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OVERVIEW OF A SPEAKER VERIFICATION SYSTEM
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MEL-CEPSTRUM

@ Compute STFT:

X(n,wg) = i x[m]w[nfm]e_jukm

m=—o00

where w) = 2% k with N the DFT length
@ Apply mel-scale filters Vi(wy) on | X(n, wy)|:

[Vi(wi) X(n, w)

@ Compute the energy in each mel-frequency band:
1 U
2
Emer(n, 1) = — > [Vi(wi) X(n, w)
Ak k=t
=
where L; and U, denote the lower and upper limit of the /th filter and
Y

A= [Vi(wi) |

k=L,



MEL-CEPSTRUM

@ Compute STFT:
>
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where ()= 2 k with N the DFT length
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@ Compute the‘energy in each mel-frequency band:
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where L; and U, denote the lower and upper limit of the /th filter and

Y
A= |Vi(wi)l
k=L,
A
@ Compute mei-gepstrum: |
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where R is the number of filters.
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SUB-CEPSTRUM

e Convolve mel-scale filter impulse response wu;[n] (subband
filter) with x[n]:

X(n,wr) = x[n] * uy[n]



SUB-CEPSTRUM

e Convolve mel-scale filter impulse response wu;[n] (subband
filter) with x[n]:
X(n,wp) = x[n]  u[n]

o Compute energy:

N/2

Esn(n, )= > pln—m]|X(n,w)
m=—N/2

where p[n] is a smoothing filter.



SUB-CEPSTRUM

o Convolve mel-scale filter impulse response. u/[nhsubband

filter) with x[n]: ‘_ — \_

X(n,w) = x[n] ¥ u/[n]
,1\ ‘\‘_ ____,/ | —
o Compute energy:

Tein “ N/2

LEsub(n N= > pln—mlIX(n,w)P
— m——N/2 E—

L |_|

where p[n] is a smoothing filter.

o Compute subband cepstrum:
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COMPARING MEL-CEPSTRUM AND SUB-CEPSTRUM
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ENERGIES FROM MEL-SCALE AND SUBBAND FILTER
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MINIMUM-DISTANCE CLASSIFIER

o Compute the average (mel or subband) cepstral features for
the training data:
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where L denotes the frame length.



MINIMUM-DISTANCE CLASSIFIER

o Compute the average (mel or subband) cepstral features for
the training data:
C‘tr _ 1 u Ctr L
= 3 3 €t
where L denotes the frame length.
o Compute the average cepstral features for the testing data:

ts 1 il ts
C¥[n] = I E C¥[mL, n]
m=1



MINIMUM-DISTANCE CLASSIFIER

o Compute the average (mel or subband) cepstral features for
the training data:
C‘tr _ 1 u Ctr L
= 3 3 €t
where L denotes the frame length.
o Compute the average cepstral features for the testing data:

ts 1 il ts
C¥[n] = I E C¥[mL, n]
m=1

o Compute a distance:
1 Rl
— tr _ (ts 2
D= = ("Il - Tl

n=1



MINIMUM-DISTANCE CLASSIFIER

o Compute the average (mel or subband) cepstral features for
the tralnlng data

_— )
Qc"@ 1 Z C[mL, n] i,-’ ‘ |

L) tv
where L denotes the frame iength. — j St
e Compute the average cepstral features for the testing data:

—_—

\ Ct[n] = i > C®lmL, n] | )
~— m=1 ) / J!I__J +€/_|5 |

e Compute a distance: ——————

-

(D)= 1 X (CT = V1l

o For speaker verification:

if D > Threshold, then speaker is verified



UsiNG AcousTic CLASSES

o Let assume we know the acoustic class of each speech
segment



UsiNG AcousTic CLASSES

o Let assume we know the acoustic class of each speech
segment

@ For each class i compute the mean:

CHnl = &S0, CHmL,n]
Clln) = &M ci[mL,n]



UsiNG AcousTic CLASSES

o Let assume we know the acoustic class of each speech
segment
@ For each class i compute the mean:

Ciln] = 5 X py CF L]
Coln) = g Yoy CFlmL, ]
o Compute the Euclidean distance in each class:

1 R-1

Di = R_1 Z(C’tr[”] — CP[n)?

n=1



UsiNG AcousTic CLASSES

o Let assume we know the acoustic class of each speech
segment
@ For each class i compute the mean:
Ciin] = A5M_ cirimL, n]
Ctlnl = & 5M . csmL, ]
o Compute the Euclidean distance in each class:

R-1

1 tr ts 2
Di = R_1 Z(Ci [n] — G*[n])

n=1

@ Average over all classes:

1/
772



UsiNG AcousTic CLASSES

o Let assume we know thefécoustic class pf each speech

segment I N~

° For(each class l/a/ompute the mean:
(D = o o)

CElnl = 3 Yo CFImLn =
e Compute the Euclidean distance in each class:
R-1
_\ 1 ~ i =
DiF p— Z(Cf [n] = CF¥[n])?
n=1

\_.
@ Average over all classes:
—
iy )
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@ Use D as previously for speaker verification (or identification)
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MULTIVARIATE (GAUSSIAN PDF

Let x be a d x 1 vector

o Gaussian pdf:

LIPS 1CS L 2l S

Var' /1]

where p is the mean vector and X the covariance matrix.

8u,x(x) =

@ Estimation of the mean:

=

1 N
=ty
i=1



MULTIVARIATE GAUSSIAN PDF

Let x bea d x 1 vector -
o Gaussian pdf:
/,.....-'—';-_"“‘\II 1 —l(x— )T}:*l(x— )
Bux(X) 5 ————e 27K #

d —
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where p is the mean vector and X the covariance matrix.
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o Estimation of the (unbiased) covariance matrix:
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e Estimation of the mean: J——

o
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(GAUSSIAN MIXTURE MODEL - GMM

o Mixture of Gaussian PDFs

[ p(x|6) =

—

where
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SPEAKER IDENTIFICATION

o If we have estimated S target speaker models 6; with
j:1>2>"' 75-
e Maximum a posteriori probability classification:

0 P(6;
max P(6;|x;) = M

; > i1 P(xil6;)
o Maximum Likelihood:

max p(x;|6;)
0;



SPEAKER IDENTIFICATION

o If we have estimated S target speaker models 6; with
j=12..- S
e Maximum a posteriori probability classification:
max P(6;|x;) = M
b >_j=1 P(xil0))
o Maximum Likelihood:

max p(x;|6;)
0;

o if X ={xo,x1,--xm_1} and assuming frames are

independent:
M—1

p(X[0;) = ] p(xil6;)

i=0



SPEAKER IDENTIFICATION
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SPEAKER VERIFICATION

o If we have estimated a GMM for the target speaker 0; and a
GMM for a collection of imposters (background model), 6gym

o Compute the ratio:

P(0:|X) _ p(X|0:)P(0:)

P(0sum|X)  p(X[0sum)P(0sum)

o Compute the log-likelihood ratio:

A(X) = log [p(X|0+)] — log [p(X[05um)]




SPEAKER VERIFICATION

o If we have estimated a GMM for the target speaker 0; and a
GMM for a collection of imposters (background model), 6gym

o Compute the ratio:
—

P(6:|X) il p(X|0:)P(6;)
(9BUM\X) I. p(X[0sum)P(0sum)

o Compute the log- I/ke//hood ratio:

A(X) = log [p(X|0+)] — log [p(X[05um)]

o Compare with a threshold

A > 1 s
NX) < A, reject



GMM-BASED RECOGNITION SYSTEMS
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PERFORMANCE OF GMM-BASED RECOGNITION
SYSTEMS
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LILJENCRANTS-FANT (LF) MODEL FOR GFD

7-parameters LF model:
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EXAMPLE OF A GLOTTAL FLOW DERIVATIVE
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COMPARING HISTOGRAMS FOR TWO SPEAKERS BASED

ON GFD ESTIMATES [1]
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SPEAKER IDENTIFICATION PERFORMANCE USING
GFD PARAMETERS [1]

TABLE: Using GFD estimates

Male Female

Features
Coarse: 7 LF 58.3% 68.2%
Fine: 5 energy 39.5% 41.8%

Source: 12 LF & energy 69.1% 73.6%

TABLE: Using mel-cepstrum on GFD estimates

Features Male Female

Modeled GFD: 41.1% 51.8%
GFD: 05.1% 95.5%




PROSODIC AND OTHER FEATURES
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EXPLAINING THE PERFORMANCE OF PROSODY FOR

SID
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