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Overview Of A Speaker Verification System
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Cues for recognition: High Level

Clarity

Roughness

Animation

Magnitude

Pitch intonation

Articulation rate

Dialect



Cues for recognition: High Level

Vocal tract spectrum

Instantaneous pitch

Glottal flow excitation

Modulations in formant trajectories



Mel-Cepstrum

Compute STFT:

X (n, ωk ) =
∞∑

m=−∞
x[m]w [n − m]e−jωk m

where ωk = 2π
N

k with N the DFT length

Apply mel-scale filters Vl (ωk ) on |X (n, ωk )|:

|Vl (ωk ) X (n, ωk )|

Compute the energy in each mel-frequency band:

Emel (n, l) =
1

Ak

Ul∑
k=Ll

|Vl (ωk ) X (n, ωk )|2

where Ll and Ul denote the lower and upper limit of the lth filter and

Al =

Ul∑
k=Ll

|Vl (ωk )|2

Compute mel-cepstrum:

Cmel [n,m] =
1

R

R−1∑
l=0

log (Emel (n, l)) cos (
2π

R
lm)

where R is the number of filters.
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Triangular mel-scale filter bank



Sub-Cepstrum

Convolve mel-scale filter impulse response ul [n] (subband
filter) with x [n]:

X̃ (n, ωl ) = x [n] ? ul [n]

Compute energy:

Esub(n, l) =

N/2∑
m=−N/2

p[n −m]|X̃ (n, ωl )|2

where p[n] is a smoothing filter.

Compute subband cepstrum:

Csub[n,m] =
1

R

R−1∑
l=0

log (Esub(n, l)) cos (
2π

R
lm)
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Comparing Mel-Cepstrum and Sub-Cepstrum



Energies from mel-scale and subband filter
banks
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Minimum-Distance Classifier

Compute the average (mel or subband) cepstral features for
the training data:

C̄ tr [n] =
1

M

M∑
m=1

C tr [mL, n]

where L denotes the frame length.
Compute the average cepstral features for the testing data:

C̄ ts [n] =
1

M ′

M′∑
m=1

C ts [mL, n]

Compute a distance:

D =
1

R − 1

R−1∑
n=1

(C̄ tr [n]− C̄ ts [n])2

For speaker verification:

if D > Threshold, then speaker is verified
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Using Acoustic Classes

Let assume we know the acoustic class of each speech
segment

For each class i compute the mean:

C̄ tr
i [n] = 1

M

∑M
m=1 C tr

i [mL, n]

C̄ ts
i [n] = 1

M′
∑M′

m=1 C ts
i [mL, n]

Compute the Euclidean distance in each class:

Di =
1

R − 1

R−1∑
n=1

(C̄ tr
i [n]− C̄ ts

i [n])2

Average over all classes:

D =
1

I

I∑
i=1

Di

Use D as previously for speaker verification (or identification)
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Multivariate Gaussian pdf

Let x be a d × 1 vector

Gaussian pdf:

gµ,Σ(x) =
1

√
2π

d√
|Σ|

e−
1
2

(x−µ)T Σ−1(x−µ)

where µ is the mean vector and Σ the covariance matrix.

Estimation of the mean:

µ̂ =
1

N

N∑
i=1

xi

Estimation of the (unbiased) covariance matrix:

Σ̂ =
1

N − 1

N∑
i=1

(xi − µ)(xi − µ)T
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Gaussian Mixture Model - GMM

Mixture of Gaussian PDFs

p(x|θ) =
K∑

k=1

p(qk |x)gµk ,Σk
(x)

where
K∑

k=1

p(qk |x) = 1

Speaker model, θ
θ = {pk , µk ,Σk}

for k = 1, 2, · · · ,K



Speaker Identification

If we have estimated S target speaker models θj with
j = 1, 2, · · · , S .
Maximum a posteriori probability classification:

max
θj

P(θj |xi ) =
p(xi |θj )P(θj )∑S

j=1 p(xi |θj )

Maximum Likelihood :

max
θj

p(xi |θj )

if X = {x0, x1, · · · xM−1} and assuming frames are
independent:

p(X|θj ) =
M−1∏
i=0

p(xi |θj )

Speaker identification:

Ŝ = max
1≤j≤S

M−1∑
i=0

log [p(xi |θj )]



Speaker Identification

If we have estimated S target speaker models θj with
j = 1, 2, · · · , S .
Maximum a posteriori probability classification:

max
θj

P(θj |xi ) =
p(xi |θj )P(θj )∑S

j=1 p(xi |θj )

Maximum Likelihood :

max
θj

p(xi |θj )

if X = {x0, x1, · · · xM−1} and assuming frames are
independent:

p(X|θj ) =
M−1∏
i=0

p(xi |θj )

Speaker identification:
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Speaker Verification

If we have estimated a GMM for the target speaker θt and a
GMM for a collection of imposters (background model), θBUM

Compute the ratio:

P(θt |X)

P(θBUM |X)
=

p(X|θt)P(θt)

p(X|θBUM)P(θBUM)

Compute the log-likelihood ratio:

Λ(X) = log [p(X|θt)]− log [p(X|θBUM)]

Compare with a threshold

Λ(X) ≥ λ, accept
Λ(X) < λ, reject
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GMM-based recognition systems



Performance of GMM-based recognition
systems

� 19 mel-scale coeff (24-1-2-2), 8-component GMM with diagonal
covariance matrix.
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Liljencrants-Fant (LF) model for GFD

7-parameters LF model:

uLF (t) = 0, 0 ≤ t < To

= Eoeα(t−To ) sin [Ω0(t − To)], To ≤ t < Te

= −E1[e−β(t−Te ) − e−β(Tc−Te )], Te ≤ t < Tc



Example of a glottal flow derivative
estimate [1]



Comparing histograms for two speakers based
on GFD estimates [1]



Speaker identification performance using
GFD parameters [1]

Table: Using GFD estimates

Features Male Female

Coarse: 7 LF 58.3% 68.2%

Fine: 5 energy 39.5% 41.8%

Source: 12 LF & energy 69.1% 73.6%

Table: Using mel-cepstrum on GFD estimates

Features Male Female

Modeled GFD: 41.1% 51.8%

GFD: 95.1% 95.5%



Prosodic and other features

� Left: females, Right: males



Explaining the performance of prosody for
SID
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