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Abstract—We address the problem of synthesizing specifi-
cations for composite Web services, starting from those of
their component services. Unlike related work in programming
languages, we assume the definition of the component services
(i.e. their code) to be unavailable — at best, they are known
by a specification which (safely) approximates their functional
behavior. Within this scenario, we deduce general formula
schemes to derive specifications for basic constructs such as
sequential, parallel compositions and conditionals and provide
details on how to handle the special cases of loops and
asynchronous execution. The resulting specifications facilitate
service verification and service evolution as well as auditing
processes, promoting trust between the involved partners.

Keywords-specification of service compositions, inference of
specifications, service composition

I. INTRODUCTION

Service composition enables service-based systems to be
built using accepted engineering principles, such as (service)
reusability and composability. Composite services provide
value-added services that achieve functionality otherwise
unattainable by atomic services. In order to fully achieve
these goals, composite services should be made available to
consumers in the same way as atomic services are, abstract-
ing away complex details of the way participating services
are orchestrated to achieve the required functionality. This
allows service consumers to invoke services regardless of
the way they are implemented (i.e. as an atomic service or
as a composition of services). This can be accomplished by
providing formal specifications of composite services which
present to the end user the minimum information required
to understand the functionality offered, often by describing
the inputs, outputs, preconditions and effects (collectively
known as IOPEs) of the composite service.

Formal specifications are indispensable in a variety of
service-related activities. Similarly to the case of program-
ming specifications, service specifications could be used as
a basis to construct a service based on a set of requirements
agreed upon by the parties involved, or to check that some
existing specification meets a set of requirements. Further-
more, they can assist in auditing processes that check third
party or legacy code conformance to specifications, promot-
ing trust between digital society partners, since specification
conformance is one step towards trustworthiness.

Specifications also play a major role in verification tech-
niques. Verification involves checking whether a system
(such as a service or a service composition) satisfies a prop-
erty given the particular property and a formal description
(i.e. a specification) of the system. Moreover, specifications
are important when evaluating the results of service adapta-
tion or service evolution [1]. For instance, it is fundamental
to ensure that a new version of a composite service adheres
to either the original specification or an evolved specification
that has the same or fewer requirements (equal or weaker
preconditions) and produces the same or more results (equal
or stronger postconditions).

Composite specifications also offer great assistance when
one attempts to deduce whether a set of services can actually
be composed in a meaningful way. During the process of
creating the composite specifications, inconsistencies may
be detected between preconditions and/or postconditions
of the participating services, rendering that particular set
of services not composable. Thus, such problems can be
prevented before the composite service is delivered to the
end user, so that they may be resolved by replacing the
service or services that cause the inconsistencies.

While existing service description frameworks attempt to
describe service compositions using a variety of composition
models ranging from orchestrations to choreographies to
Finite State Machines, no attempt (to the best of our knowl-
edge) has been made to handle the problem of automatically
producing specifications for a composite service, based on
the specifications of the participating services. The same
is true for automated Web service composition approaches:
while each of them offers a way of automatically or semi-
automatically producing the composition schema, as well as
the control and data flows of the composite services, none
attempts to derive a complete specification of the service
that is to be delivered to the service consumer.

Traditional tasks involving specifications, especially in the
field of programming languages, include generating code
out of specifications, using specification languages such as
VDM [2], Z [3], B [4] or Event-B [5], generating speci-
fications from existing code (i.e. the weakest precondition
calculus [6]) or checking that a particular code conforms to
a specification. The case handled in this paper is different:
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Figure 1. Composite process of the motivating example

we aim at inferring specifications for a set of individual
components, functioning as a whole, which are only known
through their specifications. Therefore we cannot rely on the
implementation in order to ensure that the service behavior
agrees with the specification or use the implementation to
deduce preconditions based on some predicate transformer.
The only available knowledge is the specifications of the
participating services and the composition schema. Our ap-
proach involves characterizing the meaning of the particular
control structure used in the composition by means of the
existing preconditions and postconditions, followed by a
definition of a composite specification which is syntactically
similar to the atomic specifications, in order to be able to
recursively reason with it in a homogeneous way.

The rest of this paper is organized as follows. Section II
offers a motivating example that illustrates the issues behind
creating a composite specification. Section III provides an
analytical description of the derivation process for most
fundamental control constructs. Section IV deals with the
cases of loops and asynchronous interaction. Section V
offers a brief description of work related to specification
derivation and Section VI concludes and points out topics
for future work.

II. MOTIVATION

In this section, we present a rather indicative motivating
example that attempts to illustrate the need for service
composition specification in a service evolution scenario, as
well as the issues behind deriving a composite specification,
given the specifications of the participating services. The
example is based on the E-Government case study of the
European Network of Excellence S-Cube [7].

In this case study, citizens submit applications to re-
quest some government-related service, such as obtaining
government-issued documents. A fee is required to obtain a
particular document, so a mechanism that executes payment
transactions is involved. Moreover, the citizen may request
that the resulting document be authenticated. To that end, a
digital signature certification mechanism is provided. A typ-
ical process to obtain a document is illustrated in Figure 1.

Users log into the system and fill in forms regarding their
request as well as payment details, which are then simul-
taneously processed before the payment process can begin.
If users demand authentication for their documents, then a
certification process is executed, resulting in the delivery of a
certified document to the user. Otherwise, an uncertified doc-
ument is delivered. For reasons that will be clarified in the
sequel, we have labeled the states before and after particular
points in the process. For instance, state 1 is the state after
the completion of Login and before beginning execution of
services CheckRequest and CheckPayment, while state 2
is the state following CheckRequest/CheckPayment and
before invoking the ExecutePayment service.

Let us assume that the individual tasks described above
are implemented as Web services. Table I offers a possible
specification of the services involved in the process, in
terms of their preconditions and postconditions, expressed
in first-order logic. si and so denote the states before
and after execution of the particular service respectively.
Suppose that, at first, we have a composite service S1 that
is implemented according to a specification T1 in order
to handle the document purchase process we described,
but without certification, as shown in Figure 1. Then, it
is decided that some documents should be certified with a
digital signature, so the initial specification is augmented
to T2 to take that into consideration. In order to meet the
new requirements, service S1 needs to be evolved into a
new composite service S2. We need to check if the evolved
service S2 meets the new specification T2. What we can do
is derive a composite specification I(S2) based only on the
information at hand (the orchestration definition of S2 and
the specifications of the participating services) and check if
I(S2) subsumes T2.

The composite specification should explicitly state all
conditions that must be true before the execution of the
whole composite service, as well as all conditions that are
true after a successful execution. While we have precondi-
tions and postconditions for each participating service, there
is no obvious way of deciding which part of them will
be included in the composite specification. The resulting



Service Preconditions
Login V alid(user, si) ∧ ¬LoggedIn(user, si)

CheckRequest FilledIn(request, si) ∧ LoggedIn(user, si)
CheckPayment FilledIn(payForm, si) ∧ LoggedIn(user, si)

ExecutePayment V alid(payForm, si)
CreateCertified PayCompleted(doc, user, si)

CreateUncertified PayCompleted(doc, user, si)
Service Postconditions
Login LoggedIn(user, so)

CheckRequest V alid(request, so)
CheckPayment V alid(payForm, so)

ExecutePayment PayCompleted(doc, user, so)
CreateCertified CertifCompleted(doc, user, so)∧

Delivered(certifDoc, so)
CreateUncertified Delivered(doc, so)

Table I
ATOMIC SERVICE SPECIFICATIONS

specification should be based on the way the services are
orchestrated, taking into account the control and data flow
of the composition.

We propose a derivation process that is based on struc-
tural induction and attempts to construct the composite
specification using a bottom-up approach. The approach
is applicable on any block-structured process, as well as
graph-based ones, provided they can be transformed to
block-structured equivalents [8]. The approach is based on
the availability of the composition schema, which can be
obtained, for instance, from the BPEL document of the
composite service. In our example, the composite process
is actually a sequence of services, which are either atomic
(the Login and ExecutePayment services) or composite
themselves (an AND-Split/AND-Join and an If-Then-Else
execution). We need to first derive the specifications for the
two inner compositions and then move a step up and derive
the final composite specification, given the specifications for
all four services of the sequence. In order to achieve this, we
need to formulate the derivation for all fundamental control
constructs, which we handle in the following section.

III. CALCULATING PRE- AND POST-CONDITIONS

Formal specifications have been extensively used in com-
puter science in order to rigorously describe what a system
should do and can also similarly be used to offer a formal
presentation of what a Web service provides and under
which circumstances. A traditional format for a specification
contains the conditions that should be met prior to execution
(called preconditions, which we will denote by P ) and the
conditions that result after a successful execution of the
program (called postconditions or results, denoted by Q).

In contrast to program specifications where preconditions
are usually the weakest possible ones (and postconditions
the strongest possible), in the case of services, P and Q
can be expected to be safe approximations, e.g., P can
be stronger than the weakest possible precondition for that
particular service. P can therefore disallow invocations in

cases where the actual code would work, but it would not
allow invocations in a state not entailed by the weakest
precondition. Note that if the approximation were done in
the opposite direction, i.e., with P being weaker than the
weakest precondition, executions allowed by P could be
erroneous.

A. Specification Semantics

A FOL semantics for a service specification with regard
to its preconditions and postconditions is:

∀x · (P (x, si)⇒ ∃y ·Q(x, y, so))

P (x, si) and Q(x, y, so) are the (approximations of) pre-
conditions and postconditions, respectively, using predicates,
where x and y are vector variables that represent accordingly
the input fed to the service and the returned output. si and
so are fixed for a given composition schema and denote
execution points. The reason for using such state identifiers
as additional arguments to the predicates is to differentiate
the truth value of predicates based on when they are evalu-
ated, without having to carry around a usually cumbersome
notion of state of the world. This allows us to express fluency
in predicate values in a lean way. Other formalisms could
be employed, such as the situation calculus (and variants,
such as the fluent calculus), that are specifically designed
for the description of dynamic domains. However, it should
be noted that situation calculus can be encoded as a logic
program [9], [10], which has equivalent expressive power
to FOL. Therefore by choosing FOL, we are not losing any
power, while at the same time staying in a widely known
formalism. Moreover, while the logical consequence in FOL
may be semi-decidable, automated theorem provers for FOL,
such as Prover9 [11] which is employed for the proofs in
this work, are mature enough to provide high performance
in practice.

Given similar specifications for the services participating
in a composition, we want to construct a specification for the
composite service c, which essentially involves calculating a
set Pc of preconditions and a set Qc of postconditions such
that the following holds:

∀x · (Pc(x, si)⇒ ∃y ·Qc(x, y, so))

where Pc(x, si) and Qc(x, y, so) are built using the precon-
ditions and postconditions of the component services.

We insist that the derived specifications maintain the
approximation that we mentioned earlier: preconditions for
c derived from preconditions that are not the weakest them-
selves should be stronger than (or at least as strong as)
the weakest possible precondition for the composition. We
will return to this issue in Section V. In the following sub-
sections, we will show how to calculate preconditions and
postconditions for the most fundamental control constructs:
sequences, AND-Split/AND-Join, OR-Split/OR-Join, XOR-
Split/XOR-Join and conditionals [12], [13]. In all cases, we



x
a A

z

b B

y

c

Figure 2. Sequential composition of services A and B. Information routed
inside A and B is explicitly represented.

consider compositions of two services, but it is straightfor-
ward to extend our work to more complex cases.

B. Sequence

We denote sequential invocation by A(x, z);B(z, y),
where all variables z that constitute the input of service
B are produced as an output of service A. This includes
variables which are input for B and which do not result from
the execution of A, but come directly from sources external
to the sequence. For the purposes of the specification we
consider them to be routed untouched through A. a, b, and c
respectively denote the state before the execution of A, after
the execution of A and before B, and after the execution
of B (Fig. 2). The semantics of the sequential composition
would be

∀x∃z · ((PA(x, a)⇒ QA(x, z, b)) ∧
(PB(z, b)⇒ ∃y ·QB(z, y, c))) (1)

From Eq. (1) we can deduce:

∀x∃z · (PA(x, a) ∧ PB(z, b)⇒
∃y · (QA(x, z, b) ∧QB(z, y, c))) (2)

However, Eq. (2) exposes internal variable z to the pre-
condition. This is not desirable, since preconditions should
be externally checkable and depend only on the input data
to the composition. We can use the postcondition of A to
eliminate this shortcoming:

∀x∃z · (PA(x, a) ∧QA(x, z, b) ∧ PB(z, b)⇒
∃y · (QA(x, z, b) ∧QB(z, y, c))) (3)

In Eq. (3) the precondition can be checked exclusively
based on x.1

The derived specification shows what conditions must
be met before executing the sequence A;B and which
conditions will hold after a successful execution. However,
it does not state clearly which conditions must hold for
the composition to be valid. For a sequential composition
to be valid there should be at least one case where it is
applicable: the precondition of the first service should hold
and the precondition of the second one should be true when
applied to the result of the first service. Expressed in FOL,
this validity condition is as follows:

∃x, z, y · (PA(x) ∧QA(x, z, b)⇒ PB(z, b)) (4)

1All proofs in this paper were checked using the Prover9 [11] theorem
prover. The corresponding files can be found online at http://www.csd.uoc.
gr/∼gmparg/specs
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Figure 3. Parallel composition of services A and B

Note that there is a close connection with Hoare’s
triples [14] (which we explore in more depth in Section V):
in that formalism our notion of an empty domain would
correspond to inferring a false precondition for a piece of
code.

C. AND-Split/AND-Join

In the AND-Split/AND-Join composition pattern, which
we denote by A(x, z)∧B(w, y), there are two (or more) di-
verging branches of activities that are executed concurrently.
Eventually the two branches converge into one branch,
but only after activities on both branches have completed
successfully.

For the composite service of Fig. 3, if we consider the
AND-Split/AND-Join case, the following holds:

∀x · (PA(x, a)⇒ ∃z ·QA(x, z, c)) ∧
∀w · (PB(w, b)⇒ ∃y ·QB(w, y, d)) (5)

Note that it is possible for states a and b (and for states
c and d as well) to be equivalent, but we leave equations in
their general form. In a similar way to the sequential case,
we can deduce from Eq. (5) the following:

∀x∀w · (PA(x, a) ∧ PB(w, b)⇒
∃z, y · (QA(x, z, c) ∧QB(w, y, d))) (6)

In this case, there is no need for further steps, as all input
and output variables should be externally visible. As far as
the validity condition is concerned, we only need to ensure
that there is a case where the preconditions of both services
are true:

∃x,w · (PA(x, a) ∧ PB(w, b)) (7)

The same validity condition applies to all parallel com-
position patterns. Now that we have derived specifications
for the sequential and AND-Split/AND-Join composition
patterns, we will attempt to apply the derivation to the
motivating example. The parallel execution of services
CheckRequest and CheckPayment, results in the follow-
ing specification, based on Eq. (6):

∀request, payForm, user·
(FilledIn(request, 1) ∧ FilledIn(payForm, 1)

∧LoggedIn(user, 1)⇒
V alid(request, 2) ∧ V alid(payForm, 2) (8)

http://www.csd.uoc.gr/~gmparg/specs
http://www.csd.uoc.gr/~gmparg/specs


Here, we use the state identifiers included in Figure 1.
For example, LoggedIn(user, 1) is true if user is logged
in before the execution of CheckRequest/CheckPayment.
Given the above specification, we can now derive
the specification for the composite service up to the
ExecutePayment service, which is a sequence of
3 services: Login, CheckRequest/CheckPayment and
ExecutePayment. The specification is derived by first
producing the specification for the subsequence of the first
2 services, based on Eq. (2):

∀request, payForm, user·
(V alid(user, 0) ∧ ¬LoggedIn(user, 0)
∧FilledIn(request, 1) ∧ FilledIn(payForm, 1)

∧LoggedIn(user, 1)⇒
LoggedIn(user, 1) ∧ V alid(request, 2))

∧V alid(payForm, 2)) (9)

Notice that we use Eq. (2) instead of Eq. (3) be-
cause no internal variables are exposed. Adding the
ExecutePayment service to the sequence, results in the
following specification:

∀request, payForm, user·
(V alid(user, 0) ∧ ¬LoggedIn(user, 0)
∧FilledIn(request, 1) ∧ FilledIn(payForm, 1)

∧LoggedIn(user, 1) ∧ V alid(payForm, 2)⇒
∧LoggedIn(user, 1) ∧ V alid(request, 2))

∧V alid(payForm, 2)

∧∃doc · PayCompleted(doc, user, 3)) (10)

Note that LoggedIn(user, 1) and V alid(payForm, 2)
appear on both sides of the implication, and therefore can
be removed from the right hand side without changing the
meaning of the formula. This is an example of specification
simplification, which will be discussed in Section III-G.

D. OR-Split/OR-Join
The OR-Split/OR-Join composition pattern, which we de-

note by A(x, z)∨B(w, y), is similar to the AND-Split/AND-
Join pattern but with two fundamental differences. First,
not all of the diverging branches are necessarily activated.
Instead, a mechanism selects one or more of them to be
executed each time. Second, at the merging stage there is no
need for synchronization between the converging branches.

For the composite service of Figure 3, if we consider the
OR-Split/OR-Join case, the following holds:

∀x · (PA(x, a)⇒ ∃z ·QA(x, z, c)) ∨
∀w · (PB(w, b)⇒ ∃y ·QB(w, y, d)) (11)

From Eq. (11), we can deduce the following:

∀x∀w · (PA(x, a) ∧ PB(w, b)⇒
∃z, y · (QA(x, z, c) ∨QB(w, y, d))) (12)

As we mentioned previously, the validity condition is the
same as in the AND-Split/AND-Join case (Eq. 7). Intuitively,
the reason is that we do not know which branch is going
to be executed, and therefore we must require that all
of them are eligible. This validity condition may appear
too strong for an OR (or XOR) parallelism, however it
can’t be weakened without any extra knowledge about the
particular parallel execution. While this may lead us to label
a composition as invalid, when eventually the branch that
caused the invalidity is not executed, it guarantees that no
invalid composition is mislabeled as valid, which is far more
important.

E. XOR-Split/XOR-Join

The XOR-Split/XOR-Join composition pattern, that can
be denoted by A(x, z)⊕B(w, y), differs from the previous
pattern in that it allows only one of the diverging branches to
be executed each time. Hence, when the branches converge,
only one of the branches is expected to provide results.

For the composite service of Figure 3, if we consider the
XOR-Split/XOR-Join case, the following holds:

∀x · (PA(x, a)⇒ ∃z ·QA(x, z, c))⊕
∀w · (PB(w, b)⇒ ∃y ·QB(w, y, d)) (13)

XOR between two operands can be expressed as a con-
junction of an OR between the operands and a negated
AND between the same operands. Using the results of the
calculations in the previous cases we result in Eq (14):

∀x,w · (PA(x, a) ∧ PB(w, b)⇒
∃z, y · (QA(x, z, c) ∨QB(w, y, d)) ∧
¬(PA(x, a) ∧ PB(w, b)⇒
∃z, y · (QA(x, z, c) ∧QB(w, y, d)))

(14)

From Eq. (14), we can deduce the following:

∀x,w · (PA(x, a) ∧ PB(w, b)⇒
∃z, y · (QA(x, z, c)⊕QB(w, y, d))) (15)

The validity condition is once again expressed by Eq. 7.

F. Conditional Constructs

Conditional constructs, such as if-then-else or switch
statements, evaluate a condition in order to decide which
branch will be executed. Similarly to the XOR-Split/XOR-
Join pattern, only one of the branches is selected, based on
the truth value of the condition.

In an if-then-else composition of the form IF C(x) THEN
A(x, y) ELSE B(x, y), as seen in Figure 4, if the condition C
is true, then this implies that A is executed; if the condition
is false, then this implies that B is executed. Input variable
x refers to either of the two services since the branches
are exclusive and the same is true for output variable y. x
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Figure 4. Conditional composition of services A and B

also contains the terms that are involved in the condition C.
Hence, the following should hold:

∀x · (C(x, e)⇒ ∃y · (PA(x, a)⇒ QA(x, y, c)))∧
(¬C(x, e)⇒ ∃y · (PB(x, b)⇒ QB(x, y, d)))

(16)

From Eq. (16), we can deduce the following:

∀x∃y·
([(C(x, e) ∧ PA(x, a)) ∨ (¬C(x, e) ∧ PB(x, b))]⇒
([(C(x, e) ∧QA(x, y, c)) ∨ (¬C(x, e) ∧QB(x, y, d))]))

(17)

Determining whether a conditional composition is valid
depends on finding a case where the precondition derived
above is valid, resulting in the following validity check:

∃x · ((C(x, e) ∧ PA(x, a)) ∨ (¬C(x, e) ∧ PB(x, b))) (18)

We can now return and complete the specification
for our example, by deriving first the specification
for the conditional execution of CreateCertified and
CreateUncertified based on Eq. (17) and given the con-
dition ReqCertif(doc, user, 3):

∀doc, user,∃certifDoc·
([(ReqCertif(doc, user, 3) ∧
PayCompleted(doc, user, 4)) ∨
(¬ReqCertif(doc, user, 3) ∧
PayCompleted(doc, user, 5))]

⇒ [(ReqCertif(doc, user, 3) ∧
CertifCompleted(doc, user, 6)

∧Delivered(certifDoc, user, 6)) ∨
(¬ReqCertif(doc, user, 3) ∧
Delivered(doc, user, 6))]) (19)

Given that specification and the one we derived earlier
for the rest of the composition (Eq. (10)) and applying the

Construct Precondition
Sequence PA(x, a) ∧QA(x, z, b) ∧ PB(z, b)

AND-Split/Join PA(x, a) ∧ PB(w, b)
OR-Split/Join PA(x, a) ∧ PB(w, b)

XOR-Split/Join PA(x, a) ∧ PB(w, b)
Conditional (C(u, e) ∧ PA(x, a)) ∨ (¬C(u, e) ∧ PB(x, b))
Construct Postcondition
Sequence QA(x, z, b) ∧QB(z, y, c)

AND-Split/Join QA(x, z, c) ∧QB(w, y, d)
OR-Split/Join QA(x, z, c) ∨QB(w, y, d)

XOR-Split/Join QA(x, z, c)⊕QB(w, y, d)
Conditional (C(u, e) ∧QA(x, y, c))∨

(¬C(u, e) ∧QB(x, y, d))

Table II
DERIVED PRECONDITIONS AND POSTCONDITIONS

derivation actions for a sequence, we result in the following
complete specification for the composite process of our
example:

∀request, payForm, doc, user, ∃certifDoc·
(V alid(user, 0) ∧ ¬LoggedIn(user, 0)
∧FilledIn(request, 1) ∧ FilledIn(payForm, 1)

∧LoggedIn(user, 1) ∧ V alid(payForm, 2) ∧
[(ReqCertif(doc, user, 3) ∧
PayCompleted(doc, user, 4)) ∨
(¬ReqCertif(doc, user, 3) ∧
PayCompleted(doc, user, 5))]

⇒ (LoggedIn(user, 1) ∧ V alid(request, 2)

∧V alid(payForm, 2) ∧ PayCompleted(doc, user, 3)

∧[(ReqCertif(doc, user, 3) ∧
CertifCompleted(doc, user, 6)

∧Delivered(certifDoc, user, 6)) ∨
(¬ReqCertif(doc, user, 3) ∧
Delivered(doc, user, 6))])) (20)

Table II shows the derived preconditions and postcon-
ditions for the basic constructs that we examined in this
Section.

G. Simplifying the Derived Specification

As compositions become larger and more complicated,
both with regard to the number of services and the compo-
sition schema, the derived specification will, in turn, grow
similarly. This should have become obvious through the
motivating example, where the final specification can be con-
sidered large, although still easily processable by a theorem
prover. In even more complex composite services, the need
to somehow simplify and compact the resulting specification
becomes more crucial, demanding the formulation of a
simplification process that should follow the derivation.

Simplifying a specification involves a series of tasks,
ranging from generic ones such as dealing with duplicate



predicates (for instance, predicates that appear in both sides
of an implication, as mentioned at the end of Section III-C)
and applying known equivalences, to tasks that depend on
specific knowledge on the particular composite service. For
instance, in the final specification as expressed in Eq. (20),
the precondition:

(ReqCertif(doc, user, 3)∧
PayCompleted(doc, user, 4))∨
(¬ReqCertif(doc, user, 3)∧
PayCompleted(doc, user, 5))

under the monotonicity constraint that once a payment
process is completed, it remains completed thereafter (which
comes from domain knowledge)

∀x∃y · (y > x)∧
V alid(payForm, x)⇒ PayCompleted(doc, user, y)

is equivalent to PayCompleted(doc, user, 4), which is rea-
sonable due to the nature of the preconditions of the services
that form the if-then-else part of the composition and the
equivalence of states 4 and 5.

IV. HANDLING LOOPS AND ASYNCHRONOUS
EXECUTION

The loop structure was excluded from the discussion in
Section III. Loops allow for the repeated execution of a task
or a process until a condition (the loop guard) ceases to
hold. This poses a significant challenge as there is no a
priori knowledge of how many iterations will be performed.
Due to that fact, the state identifiers that we used in all other
constructs to differentiate predicate evaluations are rendered
inapplicable.

Without knowledge of its precondition and postcondition,
a possible way to specify a loop is by formulating the
specification based on an upper limit on the number of
iterations. For a looped execution under condition C and
for a maximum number of k iterations, knowing that the
looped commands are specified by preconditions P (x) and
Q(x, y), where x and y are the input and output variables,
yields the following recursive loop specification:

L(x, x′, 0) ⇐ (¬C(x) ∧ x = x′) ∧
L(x, x′, k) ⇐ k > 0 ∧ C(x) ∧ (P (x)⇒

Q(x, y)) ∧ L(y, x′, k − 1) (21)

L(x, x′, k) denotes the k-th iteration of a loop with input
variables x and output variables x′. Recursive specifications
like (Eq. 21), while rather expressive and concise, are
difficult to work with, especially by theorem provers. Also,
such a specification wouldn’t be useful as part of a service
specification, particularly in the case of asynchronous inter-
action, discussed later in this Section. Moreover, it depends
on the ability to determine ahead of time an upper limit on
the number of iterations, which cannot be expected to be
always available.

Without knowledge of an upper limit on the number of
iterations, a means to characterize a loop is through its
invariant. A loop invariant I is a statement that is true
before and after each iteration of the loop, thus it stays
unaffected by the loop execution. By definition, the loop
invariant is a loop precondition (I ⇒ P ). Moreover, a
loop postcondition can be derived through the following
implication: I ∧ ¬C ⇒ Q, where C is the loop guard, the
condition that must be true for the iteration to continue [15].

Several issues are raised in the discussion of using invari-
ants to generate loop specifications. A fundamental one is
which of the possible statements that may be produced by a
loop invariant generation process is the most suitable choice.
The selected loop invariant should be at least strong enough
to imply a successful execution of the loop if it was limited
to a single iteration. For instance, if P1 ⇒ Q1 describes
the successful execution of the looped services for a single
iteration, then we need the loop invariant to be at least strong
enough so that I ⇒ P1 and I ∧ ¬C ⇒ Q1 hold.

A. Generating Loop Invariants

As far as the loop invariant generation process is con-
cerned, we once again have to consider the special char-
acteristics of the service-oriented world. In the traditional
programming languages case, generating invariants is based
on the commands that form the body of the loop, whereas
in the services case, we can only rely on an approximate
specification of the body. Hence, we can expect that a
generated invariant is an approximation too. The correct
direction of the approximation needs to be determined.

Suppose that we have an invariant Iw that is a weaker safe
approximation of the invariant I that would be generated
based on the actual code of the loop, i.e. I ⇒ Iw. If we
use that invariant as a precondition, then we may allow
invalid executions, which is unacceptable. On the other hand,
if we use it to derive a postcondition Qw by applying the
implication Iw ∧ ¬C ⇒ Qw, then Q ⇒ Qw, meaning that
we will get a weaker postcondition, which is acceptable,
since the specified results of the execution are more than
the actual ones.

Suppose now that we have an invariant Is that is a stronger
safe approximation of I , i.e. Is ⇒ I . This will lead to
a stronger precondition, which is what we expect from an
approximate specification of a service, but also a stronger
postcondition (if Is ∧ ¬C ⇒ Qs, then Qs ⇒ Q), which is
problematic, because some of the actual results of the service
may not be specified. Consequently, we need a stronger
approximation of the invariant in order to derive a useful
precondition, and a weaker approximation in order to derive
a useful postcondition.

Another issue concerning invariant generation is the pecu-
liar characteristics of our case. While, in general, invariant
generation is based on a set of commands (the loop pro-
gram), in our case we only have an approximate specification



of the commands of the loop, so the generation process
must be based on this information. Essentially, the invariant
generator must take into account the preconditions of the
looped commands, so that the resulting invariant at least
implies these preconditions, as mentioned at the beginning
of this section.

Furia and Meyer [16] provide a concise summary on
the different methods that have been proposed in literature
to generate loop invariants. Of the works mentioned, only
static methods that do not depend on executing the program
and do not rely on existing program annotations can be
applied in our case since we actually need the invariant as
a means to specify the loop and not the other way round.
Methods such as abstract interpretation [17], [18], [19], [20]
and constraint-based techniques [21], [22] are applicable,
although they should be adapted in order to take into account
the discussion in this section.

B. Specifying Asynchronous Services

So far, we have made the implicit assumption that all
service executions are synchronous: a service receives a
request, the client waits for the service to handle the request
and the service returns a response. However, it is very
common in Service-Oriented Computing to employ services
that interact in an asynchronous manner: the client invokes
the service but does not wait for the response, which may
take more time to be produced than in the synchronous
case. It is important to determine how this asynchronous
interaction affects the derivation process we have described
so far.

As far as preconditions are concerned, there is no dif-
ference: whether it is a synchronous or an asynchronous
interaction, preconditions need to be true at the moment
the request is received. However, the evaluation of postcon-
ditions is affected, because in the asynchronous case the
response is received in a state which may differ from that
in which the invocation was performed. Hence, care must
be taken to ensure that postconditions are expressed and
evaluated in the correct context.

In order to deal with this issue, we borrow the property of
Static Single Assignment form (SSA) [23] from compiler de-
sign. SSA states that there is exactly one assignment for each
distinct variable in a program. To implement assignments to
the same variable, variable renaming is employed, so that if,
for instance, a variable y is involved in two assignments, it
is renamed to y1 and y2.

Let’s return to the motivating example. Suppose that the
ExecutePayment service is executed asynchronously. This
means that after checking the precondition and invoking the
service, the composite process continues to the certification
phase. Let’s assume that we have a more detailed version
of the precondition, V alid(payForm, user, si), which is
true when the particular user has correctly filled in the
corresponding payment form. If, after the invocation of

ExecutePayment, another service has to modify the vari-
able user, it is renamed to user1. Thus, when the asyn-
chronous service completes execution and the postcondition
PayCompleted(doc, user, so) has to be checked, it will be
evaluated against the value of variable user that matches the
value used in the evaluation of the precondition.

In the case of loops, expressing specifications using the
SSA form requires that we know an upper limit for the
number of iterations, otherwise it is not possible to apply
the variable renaming scheme. In absence of such an upper
limit, loop specification derivation must follow the detailed
discussion in this section, in order to produce simpler
specifications for which SSA can be easily applied.

V. RELATED WORK

Formal specifications have been used in computer science
in order to describe what a system should do. Specifications
can be used to drive the system’s implementation and to
verify whether existing systems (or design plans) are correct
with respect to the specification that was agreed upon. A
traditional format of a program specification contains the
conditions that should be met prior to execution (called
preconditions) and the conditions that result after a suc-
cessful execution of the program (called postconditions
or results). Hoare [14] introduced the well-known triple
notation P{S}Q which expresses that if preconditions P
are met before initiating execution of program S, then when
the execution completes postconditions Q will be true.

Hoare’s notation expresses a sufficient set of conditions
for a program to have a desired set of results. Dijkstra [6]
expanded on this by focusing on necessary and sufficient
(called weakest) preconditions, that also guarantee the de-
sired result. The notation he introduced, wp(S,Q) denotes
the weakest precondition for program S, which is “the set of
all states such that execution of S begun in anyone of them
is guaranteed to terminate in a finite amount of time in a
state satisfying Q” [15]. Dijkstra then defined the weakest
preconditions for basic statements such as assignment, con-
ditionals, or loops and showed that one can derive formally
a set of statements that, if executed, will lead to a specified
result, by using structural induction on the basic weakest
preconditions.

Our work attempts to bring Dijkstra’s derivation of pro-
gram specifications in the field of Service-Oriented Comput-
ing, hence it differs in some important points. The defining
difference is that Dijkstra’s derivation process is driven by
the program implementation. In the case of services, we have
no access to the implementation, thus we cannot use it to
either drive the derivation process or verify the resulting
specification. Another important difference is that the weak-
est precondition derivation relies on specifications that aren’t
approximations: in order to derive the weakest precondition
for a composition using the wp operator, we need to have
the weakest preconditions for all participating services. As



we have already mentioned, service specifications are most
often approximations and as a result, they cannot be used in
combination with the wp operator. Finally, a further differen-
tiating point in comparison to programming specifications is
the asynchronous interaction that we encounter in services,
which is not addressed in programming specifications.

Despite the differences outlined above, it is important to
make sure that our approach does not contradict Dijkstra’s.
In other words, we need to ensure that our approach does not
infer a precondition that is weaker than the one calculated
by the wp operator. We now provide an intuitive explanation
supporting this for the case of the sequential composition.
Let us reason by contradiction and assume that the precon-
dition produced by our approach, P , is not stronger or as
strong as the weakest precondition Pwp: ¬(P ⇒ Pwp) —
or, equivalently, P ∧ ¬Pwp, i.e., there are states in which
the weakest precondition Pwp does not hold, but in which
our precondition P holds, which by definition makes P
incorrect.

Since the initial assumption is that P ∧¬Pwp is true, then
PA ∧ PB ∧¬Pwp must also be true. From the discussion at
the beginning of Section III, we know that the approximated
preconditions PA and PB are stronger than or equivalent to
the corresponding weakest preconditions PwpA

and PwpB
,

i.e., PA ⇒ PwpA
and PB ⇒ PwpB

. With that into account,
we need PwpA

∧ PwpB
∧ ¬Pwp to be true.

The result is contradictory since we want at the same
time the precondition of a composite service to be false and
the preconditions of the services it contains to be true. In
particular, the precondition of the leftmost service, PA, has
to be true, since it is the “starting point” of the composition.
Hence our assumption was incorrect, meaning that our
approach will never produce a precondition that is weakest
than the one derived by the wp operator. In a similar manner,
we can prove that our result holds for all control constructs
handled in this work, since in almost all of them, P contains
the conjunction of PA and PB . The only exception is the
conditional case, where the derived precondition contains
a disjunction of PA and PB , depending on the condition
truth value. Regardless, the contradiction we have proven
still holds, since in any case either PA or PB will have to
be true.

Another work related to specification derivation is that
of Ghezzi et al. [24], [25] which focuses on methods for
specification recovery. [24] proposes a method to infer
algebraic specifications of abstract data types, given the
related class and its methods and with no access to the source
code. Behavior models are extracted based on the run-time
behavior of the class to be specified and are used to drive
the generation and selection of possible actions performed
by the class, described as terms, i.e. sequences of legal
method applications with fixed actual parameters, starting
from a constructor. [25] similarly creates behavior models
by observing the input-output relationships after executing

the methods of the class. Then, graph transformation rules
are applied in order to result in a generalization of the initial
behavior models, which is the inferred specification for the
class. These works rely on the run-time behavior of a com-
ponent in order to derive its specification, which is different
from our approach, in which we rely on the specifications
of sub-components and the control flow between them.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an approach for inferring com-
posite service specifications given the specifications of the
services participating in the composition (in the form of sets
of preconditions and postconditions) and the composition
schema. The approach attempts to construct the specification
by using structural induction based on derivation rules de-
fined for most fundamental control constructs. The resulting
specification can be used to formally describe the composite
service in terms of its preconditions and postconditions
without requiring any knowledge of the internals of the
composition, allowing for an actual “black box” view of
the whole process.

The nature of the proposed approach facilitates a possible
implementation: structural induction lends itself to be written
as a recursive algorithm. Hence, it would be straightforward
to create an automated process that takes a set of service
specifications and a composition schema and produces the
specification for the composite service of the schema. Such
specifications can then be used to prove desired properties
of the composite service or be fed to automated composition
approaches that accept preconditions and postconditions as
input [26].

Future work includes implementing the proposed ap-
proach and evaluating it for compositions of varying com-
plexity. Concerning specification simplification, we plan to
look into the work of Douglas Smith [27] on simplifying
precondition formulas and determine whether the actions
he proposes may be applied in our case. Finally, it would
be interesting to explore whether the resulting specifications
suffer from the frame problem and related issues as exam-
ined in [28].
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