−byte packets)

CPU (tcpdump, 1518−byte packets)

(b) Packet decode

Simultaneous TCP connections

1
0

5
0

1
0

0

5
0

0

1
0

0
0

1
5

0
0

2
0

0
0

E
q

u
in

ix

M
p

p
s

64

32

16

8

4

2

1

0.1

GPU CPU (libnids)

(c) TCP state management and reassembly

Simultaneous TCP connections

1
0

5
0

1
0

0

2
5

0

5
0

0

7
5

0

1
0

0
0

E
q

u
in

ix

M
p
p
s

80

40

20

10

4

1

0.1

FW (GPU)

NIDS (GPU)

L7F (GPU)

AES (GPU)

FW (CPU)

NIDS (CPU)

L7F (CPU)

AES (CPU)

(d) Applications

Fig. 9. Average processing throughput, excluding PCIe transfers, sustained by the GPU to (a) filter network packets, (b) decode network packets, (c)
maintain flow state and reassemble TCP streams, and (d) perform various network processing operations.

Batch size (1000s of packets)

0 5 10 15 20 25 30

M
p

p
s

10

5

2

1

F1 (GPU w/transfers)

F2 (GPU w/transfers)

F3 (GPU w/transfers)

F1 (CPU)

F2 (CPU)

F3 (CPU)

(a) BPF Filtering

Batch size (1000s of packets)

0 5 10 15

M
p

p
s

40

20

10

5

2

1

GPU (w/transfers, 64−byte packets)

CPU (tcpdump, 64−byte packets)

GPU (w/transfers, 1518−byte packets)

CPU (tcpdump, 1518−byte packets)

(b) Packet decode

Simultaneous TCP connections

1
0

5
0

1
0

0

5
0

0

1
0

0
0

1
5

0
0

2
0

0
0

E
q

u
in

ix

M
p

p
s

8

4

2

1

0.1

GPU (w/transfers) CPU (libnids)

(c) TCP state management and reassembly

Simultaneous TCP connections

1
0

5
0

1
0

0

5
0

0

1
0

0
0

1
5

0
0

2
0

0
0

E
q

u
in

ix

M
p
p
s

10

4

1

0.1

FW (GPU w/transfers)

NIDS (GPU w/transfers)

L7F (GPU w/transfers)

AES (GPU w/transfers)

FW (CPU)

NIDS (CPU)

L7F (CPU)

AES (CPU)

(d) Applications

Fig. 10. Average processing throughput, including all PCIe transfers, sustained by the GPU to (a) filter network packets, (b) decode network packets, (c)
maintain flow state and reassemble TCP streams, and (d) perform various network processing operations.

TABLE IV
TIME SPENT (µSEC) FOR TRAVERSING THE CONNECTION TABLE AND

REMOVING EXPIRED CONNECTIONS.

Elements 1M buckets 8M buckets 16M buckets

0.1M 463 3,595 7,166

1M 463 3,588 7,173

2M 934 3,593 7,181

4M 1,924 3,593 7,177

8M 3,935 3,597 7,171

16M 7,991 7,430 7,173

32M 16,060 15,344 14,851

values it increases due to the extra overhead of iterating the

chain lists. Having a small hash table with a large load factor is

better than a large but sparsely populated table. For example,

the time to traverse a 1M-bucket table that contains up to 1M

elements is about 20× lower than a 16M-bucket table with

the same number of elements. If the occupancy is higher than

100% though, it is slightly better to use a 16M-bucket table.

5) Packet Processing Applications

In this experiment we measure the computational through-

put of the GPU for the applications presented in Section VI.

The NIDS is configured to use all the content patterns

(about 10,000 strings) of the latest Snort distribution [12],

combined into a single Aho-Corasick state machine, and

their corresponding pcre regular expressions compiled into

individual DFA state machines. The application-layer filter

application (L7F) uses the “best-quality” patterns (12 regular

expressions for identifying common services such as HTTP

and SSH) of L7-filter [2], compiled into 12 different DFA

state machines. The Firewall (FW) application uses 10,000

randomly generated rules for blocking incoming and outgo-

ing traffic based on certain TCP/UDP port numbers and IP

addresses. The test traffic consists of the HTTP-based traffic

and the trace-driven Equinix workload described earlier. Note

that the increased asymmetry in packet lengths and network

protocols in the above traces is a stress-test workload for

our data-parallel applications, given the SIMT architecture of

GPUs [5].

Figure 10(d) shows the GPU throughput sustained by

each application, including PCIe transfers, when packets are

read from host memory. FW, as expected, has the highest

throughput of about 8 Mpps—about 2.3 times higher than

the equivalent single-core CPU execution. The throughput for

NIDS is about 4.2–5.7 Mpps, and for L7F is about 1.45–1.73

Mpps. The large difference between the two applications is

due to the fact that the NIDS shares the same Aho-Corasick

state machine to initially search all packets (as we described

in Section VI). In the common case, each packet will be

matched only once against a single DFA. In contrast, the L7F

requires each packet to be explicitly matched against each of

the 12 different regular expression DFAs for both CPU and

GPU implementations. The corresponding single-core CPU

implementation of NIDS reaches about 0.1 Mpps, while L7F

reaches 0.01 Mpps. We also note that both applications are

explicitly forced to match all packets of all flows, even after

they have been successfully classified (worst-case analysis).

Finally, AES has a throughput of about 1.1 Mpps, as it

Application

FW NIDS L7F AES

P
e
rf

o
rm

a
n
c
e
 g

a
in

 (
%

)

−45

−25

−5

15

35

55 1024

2048

4096

8192

(a) Full sorting

Application

FW NIDS L7F AES

P
e
rf

o
rm

a
n
c
e
 g

a
in

 (
%

)

−45

−25

−5

15

35

55

(b) Partial sorting (at bin widths of
size 64)

Application

FW NIDS L7F AES

P
e
rf

o
rm

a
n
c
e
 g

a
in

 (
%

)

−45

−25

−5

15

35

55

(c) Partial sorting (at bin widths of
size 128)

Module execution pipelines (#)

0 5 10 15 20 25 30 35 40 45

S
p

e
e

d
u

p

1

2

4

8

16

32

L7F

NIDS

AES

FW

(d) Remapping thread-module execu-
tion

Fig. 11. Performance gains of packet sorting on raw GPU execution time,
when executing (i) a single processing module (Figures 11(a)- 11(c)), and (ii)
multiple modules simulteneously (Figure 11(d)).

is more computationally intensive. The corresponding CPU

implementation using the AES-NI [8] instruction set on a

single core reaches about 0.51 Mpps.§

6) Packet Scheduling

In this experiment we measure how the packet scheduling

technique, described in Section V-D, affects the performance

of different network applications. For test traffic we used the

trace-driven Equinix workload.

Figures 11(a)–11(c) show the performance gain of each ap-

plication for different packet batch sizes, under three grouping

granularities: i) full sorting, ii) grouping packets in bins of

width size equal to 64, and iii) grouping packets in bins of

width size equal to 128. We observe that full sorting boosts the

performance of full packet processing applications, up to 55%

for computationally intensive workloads like AES. Memory-

intensive applications, such as NIDS, have a lower (about

15%) benefit, that reaches about 26% when partially sorting

each batch of packets, due to the lower sorting overheads. We

also observe that gains increase as the batch size increases.

With larger batch sizes, there is a greater range of packet sizes

and protocols, hence more opportunities for better grouping.

In contrast, packet scheduling has a negative effect on

lightweight processing (as in FW, which only processes a

few bytes of each packet), because the sorting overhead is

not amortized by the resulting SIMT execution. Partial sorting

sustains lower overhead and is able to decrease the negative

effect to about 21%. Still, as we cannot know at runtime

if processing will be heavyweight or not, it is not feasible

to predict if packet sorting is worth applying. As a result,

quite lightweight workloads (as in FW) will perform worse,

§The CPU performance of AES was measured on an Intel Xeon E5620 at
2.40GHz, because the Intel Xeon E5520 of our base system does not support
AES-NI.

Batch size (#packets)
1024 2048 4096 6144 8192 16384 32768

T
h
ro

u
g
h
p
u
t
(G

b
it
/s

)

0.1

1

2

5

10

20

30
40

Fwd (GASPP) FW (GASPP) NIDS (GASPP) L7F (GASPP) AES (GASPP)

Fwd . FW (CPU) NIDS (CPU) L7F (CPU) AES (CPU)

(a) Throughput.

Batch size (#packets)
1024 2048 4096 6144 8192 16384 32768

L
a
te

n
c
y
 (

m
ic

ro
s
e
c
)

0.1

1

10

100

1K

10K

100K

Fwd (GASPP) FW (GASPP) NIDS (GASPP) L7F (GASPP) AES (GASPP)

Fwd . FW (CPU) NIDS (CPU) L7F (CPU) AES (CPU)

(b) Latency.

Fig. 12. Sustained traffic forwarding throughput (a) and latency (b) for
GASPP-enabled applications.

although this lower performance will be hidden most of the

time by data transfer overlap (Figure 2).

Another important aspect is how control flow divergence

affects performance, e.g., when packets follow different mod-

ule execution pipelines. To achieve this, we explicitly enforce

different packets of the same batch to be processed by different

modules. Figure 11(d) shows the achieved speedup when

applying packet scheduling over the baseline case of mapping

packets to thread warps without any reordering (network

order). We note that although the actual work of the modules is

the same every time (i.e., the same processing will be applied

on each packet), it is executed by different code blocks, thus

execution is forced to diverge. We see that as the number of

different modules increases, our packet scheduling technique

achieves a significant speedup. The speedup stabilizes after

the number of modules exceeds 32, as only 32 threads (warp

size) can run in a SIMT manner any given time. In general,

code divergence within warps plays a significant role in

GPU performance. The thread remapping achieved through

our packet scheduling technique tolerates the irregular code

execution at a fixed cost.

C. GASPP Performance

1) Individual Applications

Figure 12 shows the sustained forwarding throughput and

latency of individual GASPP-enabled applications for different

batch sizes. We use four different traffic generators, equal

to the number of available 10 GbE ports in our system. To

Number of applications

1 2 3 4

T
h
ro

u
g
h
p
u
t
(G

b
it
/s

)

0

10

20

30

40 GASPP

GASPP−nosched

Standalone (GPU)

Standalone (CPU)

Fig. 13. Sustained throughput for concurrently running applications.

prevent synchronization effects between the generators, the

test workload consists of the HTTP-based traffic described

earlier. For comparison, we also evaluate the corresponding

CPU-based implementations running on a single core, on top

of netmap.

The FW application can process all traffic delivered to

the GPU, even for small batch sizes. NIDS, L7F, and AES,

on the other hand, require larger batch sizes. The NIDS

application requires batches of 8,192 packets to reach simi-

lar performance. Equivalent performance would be achieved

(assuming ideal parallelization) by 28.4 CPU cores. More

computationally intensive applications, however, such as L7F

and AES, cannot process all traffic. L7F reaches 19 Gbit/s

a batch size of 8,192 packets, and converges to 22.6 Gbit/s

for larger sizes—about 205.1 times faster than a single CPU

core. AES converges to about 15.8 Gbit/s, and matches the

performance of 4.4 CPU cores with AES-NI support. As

expected, latency increases linearly with the batch size, and for

certain applications and large batch sizes it can reach tens of

milliseconds (Figure 12(b)). Fortunately, a batch size of 8,192

packets allows for a reasonable latency for all applications,

while it sufficiently utilizes the PCIe bus and the parallel

capabilities of the GTX480 card (Figure 12(a)). For instance,

NIDS, L7F, and FW have a latency of 3–5 ms, while AES,

which suffers from an extra GPU-to-host data transfer, has a

latency of 7.8 ms.

2) Consolidated Applications

Consolidating multiple applications has the benefit of dis-

tributing the overhead of data transfer, packet decoding, state

management, and stream reassembly across all applications,

as all these operations are performed only once. Moreover,

through the use of context keys, GASPP optimizes SIMT

execution when packets of the same batch are processed by

different applications. Figure 13 shows the sustained through-

put when running multiple GASPP applications. Applications

are added in the following order: FW, NIDS, L7F, AES

(increasing overhead). We also enforce packets of different

connections to follow different application processing paths.

Specifically, we use the hash of the each packet’s 5-tuple

for deciding the order of execution. For example, a class of

packets will be processed by application 1 and then application

2, while others will be processed by application 2 and then

by application 1; eventually, all packets will be processed by

all registered applications. For comparison, we also plot the

performance of GASPP when packet scheduling is disabled

(GASPP-nosched), and the performance of having multiple

standalone applications running on the GPU and the CPU.

When combining the first two applications, the throughput

remains at 33.9 Gbit/s. When adding the L7F (x=3), per-

formance degrades to 18.3 Gbit/s. L7F alone reaches about

20 Gbit/s (Figure 12(a)). When adding AES (x=4), perfor-

mance drops to 8.5 Gbit/s, which is about 1.93× faster than

GASPP-nosched. The achieved throughput when running mul-

tiple standalone GPU-based implementations is about 16.25×

lower than GASPP, due to excessive data transfers.

VIII. LIMITATIONS

Typically, a GASPP developer will prefer to port function-

ality that is parallelizable, and thus benefit from the GPU exe-

cution model. However, there may be parts of data processing

operations that do not necessarily fit well on the GPU. In

particular, middlebox functionality with complex conditional

processing and frequent branching may require extra effort.

The packet scheduling mechanisms described in §V-D help

accommodate such cases by forming groups of packets that

will follow the same execution path and will not affect GPU

execution. Still, (i) divergent workloads that perform quite

lightweight processing (e.g., which process only a few bytes

from each packet, such as the FW application), or (ii) work-

loads where it is not easy to know which packet will follow

which execution path, may not be parallelized efficiently on

top of GASPP. The reason is that in these cases the cost

of grouping is much higher than the resulting benefits, while

GASPP cannot predict if packet scheduling is worth the case

at runtime. To overcome this, GASPP allows applications to

selectively pass network packets and their metadata to the host

CPU for further post-processing, as shown in Figure 1. As

such, for workloads that are hard to build on top of GASPP,

the correct way is to implement them by offloading them to

the CPU. A limitation of this approach is that any subsequent

processing that might be required also has to be carried out

by the CPU, as the cost of transferring the data back to the

GPU would be prohibitive.

Another limitation of the current GASPP implementation

is its relatively high packet processing latency. Due to the

batch processing nature of GPUs, GASPP may not be suit-

able for protocols with hard real-time per-packet processing

constraints.

IX. RELATED WORK

SwitchBlade [14] provides a model that allows packet

processing modules to be swapped in and out of reconfigurable

hardware without the need to resynthesize the hardware.

ServerSwitch [30] provide a common API for proprietary

switching hardware, and leverages the server CPU to pro-

vide extra programmability. The main disadvantage of these

systems, compared to GASPP, is that their cost is usually

very high, and more importantly, most implementations require

specialized programming and are usually tied to the underlying

architecture.

Click [33] is a popular modular software router that imple-

ments packet processing in units of modules, called elements.

Click successfully demonstrates the need and the impor-

tance of modularity in software routers. Several works focus

on optimizing its performance using commodity multi-core

CPUs [17]–[19] In addition, many works have been proposed

on implementing high-speed packet IO libraries. PacketShader

engine (PSIO) is a batch-oriented packet IO library that uses

huge buffers to reduce kernel/user copy overheads. Similarly,

netmap [34] and PF-RING [11] offer high-speed packet IO

to userspace applications. Intel DPDK [9] offers a framework

for fast packet processing that accesses devices via polling to

eliminate the overhead of interrupt processing. In GASPP, we

use netmap for packet IO, eventhough any other high-speed

packet IO library can be adjusted for the same purpose as well.

GPUs provide a substantial performance boost to many

network-related workloads, including intrusion detection [22],

[39], [41] cryptography [21], [23] and IP routing [20]. The

main difference of GASPP with these works is that we

focus on building a software network processing framework

entirely on the GPU, rather than offloading specific tasks.

By essentially transforming the GPU to a network proces-

sor, GASPP decreases excess data movements and increases

overall performance. In addition, it offers a more user-friendly

environment for developers to build similar applications, with

less effort and in a shorter time. Snap [38] is very close to

our work. It uses netmap, adds a set of extensions to Click

to integrate GPU elements, and also allows application de-

velopers to specify and optimize the order of offloading steps,

such as data transfers and GPU kernel executions. GASPP uses

similar techniques, but also implements packet transformation

techniques to tackle GPU execution divergences at run-time,

with a very low overhead. These transformation techniques

alone are orthogonal to the architecture of most of the previous

GPU-accelerated packet processing systems [20]–[23], [26],

[28], [38], [39], [41], hence they can be integrated in order to

further increase their performance. Even though it is difficult

to include a fair comparative evaluation against all these GPU-

accelerated approaches, we extrapolate that GASPP’s packet

scheduling mechanisms, will boost the GPU performance

reported in crypto applications (e.g., [21], [23], [26], [28])

by about 55%, and in regular expressions and string matching

(e.g., [22], [26], [28], [38], [39], [41]) by about 38%, and

26%, respectively, as we have shown in Section VII-B. Other

works propose treating the CPU as primary processor, since it

offers low latency, and offloading processing tasks to the GPU

(or other accelerators) only when they result in throughput

benefits [26], [28]. Obviously more research is needed to

conclude whether GPU-only implementations are better than

hybrid implementations, in which different processing units

(such as the CPU) are opportunistically selected at runtime

based on the current needs.

Many recent works also deal with GPU resource manage-

ment in the OS [24], [35]. To reduce the number of scheduler

invocations, Gdev [25] adopts an API-driven scheduler model.

The main difference with these works is that we focus on

building a framework that monopolizes the GPU(s), rather

than providing a multi-tasking system that allows the OS

itself to enhance fairness and prioritization. GPUfs [36] and

GPUnet [27] enhance the API available to GPU code, allow-

ing GPU software to access host files and control RX/TX

sockets directly. Finally, Zhang et al. [44] propose software

mechanisms for tackling irregularities in both control flows

and memory references. A major difference with our packet

scheduling approach is that our implementation runs solely on

the GPU (and not on the CPU), with a very low overhead. This

allows us to harmonize the SIMD execution at runtime, after

each module execution, without needing to transfer any data

back to the CPU.

X. CONCLUSIONS

We have presented the design, implementation, and eval-

uation of GASPP, a flexible, efficient, and high-performance

framework for network traffic processing applications. GASPP

explores the design space of combining the massively par-

allel architecture of GPUs with 10GbE network interfaces,

and enables the easy integration of user-defined modules for

execution at the corresponding L2–L7 network layers.

As part of our future work, we plan to investigate further

how to schedule module execution on the CPU, and how

these executions will affect the overall performance of GASPP.

We also plan to implement an opportunistic GPU offloading

scheme, whereby packets with hard real-time processing con-

straints will be handled by the host CPU instead of the GPU

to reduce processing latency.

Acknowledgements. This work was supported by the European

Commission through the H2020 ICT-32-2014 project SHARCS under

Grant Agreement No. 644571 and the H2020 ICT-07-2014 project

RAPID under Grant Agreement No. 644312.

REFERENCES

[1] http://code.google.com/p/back40computing/wiki/RadixSorting.

[2] http://l7-filter.sourceforge.net/.

[3] http://www.caida.org/data/passive/passive 2011 dataset.xml.

[4] Cisco taps processor array architecture for NPU. http://www.eetimes.com/General/

DisplayPrintViewContent?contentItemId=4049718.

[5] CUDA Programming Guide. http://http://docs.nvidia.com/cuda/

cuda-c-programming-guide/index.html.

[6] Global Internet usage. http://en.wikipedia.org/wiki/Global Internet usage.

[7] Huawei Launches NetEngine80 Core Router At Networld+Interop 2001 Exhibi-

tion in US. http://www.huawei.com/en/about-huawei/newsroom/product launch/

hw-090830-productlaunch.htm.

[8] Intel Advanced Encryption Standard (AES) New Instructions Set. https://software.

intel.com/sites/default/files/article/165683/aes-wp-2012-09-22-v01.pdf.

[9] Intel DPDK (Data Plane Development Kit). https://dpdk.org.

[10] Libnids library. http://libnids.sourceforge.net/.

[11] PF RING: High-speed packet capture, filtering and analysis. http://www.ntop.org/

products/packet-capture/pf ring/.

[12] Snort IDS/IPS. http://www.snort.org.

[13] The Akamai State of the Internet Report. http://www.akamai.com/

stateoftheinternet/.

[14] ANWER, M. B., MOTIWALA, M., TARIQ, M. B., AND FEAMSTER, N. Switch-

Blade: a platform for rapid deployment of network protocols on programmable

hardware. In Proceedings of the ACM SIGCOMM Conference (2010).

[15] CLARK, C. R., LEE, W., SCHIMMEL, D. E., CONTIS, D., KONÉ, M., AND

THOMAS, A. A Hardware Platform for Network Intrusion Detection and Preven-

tion. In Proceedings of the 3rd Workshop on Network Processors and Applications

(2005).

[16] DHARMAPURIKAR, S., AND PAXSON, V. Robust TCP stream reassembly in the

presence of adversaries. In Proceedings of the 14th conference on USENIX Security

Symposium - Volume 14 (2005).

[17] DOBRESCU, M., EGI, N., ARGYRAKI, K., CHUN, B.-G., FALL, K., IANNAC-

CONE, G., KNIES, A., MANESH, M., AND RATNASAMY, S. RouteBricks:

Exploiting Parallelism to Scale Software Routers. In Proceedings of the 22nd ACM

Symposium on Operating Systems Principles (2009).

[18] EGI, N., GREENHALGH, A., HANDLEY, M., HOERDT, M., HUICI, F., AND

MATHY, L. Towards high performance virtual routers on commodity hardware.

In Proceedings of the ACM International Conference on emerging Networking

Experiments and Technologies Conference (2008).

[19] GHODSI, A., SEKAR, V., ZAHARIA, M., AND STOICA, I. Multi-resource

fair queueing for packet processing. In Proceedings of the ACM SIGCOMM

Conference (2012).

[20] HAN, S., JANG, K., PARK, K., AND MOON, S. PacketShader: A GPU-accelerated

Software Router. In Proceedings of the ACM SIGCOMM Conference (2010).

[21] HARRISON, O., AND WALDRON, J. Practical Symmetric Key Cryptography

on Modern Graphics Hardware. In Proceedings of the 17th USENIX Security

Symposium (July 2008).

[22] JAMSHED, M. A., LEE, J., MOON, S., YUN, I., KIM, D., LEE, S., YI, Y., AND

PARK, K. Kargus: a highly-scalable software-based intrusion detection system.

In Proceedings of the 2012 ACM conference on Computer and Communications

Security (2012).

[23] JANG, K., HAN, S., HAN, S., PARK, K., AND MOON, S. SSLShader: Cheap

SSL Acceleration with Commodity Processors. In Proceedings of the 8th USENIX

Symposium on Networked Systems Design and Implementation (March 2011).

[24] KATO, S., LAKSHMANAN, K., RAJKUMAR, R., AND ISHIKAWA, Y. TimeGraph:

GPU scheduling for real-time multi-tasking environments. In Proceedings of the

2011 USENIX Annual Technical Conference (2011).

[25] KATO, S., MCTHROW, M., MALTZAHN, C., AND BRANDT, S. Gdev: First-class

GPU resource management in the operating system. In Proceedings of the 2012

USENIX Annual Technical conference (2012).

[26] KIM, J., JANG, K., LEE, K., MA, S., SHIM, J., AND MOON, S. NBA

(Network Balancing Act): A High-performance Packet Processing Framework for

Heterogeneous Processors. In Proceedings of the 10th European Conference on

Computer Systems (2015).

[27] KIM, S., HUH, S., ZHANG, X., HU, Y., WATED, A., WITCHEL, E., AND

SILBERSTEIN, M. GPUnet: Networking Abstractions for GPU Programs. In

Proceedings of the 11th USENIX Symposium on Operating Systems Design and

Implementation (2014).

[28] KOROMILAS, L., VASILIADIS, G., MANOUSAKIS, I., AND IOANNIDIS, S. Ef-

ficient Software Packet Processing on Heterogeneous and Asymmetric Hardware

Architectures. In Proceedings of the 10th ACM/IEEE Symposium on Architectures

for Networking and Communications Systems (2014).

[29] LIU, R.-T., HUANG, N.-F., CHEN, C.-H., AND KAO, C.-N. A Fast String-

matching Algorithm for Network Processor-based Intrusion Detection System.

ACM Transactions on Embedded Computing Systems 3, 3 (2004), 614–633.

[30] LU, G., GUO, C., LI, Y., ZHOU, Z., YUAN, T., WU, H., XIONG, Y., GAO, R.,

AND ZHANG, Y. ServerSwitch: a programmable and high performance platform

for data center networks. In Proceedings of the 8th USENIX conference on

Networked Systems Design and Implementation (2011).

[31] MCCANNE, S., AND JACOBSON, V. The BSD Packet Filter: A New Architecture

for User-level Packet Capture. In Proceedings of the Winter USENIX Conference

(1993).

[32] MICROSOFT CORPORATION. Scalable Networking: Eliminating the Receive

Processing Bottleneck - Introducing RSS, 2005.

[33] MORRIS, R., KOHLER, E., JANNOTTI, J., AND KAASHOEK, M. F. The Click

modular router. In Proceedings of the 17th ACM Symposium on Operating Systems

Principles (1999).

[34] RIZZO, L. netmap: A Novel Framework for Fast Packet I/O. In Proceedings of the

2012 USENIX Annual Technical Conference (2012).

[35] ROSSBACH, C. J., CURREY, J., SILBERSTEIN, M., RAY, B., AND WITCHEL, E.

PTask: Operating System Abstractions to Manage GPUs as Compute Devices. In

Proceedings of the 23rd ACM Symposium on Operating Systems Principles (2011).

[36] SILBERSTEIN, M., FORD, B., KEIDAR, I., AND WITCHEL, E. GPUfs: integrating

a file system with GPUs. In Proceedings of the 18th International Conference on

Architectural Support for Programming Languages and Operating Systems (2013).

[37] SOURDIS, I., AND PNEVMATIKATOS, D. Pre-Decoded CAMs for Efficient and

High-Speed NIDS Pattern Matching. In Proceedings of the 12th Annual IEEE

Symposium on Field Programmable Custom Computing Machines (2004).

[38] SUN, W., AND RICCI, R. Fast and Flexible: Parallel Packet Processing with GPUs

and Click. In Proceedings of the 9th ACM/IEEE Symposium on Architectures for

Networking and Communications Systems (2013).

[39] VASILIADIS, G., ANTONATOS, S., POLYCHRONAKIS, M., MARKATOS, E. P.,

AND IOANNIDIS, S. Gnort: High Performance Network Intrusion Detection Using

Graphics Processors. In Proceedings of the 11th International Symposium on

Recent Advances in Intrusion Detection (2008).

[40] VASILIADIS, G., POLYCHRONAKIS, M., ANTONATOS, S., MARKATOS, E. P.,

AND IOANNIDIS, S. Regular Expression Matching on Graphics Hardware for

Intrusion Detection. In Proceedings of the 12th International Symposium on Recent

Advances in Intrusion Detection (2009).

[41] VASILIADIS, G., POLYCHRONAKIS, M., AND IOANNIDIS, S. MIDeA: a multi-

parallel intrusion detection architecture. In Proceedings of the 18th ACM confer-

ence on Computer and Communications Security (2011).

[42] VASILIADIS, G., POLYCHRONAKIS, M., AND IOANNIDIS, S. Parallelization and

characterization of pattern matching using GPUs. In Proceedings of the 2011 IEEE

International Symposium on Workload Characterization (2011).

[43] VUTUKURU, M., BALAKRISHNAN, H., AND PAXSON, V. Efficient and Robust

http://code.google.com/p/back40computing/wiki/RadixSorting
http://l7-filter.sourceforge.net/
http://www.caida.org/data/passive/passive_2011_dataset.xml
http://www.eetimes.com/General/DisplayPrintViewContent?contentItemId=4049718
http://www.eetimes.com/General/DisplayPrintViewContent?contentItemId=4049718
http://http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://en.wikipedia.org/wiki/Global_Internet_usage
http://www.huawei.com/en/about-huawei/newsroom/product_launch/hw-090830-productlaunch.htm
http://www.huawei.com/en/about-huawei/newsroom/product_launch/hw-090830-productlaunch.htm
https://software.intel.com/sites/default/files/article/165683/aes-wp-2012-09-22-v01.pdf
https://software.intel.com/sites/default/files/article/165683/aes-wp-2012-09-22-v01.pdf
https://dpdk.org
http://libnids.sourceforge.net/
http://www.ntop.org/products/packet-capture/pf_ring/
http://www.ntop.org/products/packet-capture/pf_ring/
http://www.snort.org
http://www.akamai.com/stateoftheinternet/
http://www.akamai.com/stateoftheinternet/

TCP Stream Normalization. In Proceedings of the 2008 IEEE Symposium on

Security and Privacy (2008).

[44] ZHANG, E. Z., JIANG, Y., GUO, Z., TIAN, K., AND SHEN, X. On-the-fly

elimination of dynamic irregularities for GPU computing. In Proceedings of

the sixteenth international conference on Architectural Support for Programming

Languages and Operating Systems (2011).

	Introduction
	Motivation
	The Need for Modularity
	Eliminating Redundant Data Transfers
	The Need for Stateful Processing

	Design
	Packet Capturing
	Packet Filtering
	Processing Modules
	API
	Shared Key-Value Store
	Pattern Matching
	Cipher Operations
	Network Packet Manipulation Functions

	Stateful Protocol Analysis
	Flow Tracking
	Parallelizing TCP Stream Reassembly
	Packet Reordering

	Optimizing Performance
	Inter-Device Data Transfer
	Exploiting GPU Memory Hierarchies
	Packet Decoding
	Packet Scheduling

	Developing with GASPP
	L3/L4 Firewall
	L7 Traffic Classification
	Signature-based Intrusion Detection
	AES

	Performance Evaluation
	Data Transfer
	Raw GPU Processing Throughput
	Packet Filtering
	Packet Decoding
	Connection State Management and TCP Stream Reassembly
	Removing Expired Connections
	Packet Processing Applications
	Packet Scheduling

	GASPP Performance
	Individual Applications
	Consolidated Applications

	Limitations
	Related Work
	Conclusions
	References

