CS578- Speech Signal Processing
 Lecture 4: Linear Prediction of Speech; Analysis And Synthesis

Yannis Stylianou

University of Crete, Computer Science Dept., Multimedia Informatics Lab yannis@csd.uoc.gr

Univ. of Crete, 2008 Winter Period

Outline

(1) Towards Linear Prediction, LP
(2) Linear Prediction
(3) Analysis

- Covariance Method
- Autocorrelation Method
- Properties of the Autocorrelation method
- Frequency-Domain Interpretation
- Criterion of goodness
- Comparing Covariance and Autocorrelation
(4) Synthesis
(5) Acknowledgments
(6) References

Transfer function from the glottis to the LIPS

- We shown that for voiced speech:

$$
\begin{aligned}
H(z) & =A G(z) V(z) R(z) \\
& =A \frac{\left(1-a z^{-1}\right)}{(1-b z)^{2}\left(1-\sum_{k=1}^{N} a_{k} z^{-k}\right)}
\end{aligned}
$$

- However:

Transfer function from the glottis to the LIPS

- We shown that for voiced speech:

$$
\begin{aligned}
H(z) & =A G(z) V(z) R(z) \\
& =A \frac{\left(1-a z^{-1}\right)}{(1-b z)^{2}\left(1-\sum_{k=1}^{N} a_{k} z^{-k}\right)}
\end{aligned}
$$

- However:

$$
1-a z^{-1}=\frac{1}{\sum_{k=0}^{\infty} a^{k} z^{-k}}, \text { for }|z|>|a|
$$

Transfer function from the glottis to the LIPS

- We shown that for voiced speech:

$$
\begin{aligned}
H(z) & =A G(z) V(z) R(z) \\
& =A \frac{\left(1-a z^{-1}\right)}{(1-b z)^{2}\left(1-\sum_{k=1}^{N} a_{k} z^{-k}\right)}
\end{aligned}
$$

- However:

$$
1-a z^{-1}=\frac{1}{\sum_{k=0}^{\infty} a^{k} z^{-k}}, \text { for }|z|>|a|
$$

- Then:

$$
H(z)=\frac{A}{1-\sum_{k=1}^{p} a_{k} z^{-k}}
$$

Producing speech [1]

Assuming as input to $H(z)$ a train of unit samples, $u_{g}[n]$, with z-transform $U_{g}(z)$, then speech, $S(z)$ is given by:

$$
H(z)=\frac{S(z)}{U_{g}(z)}=\frac{A}{1-\sum_{k=1}^{p} a_{k} z^{-k}}
$$

or

$$
S(z)=\sum_{k=1}^{p} a_{k} z^{-k} S(z)+A U_{g}(z)
$$

and in time domain:

$$
s[n]=\sum_{k=1}^{p} a_{k} s[n-k]+A u_{g}[n]
$$

Useful terms: Linear prediction coefficients, Autoregressive (AR) model/process, Linear prediction analysis

Filtering view of linear prediction

(a)

(b)
where

$$
\begin{aligned}
& P(z)=\sum_{k=1}^{p} a_{k} z^{-k} \text { prediction filter } \\
& A(z)=1-P(z) \text { prediction error filter }
\end{aligned}
$$

Outline

(1) Towards Linear Prediction, LP

(2) Linear Prediction

(3) Analysis

- Covariance Method
- Autocorrelation Method
- Properties of the Autocorrelation method
- Frequency-Domain Interpretation
- Criterion of goodness
- Comparing Covariance and Autocorrelation

4 Synthesis
(3) ACKNOWLEDGMENTS
(6) References

Justification of LP for Speech

- If speech is (almost) an AR process, then:

$$
s[n]=\sum_{k=1}^{p} a_{k} s[n-k]+A u_{g}[n]
$$

- A pth linear predictor, means:
- Prediction error:

$$
e[n]=s[n]-\tilde{s}[n]
$$

$$
e[n] \approx A u_{g}[n] \quad \text { if } a_{k} \approx I_{k}, \forall k
$$

Justification of LP for Speech

- If speech is (almost) an AR process, then:

$$
s[n]=\sum_{k=1}^{p} a_{k} s[n-k]+A u_{g}[n]
$$

- A pth linear predictor, means:

$$
\tilde{s}[n]=\sum_{k=1}^{p} I_{k} s[n-k]
$$

- Prediction error:

$$
e[n]=s[n]-\tilde{s}[n]
$$

Justification of LP for Speech

- If speech is (almost) an AR process, then:

$$
s[n]=\sum_{k=1}^{p} a_{k} s[n-k]+A u_{g}[n]
$$

- A pth linear predictor, means:

$$
\tilde{s}[n]=\sum_{k=1}^{p} I_{k} s[n-k]
$$

- Prediction error:

$$
e[n]=s[n]-\tilde{s}[n]
$$

Justification of LP for Speech

- If speech is (almost) an AR process, then:

$$
s[n]=\sum_{k=1}^{p} a_{k} s[n-k]+A u_{g}[n]
$$

- A pth linear predictor, means:

$$
\tilde{s}[n]=\sum_{k=1}^{p} I_{k} s[n-k]
$$

- Prediction error:

$$
e[n]=s[n]-\tilde{s}[n]
$$

- or:

$$
e[n] \approx A u_{g}[n] \quad \text { if } a_{k} \approx I_{k}, \forall k
$$

Outline

(1) Towards Linear Prediction, LP
(a) Linear Prediction
(3) Analysis

- Covariance Method
- Autocorrelation Method
- Properties of the Autocorrelation method
- Frequency-Domain Interpretation
- Criterion of goodness
- Comparing Covariance and Autocorrelation
(4) Synthesis
(5) Acknowledgments
(3) Remerences

Error Minimization

- Over all time we wish to minimize the mean-squared prediction error:

$$
E=\sum_{m=-\infty}^{\infty}(s[m]-\tilde{s}[m])^{2}
$$

- Prediction error in the vicinity of n :

- Prediction interval: $[n-M, n+M]$

$$
E_{n}=\sum_{m=-\infty}^{\infty} e_{n}^{2}[m]
$$

where

Error Minimization

- Over all time we wish to minimize the mean-squared prediction error:

$$
E=\sum_{m=-\infty}^{\infty}(s[m]-\tilde{s}[m])^{2}
$$

- Prediction error in the vicinity of n :

$$
E_{n}=\sum_{m=n-M}^{n+M}(s[m]-\tilde{s}[m])^{2}
$$

- Prediction interval: $[n-M, n+M]$

where

Error Minimization

- Over all time we wish to minimize the mean-squared prediction error:

$$
E=\sum_{m=-\infty}^{\infty}(s[m]-\tilde{s}[m])^{2}
$$

- Prediction error in the vicinity of n :

$$
E_{n}=\sum_{m=n-M}^{n+M}(s[m]-\tilde{s}[m])^{2}
$$

- Prediction interval: $[n-M, n+M]$
where

Error Minimization

- Over all time we wish to minimize the mean-squared prediction error:

$$
E=\sum_{m=-\infty}^{\infty}(s[m]-\tilde{s}[m])^{2}
$$

- Prediction error in the vicinity of n :

$$
E_{n}=\sum_{m=n-M}^{n+M}(s[m]-\tilde{s}[m])^{2}
$$

- Prediction interval: $[n-M, n+M]$

$$
E_{n}=\sum_{m=-\infty}^{\infty} e_{n}^{2}[m]
$$

where

$$
e_{n}[m]=s_{n}[m]-\sum_{k=1}^{p} I_{k} s_{n}[m-k], \quad n-M \leq m \leq n+M
$$

Covariance Method

- Samples outside the prediction error interval are NOT zero
- Minimization of the mean-squared error in the prediction error interval

Short-time sequences: Covariance

(a)

(c)

Covariance Method: Formulation

- In matrix notation

$$
\mathbf{e}_{n}^{(2 M+1 \times 1)}=\mathbf{s}_{n}^{(2 M+1 \times 1)}-\mathbf{S}_{n}^{(2 M+1 \times p)} \mathbf{l}^{(p \times 1)}
$$

- Mean-squared error

$$
\mathbf{e}_{n}^{T} \mathbf{e}_{n}=\mathbf{s}_{n}^{T} \mathbf{s}_{n}-2 \mathbf{s}_{n}^{T} \mathbf{S}_{n} \mathbf{I}+\mathbf{I}^{T} \mathbf{S}_{n}^{T} \mathbf{S}_{n} \mathbf{I}
$$

- Solution:

$$
\mathbf{I}=\left(\mathbf{S}_{n}^{T} \mathbf{S}_{n}\right)^{-1} \mathbf{S}_{n}^{T} \mathbf{s}_{n}
$$

- Same solution by considering the Projection Theorem:

$$
S_{n}^{T} \mathrm{e}_{n}=0
$$

Covariance Method: Formulation

- In matrix notation

$$
\mathbf{e}_{n}^{(2 M+1 \times 1)}=\mathbf{s}_{n}^{(2 M+1 \times 1)}-\mathbf{S}_{n}^{(2 M+1 \times p)} \mathbf{I}^{(p \times 1)}
$$

- Mean-squared error

$$
\mathbf{e}_{n}^{T} \mathbf{e}_{n}=\mathbf{s}_{n}^{T} \mathbf{s}_{n}-2 \mathbf{s}_{n}^{T} \mathbf{S}_{n} \mathbf{I}+\mathbf{I}^{T} \mathbf{S}_{n}^{T} \mathbf{S}_{n} \mathbf{I}
$$

- Solution:

$$
\mathbf{I}=\left(\mathbf{S}_{n}^{T} \mathbf{S}_{n}\right)^{-1} \mathbf{S}_{n}^{T} \mathbf{s}_{n}
$$

- Same solution by considering the Projection Theorem:

$$
S_{n}^{T} \mathrm{e}_{n}=0
$$

Covariance Method: Formulation

- In matrix notation

$$
\mathbf{e}_{n}^{(2 M+1 \times 1)}=\mathbf{s}_{n}^{(2 M+1 \times 1)}-\mathbf{S}_{n}^{(2 M+1 \times p)} \mathbf{I}^{(p \times 1)}
$$

- Mean-squared error

$$
\mathbf{e}_{n}^{T} \mathbf{e}_{n}=\mathbf{s}_{n}^{T} \mathbf{s}_{n}-2 \mathbf{s}_{n}^{T} \mathbf{S}_{n} \mathbf{I}+\mathbf{I}^{T} \mathbf{S}_{n}^{T} \mathbf{S}_{n} \mathbf{l}
$$

- Solution:

$$
\mathbf{I}=\left(\mathbf{S}_{n}^{T} \mathbf{S}_{n}\right)^{-1} \mathbf{S}_{n}^{T} \mathbf{s}_{n}
$$

- Same solution by considering the Projection Theorem:

Covariance Method: Formulation

- In matrix notation

$$
\mathbf{e}_{n}^{(2 M+1 \times 1)}=\mathbf{s}_{n}^{(2 M+1 \times 1)}-\mathbf{S}_{n}^{(2 M+1 \times p)} \mathbf{I}^{(p \times 1)}
$$

- Mean-squared error

$$
\mathbf{e}_{n}^{T} \mathbf{e}_{n}=\mathbf{s}_{n}^{T} \mathbf{s}_{n}-2 \mathbf{s}_{n}^{T} \mathbf{S}_{n} \mathbf{I}+\mathbf{I}^{T} \mathbf{S}_{n}^{T} \mathbf{S}_{n} \mathbf{l}
$$

- Solution:

$$
\mathbf{I}=\left(\mathbf{S}_{n}^{T} \mathbf{S}_{n}\right)^{-1} \mathbf{S}_{n}^{T} \mathbf{s}_{n}
$$

- Same solution by considering the Projection Theorem:

$$
\mathbf{S}_{n}^{T} \mathbf{e}_{n}=\mathbf{0}
$$

Autocorrelation Method

- Samples outside the prediction error interval are all zero
- Minimization of the mean-squared error in $\pm \infty$

Short-time sequences: Autocorrelation

Autocorrelation method: Formulation

- Error is nonzero in the interval $\left[0, N_{w}+p-1\right]$:

$$
E_{n}=\sum_{m=0}^{N_{w}+p-1} e_{n}^{2}[m]
$$

- Normal equations:

where

Autocorrelation method: Formulation

- Error is nonzero in the interval $\left[0, N_{w}+p-1\right]$:

$$
E_{n}=\sum_{m=0}^{N_{w}+p-1} e_{n}^{2}[m]
$$

- Normal equations:

$$
\sum_{k=1}^{p} I_{k} \Phi_{n}[i, k]=\Phi_{n}[i, 0], \quad i=1,2,3, \ldots, p
$$

where

$$
\Phi_{n}[i, k]=\sum_{m=0}^{N_{w}+p-1} s_{n}[m-i] s_{n}[m-k], \quad 1 \leq i \leq p, \quad 0 \leq k \leq p
$$

Constructing the autocorrelation function

Using the autocorrelation function

- by denoting:

$$
r_{n}[i-k]=\Phi_{n}[i, k]
$$

- Then:

$$
\sum_{k=1}\left(p l_{k} r_{n}[i-k]=r_{n}[i], \quad 1 \leq i \leq p\right.
$$

- In matrix notation:

$$
\mathbf{R}_{n}^{(p \times p)} \mathbf{\jmath}^{(p \times 1)}=\mathbf{r}_{n}^{(p \times 1)}
$$

- Or (Toeplitz matrix):

USING THE AUTOCORRELATION FUNCTION

- by denoting:

$$
r_{n}[i-k]=\Phi_{n}[i, k]
$$

- Then:

$$
\sum_{k=1}\left(p l_{k} r_{n}[i-k]=r_{n}[i], \quad 1 \leq i \leq p\right.
$$

- In matrix notation:

$$
\mathbf{R}_{n}^{(p \times p)} \mathbf{\jmath}^{(p \times 1)}=\mathbf{r}_{n}^{(p \times 1)}
$$

- Or (Toeplitz matrix):

Using the autocorrelation function

- by denoting:

$$
r_{n}[i-k]=\Phi_{n}[i, k]
$$

- Then:

$$
\sum_{k=1}\left(p l_{k} r_{n}[i-k]=r_{n}[i], \quad 1 \leq i \leq p\right.
$$

- In matrix notation:

$$
\mathbf{R}_{n}^{(p \times p)} \mathbf{l}^{(p \times 1)}=\mathbf{r}_{n}^{(p \times 1)}
$$

- Or (Toeplitz matrix):

Using the autocorrelation function

- by denoting:

$$
r_{n}[i-k]=\Phi_{n}[i, k]
$$

- Then:

$$
\sum_{k=1}\left(p l_{k} r_{n}[i-k]=r_{n}[i], \quad 1 \leq i \leq p\right.
$$

- In matrix notation:

$$
\mathbf{R}_{n}^{(p \times p)} \mathbf{l}^{(p \times 1)}=\mathbf{r}_{n}^{(p \times 1)}
$$

- Or (Toeplitz matrix):

$$
\left[\begin{array}{llll}
r_{n}[0] & r_{n}[1] & \cdots & r_{n}[p-1] \\
r_{n}[1] & r_{n}[0] & \cdots & r_{n}[p-2] \\
\vdots & \vdots & \ddots & \vdots \\
r_{n}[p-1] & r_{n}[p-2] & \cdots & r_{n}[0]
\end{array}\right]\left[\begin{array}{l}
l_{1} \\
l_{2} \\
\vdots \\
l_{p}
\end{array}\right]=\left[\begin{array}{l}
r_{n}[1] \\
r_{n}[2] \\
\vdots \\
r_{n}[p]
\end{array}\right]
$$

Levinson Recursion

\triangleright Build an order $i+1$ solution from an order i solution until the desired order p is reached:

- Initial step:

$$
I_{0}^{0}=0, \quad E^{0}=r[0]
$$

- Step 1: Compute the partial correlation coefficients

$$
k_{i}=\frac{r[i]-\sum_{j=1}^{i-1} l_{j}^{i-1} r[i-j]}{E^{i-1}}
$$

- Step 2: Update prediction coefficients, I

$$
\begin{aligned}
l_{i}^{i} & =k_{i} \\
l_{j}^{i} & =l_{j}^{i-1}-k_{i} l_{i-j}^{i-1}, \quad 1 \leq j \leq i-1
\end{aligned}
$$

- Step 3: Update the minimum squared prediction error

$$
E^{i}=\left(1-k_{i}^{2}\right) E^{i-1}
$$

- Step 4: Repeat steps 1 to 3 for $i=1,2, \cdots, p$
- Final Step: at p th step, compute the optimal predictor coefficients, l_{j}^{*},

$$
\iota_{j}^{*}=\iota_{j}^{p}, \quad 1 \leq j \leq p
$$

Lossless Tube Model and Linear Prediction

There is a strong resemblance to the recursions in the lossless tube model and in the Autocorrelation Method for Linear Prediction:

- Transfer functions:

$$
\begin{aligned}
& V(z)=\frac{A}{D(z)} \quad D(z)=1-\sum_{k=1}^{N} I_{k} z^{-k} \\
& H(z)=\frac{A}{A(z)} \quad A(z)=1-\sum_{k=1}^{p} I_{k} z^{-k}
\end{aligned}
$$

- Recursions:
- Identical recursions if: $k_{i}=-r_{i}=-\frac{A i+1-A i}{A i+1+A i}$

Lossless Tube Model and Linear Prediction

There is a strong resemblance to the recursions in the lossless tube model and in the Autocorrelation Method for Linear Prediction:

- Transfer functions:

$$
\begin{aligned}
& V(z)=\frac{A}{D(z)} \quad D(z)=1-\sum_{k=1}^{N} I_{k} z^{-k} \\
& H(z)=\frac{A}{A(z)} \quad A(z)=1-\sum_{k=1}^{p} I_{k} z^{-k}
\end{aligned}
$$

- Recursions:

$$
\begin{array}{rlrl}
D_{0}(z) & =1 & & A^{0}(z) \\
\text { For } k & =1,2, \ldots, N & \text { For } & =1,2, \ldots, p \\
D_{k}(z) & =D_{k-1}(z)+r_{k} z^{-k} D_{k-1}\left(z^{-1}\right) & A^{i}(z)=A^{i-1}(z)-k_{i} z^{-i} A^{i-1}\left(z^{-1}\right) \\
D(z) & =D_{N}(z) & A(z)=A_{p}(z)
\end{array}
$$

Lossless Tube Model and Linear Prediction

There is a strong resemblance to the recursions in the lossless tube model and in the Autocorrelation Method for Linear Prediction:

- Transfer functions:

$$
\begin{aligned}
& V(z)=\frac{A}{D(z)} \quad D(z)=1-\sum_{k=1}^{N} I_{k} z^{-k} \\
& H(z)=\frac{A}{A(z)} \quad A(z)=1-\sum_{k=1}^{p} I_{k} z^{-k}
\end{aligned}
$$

- Recursions:

$$
\begin{array}{rlrl}
D_{0}(z) & =1 & 1, \\
\text { For } k & =1,2, \cdots, N & A^{0}(z) & =1 \\
D_{k}(z) & =D_{k-1}(z)+r_{k} z^{-k} D_{k-1}\left(z^{-1}\right) & \text { For } i=1,2, \ldots, p \\
D(z) & =A_{N}(z) & =A^{i}(z) & A(z)=A_{p}(z)
\end{array}
$$

- Identical recursions if: $k_{i}=-r_{i}=-\frac{A i+1-A i}{A i+1+A i}$

Estimating the vocal tract area functions

 VIA THE AUTOCORRELATION METHOD
(a)

(b)

Properties of the Autocorrelation method

- $\left|k_{i}\right|<1, \quad \forall i$
- $H(z)$ is a minimum phase system (stability)
- Flip all maximum-phase poles inside the unit circle to their conjugate reciprocal locations
- One-to-One correspondence: $k_{i} \rightleftarrows l_{i}, l_{i} \rightleftarrows r_{n}[i]$.

- Autocorrelation matching: If, $H(z)$ is an pth all-pole minimum phase system, and if $r_{h}[0]=r_{n}[0]$, then:

$$
r_{h}[\tau]=r_{n}[\tau], \text { for }|\tau| \leq p
$$

Properties of the Autocorrelation method

- $\left|k_{i}\right|<1, \quad \forall i$
- $H(z)$ is a minimum phase system (stability)
- Flip all maximum-phase poles inside the unit circle to their conjugate reciprocal locations
- One-to-One correspondence: $k_{i} \rightleftarrows l_{i}, l_{i} \rightleftarrows r_{n}[i]$

- Autocorrelation matching: If, $H(z)$ is an pth all-pole minimum phase system, and if $r_{h}[0]=r_{n}[0]$, then:

$$
r_{h}[\tau]=r_{n}[\tau], \text { for }|\tau| \leq p
$$

Properties of the Autocorrelation method

- $\left|k_{i}\right|<1, \quad \forall i$
- $H(z)$ is a minimum phase system (stability)
- Flip all maximum-phase poles inside the unit circle to their conjugate reciprocal locations
- One-to-One correspondence: $k_{i} \rightleftarrows I_{i}, l_{i} \rightleftarrows r_{n}[i]$

- Autocorrelation matching: If, $H(z)$ is an p th all-pole minimum phase system, and if $r_{h}[0]=r_{n}[0]$, then:

$$
r_{h}[\tau]=r_{n}[\tau], \quad \text { for }|\tau| \leq p
$$

Properties of the Autocorrelation method

- $\left|k_{i}\right|<1, \quad \forall i$
- $H(z)$ is a minimum phase system (stability)
- Flip all maximum-phase poles inside the unit circle to their conjugate reciprocal locations
- One-to-One correspondence: $k_{i} \rightleftarrows I_{i}, I_{i} \rightleftarrows r_{n}[i]$.

$$
\begin{aligned}
k_{i} & =l_{i}^{i} \\
l_{j}^{i-1} & =\frac{l_{j}^{i}+k_{i} l_{i-j}^{i}}{1-k_{i}^{2}}
\end{aligned}
$$

- Autocorrelation matching: If, $H(z)$ is an pth all-pole minimum phase system, and if $r_{h}[0]=r_{n}[0]$, then:

$$
r_{h}[\tau]=r_{n}[\tau], \text { for }|\tau| \leq p
$$

Properties of the Autocorrelation method

- $\left|k_{i}\right|<1, \quad \forall i$
- $H(z)$ is a minimum phase system (stability)
- Flip all maximum-phase poles inside the unit circle to their conjugate reciprocal locations
- One-to-One correspondence: $k_{i} \rightleftarrows I_{i}, I_{i} \rightleftarrows r_{n}[i]$.

$$
\begin{aligned}
k_{i} & =l_{i}^{i} \\
l_{j}^{i-1} & =\frac{l_{j}^{i}+k_{i} l_{i-j}^{i}}{1-k_{i}^{2}}
\end{aligned}
$$

- Autocorrelation matching: If, $H(z)$ is an p th all-pole minimum phase system, and if $r_{h}[0]=r_{n}[0]$, then:

$$
r_{h}[\tau]=r_{n}[\tau], \quad \text { for }|\tau| \leq p
$$

Consequence I

\triangleright Flip all maximum-phase poles inside the unit circle to their conjugate reciprocal locations

Consequence II

\triangleright Autocorrelation matching

Consequence III

\triangleright Autocorrelation matching:

$$
A^{2}=r_{h}[0]-\sum_{k=1}^{p} I_{k} r_{h}[k]
$$

or

$$
A^{2}=r_{n}[0]-\sum_{k=1}^{p} I_{k} r_{n}[k]=E_{n}
$$

Estimations in The frequency domain

- Let $|S(\omega)|$ be the magnitude spectrum of speech and $H(\omega)=A / A(\omega)$ be an all-pole model
- Define a frequency-domain error function

where

$$
Q(\omega)=\log |S(\omega)|^{2}-\log |H(\omega)|^{2}=\log \left|\frac{E(\omega)}{A}\right|^{2}
$$

- Minimizing / over the linear prediction coefficients, results in the minimization of:

- Minimizing / over A it gives:

Estimations in The frequency domain

- Let $|S(\omega)|$ be the magnitude spectrum of speech and $H(\omega)=A / A(\omega)$ be an all-pole model
- Define a frequency-domain error function

$$
I=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left[e^{Q(\omega)}-Q(\omega)-1\right] d \omega
$$

where

$$
Q(\omega)=\log |S(\omega)|^{2}-\log |H(\omega)|^{2}=\log \left|\frac{E(\omega)}{A}\right|^{2}
$$

- Minimizing / over the linear prediction coefficients, results in the minimization of:

- Minimizing $/$ over A it gives:

Estimations in the frequency domain

- Let $|S(\omega)|$ be the magnitude spectrum of speech and $H(\omega)=A / A(\omega)$ be an all-pole model
- Define a frequency-domain error function

$$
I=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left[e^{Q(\omega)}-Q(\omega)-1\right] d \omega
$$

where

$$
Q(\omega)=\log |S(\omega)|^{2}-\log |H(\omega)|^{2}=\log \left|\frac{E(\omega)}{A}\right|^{2}
$$

- Minimizing / over the linear prediction coefficients, results in the minimization of:

$$
\int_{-\pi}^{\pi}|E(\omega)|^{2} d \omega
$$

- Minimizing I over A it gives:

Estimations in the frequency domain

- Let $|S(\omega)|$ be the magnitude spectrum of speech and $H(\omega)=A / A(\omega)$ be an all-pole model
- Define a frequency-domain error function

$$
I=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left[e^{Q(\omega)}-Q(\omega)-1\right] d \omega
$$

where

$$
Q(\omega)=\log |S(\omega)|^{2}-\log |H(\omega)|^{2}=\log \left|\frac{E(\omega)}{A}\right|^{2}
$$

- Minimizing / over the linear prediction coefficients, results in the minimization of:

$$
\int_{-\pi}^{\pi}|E(\omega)|^{2} d \omega
$$

- Minimizing $/$ over A it gives:

$$
A^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}|E(\omega)|^{2} d \omega
$$

Favoring spectral peaks

A note on $f(Q)=e^{Q}-Q-1$

(a)

(b)

Time-domain

Frequency-domain: voiced

Frequency-domain: unvoiced

(a)

(b)

Comparing Covariance and Autocorrelation

- Simple test of estimation

$$
s[n]=a^{n} u[n] \star \delta[n]
$$

- Stability issues
- Sensitivity, pitch-synchronous analysis

Comparing Covariance and Autocorrelation

- Simple test of estimation

$$
s[n]=a^{n} u[n] \star \delta[n]
$$

- Stability issues
- Sensitivity, pitch-synchronous analysis

Comparing Covariance and Autocorrelation

- Simple test of estimation

$$
s[n]=a^{n} u[n] \star \delta[n]
$$

- Stability issues
- Sensitivity, pitch-synchronous analysis

SEnsitivity, PITCH-SYNCHRONOUS ANALYSIS

(a)

(b)

(c)

Outline

(1) Towards Linear Prediction, LP
(a) Linear Prmbiction
(3) Analysis

- Covariance Method
- Autocorrelation Method
- Properties of the Autocorrelation method
- Frequency-Domain Interpretation
- Criterion of goodness
- Comparing Covariance and Autocorrelation
(4) Synthesis
(5) Acknowledgments
(6) References

Synthesis

The synthesized speech is:

$$
s[n]=\sum_{k=1}^{p} I_{k} s[n-k]+A u[n]
$$

where $u[n]$ could be:

- A periodic impulse train
- An impulse
- White noise

Synthesis Structure

Consider ...

- Window duration
- Frame interval (frame rate)
- Model order
- Voiced/unvoiced state and pitch estimation
- Synthesis structure

Consider ...

- Window duration
- Frame interval (frame rate)
- Model order
- Voiced/unvoiced state and pitch estimation
- Synthesis structure

Consider ...

- Window duration
- Frame interval (frame rate)
- Model order
- Voiced/unvoiced state and pitch estimation
- Synthesis structure

Consider ...

- Window duration
- Frame interval (frame rate)
- Model order
- Voiced/unvoiced state and pitch estimation
- Synthesis structure

Consider ...

- Window duration
- Frame interval (frame rate)
- Model order
- Voiced/unvoiced state and pitch estimation
- Synthesis structure

Overlap and Add, OLA

Speech Reconstruction example

(a)
(b)

How does it sound ...

Outline

(1) Towards Linear Prediction, LP
(a) Linear Predicmion
(3) Analysis

- Covariance Method
- Autocorrelation Method
- Properties of the Autocorrelation method
- Frequency-Domain Interpretation
- Criterion of goodness
- Comparing Covariance and Autocorrelation
(9) Synthesis
(5) Acknowledgments
(6) References

Acknowledgments

Most, if not all, figures in this lecture are coming from the book:

T. F. Quatieri: Discrete-Time Speech Signal Processing, principles and practice 2002, Prentice Hall

and have been used after permission from Prentice Hall

Outline

(1) Towards Linear Prediction, LP
(a) Linear Prmbiction
(3) Analysis

- Covariance Method
- Autocorrelation Method
- Properties of the Autocorrelation method
- Frequency-Domain Interpretation
- Criterion of goodness
- Comparing Covariance and Autocorrelation

4 Synthesis
(3) ACKNOWLEDGMENTS
(6) References
J. Makhoul, "Linear Prediction: A Tutorial Review," Proceedings of the IEEE, vol. 63, pp. 561-580, April 1975.

