
E-Services: A Look Behind the Curtain

Richard Hull Michael Benedikt
Bell Labs Research
Lucent Technologies

Murray Hill Lisle
New Jersey, USA Illinois, USA�

hull,benedikt � @lucent.com

Vassilis Christophides
Institute for of Computer Science

Foundation for Research and
Technology-Hellas (FORTH)

Vassilika Vouton, Crete

christop@ics.forth.gr

Jianwen Su
Computer Science Department

University of California
Santa Barbara
California, USA

su@cs.ucsb.edu

ABSTRACT
The emerging paradigm of electronic services promises to bring to
distributed computation and services the flexibility that the web has
brought to the sharing of documents. An understanding of funda-
mental properties of e-service composition is required in order to
take full advantage of the paradigm. This paper examines propos-
als and standards for e-services from the perspectives of XML, data
management, workflow, and process models. Key areas for study
are identified, including behavioral service signatures, verification
and synthesis techniques for composite services, analysis of ser-
vice data manipulation commands, and XML analysis applied to
service specifications. We give a sample of the relevant results and
techniques in each of these areas.

1. INTRODUCTION
The last several years have seen an explosion of activity around

electronic services, in e-commerce, in science, and in telecommu-
nications. The fundamental objective of e-services is clear: to have
a collection of network-resident software services accessible via
standardized protocols, whose functionality can be automatically
discovered and integrated into applications or composed to form
more complex services. Several established and emerging stan-
dards bodies are rapidly laying out the sometimes conflicting foun-
dations that the industry will build upon.

The set of research topics behind e-services are less well-defined.
What are the basic building blocks of the e-services paradigm? At
a fundamental level we consider e-services as an emerging con-
fluence of three distinct technologies: (a) process description for-
malisms, including automata and workflow; (b) data management
(including transforms, mediation, transactions); (c) distributed com-
puting middleware. The e-services paradigm is picking up where
distributed object computing standards such as CORBA [52] left
off, attempting to provide more flexible, and less structured, as-
sembly of software components. To this end formalisms are needed
to describe the visible behavior of existing e-services and to build
up – perhaps automatically – new e-services that can coordinate
the activities of other e-services. Data management techniques will
play a more substantial role than in the past in topics (a) and (c) for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS 2003, June 9-12, 2003, San Diego, CA.
Copyright 2003 ACM 1-58113-670-6/03/06 ...$5.00.

the following reasons: (i) many composite e-services, especially
those in e-commerce, will need to satisfy transactional properties;
(ii) e-services that manipulate large data sets, especially those for
data-intensive science, will need rich optimization techniques; (iii)
the descriptions of e-services interfaces and compositions will be
represented as (rather large) XML documents, thus paving the way
for application of XML data management tools, such as high-level
query languages and constraint checkers; and (iv) as auto-discovery
of e-services becomes a reality we will see “queries” being made
against huge volumes of intricate e-services descriptions, creating
new challenges in indexing and query optimization.

It is fruitful to draw an analogy between the current evolution
of e-services and the progression from structured data to semi-
structured data to XML [3]. The explosion of unstructured web-
resident data led from the relational model to the semi-structured
model. The placement of e-services on the web has likewise led
from fairly rigid technologies such as CORBA for object composi-
tion to a loosely structured framework based on, e.g., UDDI [62],
SOAP [59] and WSDL [70] for e-service discovery and assembly.
The lack of structure in semi-structured data raised its own prob-
lems, which were addressed by introducing mechanisms for self-
describing data along with a minimum of additional structuring
constructs; XML, DTDs and XML Schema are providing the first
steps in that direction. Likewise, in e-services richer formalisms are
emerging for self-description (including the pre- and post-conditions
of DAML-S [31, 30], and process-based descriptions) along with
more structured forms of composition (BPEL4WS [13], BPML [7],
GSFL [47]).

The e-services paradigm is broad, and raises many research chal-
lenges. This paper overviews a focused subset of these research
issues. Our emphasis will be on topics relevant to the database the-
ory and verification communities, but even here the discussion will
be limited in scope. These topics were chosen to underline fun-
damental technologies needed for the construction and analysis of
composite e-services and for e-service discovery. Therefore many
subjects will be omitted or covered cursorily, including transaction
management, ontology-based reasoners, and planning.

Our survey will be centered around several premises about ser-
vices, each of which have corollaries for theoretical research:

Services have machine-readable descriptions of their functional-
ity, describing (among other things) their messaging behavior. In
Section 2 we consider description formalisms, ranging from WSDL
which gives only rudimentary information about a service’s mes-
sages, to DAML-S, which offers descriptive capability so rich that
it may be difficult to extract much knowledge about service behav-
ior. We focus here on a middle-ground of behavioral specifications
that capture the state-machine structure of a service.

New languages are required for building complex services out of

components. In Section 3 we describe emerging “glue” formalisms
for building composite e-services. These are motivated by the e-
commerce, telecommunications, and scientific workflow domains.
While in principle these formalisms draw on decades of research in
the programming language, concurrency, and workflow communi-
ties there is nevertheless a lack of formal foundations for the emerg-
ing standards.

Having descriptions of the messaging behavior for component
services permits inference of properties of composite services. In
Section 4 we discuss some of the analysis issues for composite ser-
vices. The feasibility of performing analysis depends on the service
description formalism and the composition model. For finite-state
descriptions under bounded-queue composition, standard techniques
from the state machine verification community are relevant. For
unbounded-queue composition and for descriptions in which mes-
sage formats are not abstracted, the analysis problems are more
novel.

Service descriptions can be used at service development time. A
standard practice in distributed computing is to generate skeletons
of implementations from signatures. In the case of e-services, the
“signatures” describe messaging behavior, and it becomes natural
to ask what sort of skeleton can be synthesized from a specification
of (properties of) the desired global messaging behavior. As dis-
cussed in Section 5, the question has many variations depending on
the service description language and the composition method.

Service descriptions are XML, and can be manipulated using
XML tools. In particular, XML tools can be used in service con-
struction, analysis, and runtime monitoring. This is discussed in
Section 6.

2. DESCRIBING ATOMIC E-SERVICES
An atomic e-service consists of a set of network-accessible pro-

cedures whose functionality is described through a machine-readable
description of messaging behavior. The choice of interface descrip-
tions for services is thus critical, having consequences for service
discovery, compatibility, verification, and composition. Initial stan-
dards work focused on defining the messages that could be passed
in and out of the service in a single interaction, while more recent
standards and research work has focused on dynamic aspects, de-
scribing or constraining the sequential behavior of the service over
several interactions. Below we will give a feel of the ‘space’ of
service description formalisms, and give a preliminary idea of the
information that can be extracted from service descriptions.

2.1 Traditional input/output signatures
Our starting point for formalization of service descriptions is in-

spired by the W3C’s Web Service Description Language (WSDL).
WSDL describes an e-service via its set of visible operations. These
can be thought of as message endpoints, or the set of messages that
it can send and receive. WSDL specifies on the one hand “reac-
tive” operations in which a message is received by the e-service. If
the reactive operation is declared as “one-way” , then it does not
return a response, otherwise it is a “request-response” operation,
and the return type is also declared. It also describes proactive op-
erations that send out messages from the e-service. “Notification”
operations send out messages without waiting for a response, while
“solicit-response” operations block waiting for a response, with the
response type being specified with the operation. The receive and
response types of the operations are mapped onto concrete XML
Schema types to be used in messages. WSDL can thus be seen as
an extension of traditional input/output signatures in programming
languages and distributed computing to a peer-to-peer setting. An
e-service is viewed both as a server (via its reactive operations) and

Warehouse

order

receipt

bill

payment

Warehouse

order

receipt

Figure 1

bill_payment
out: bill
in: payment

Warehouse

order

receipt

bill

payment

Will probably
use this one

bill_payment

In the below, I’m
trying to show
bill_payment as
“ solicit-response”

Figure 1: Warehouse with I/O signature

a client (via its proactive operations).
WSDL provides for the specification of ports. Ports provide the

basic unit for specifying the communication linkages between e-
services, i.e., it is convenient to specify that a port of one e-service
is to be linked with a port of some other e-service. Ports also serve
as a locus for specifying details on how web services might com-
municate with each other. WSDL includes a mechanism for speci-
fying the types for error or fault values of request-notify and solicit-
notify operations; in our examples we generally omit these.

EXAMPLE 2.1. Warehouse with I/O signature. Figure 1 shows
the interface of a simple e-service for a warehouse, that can receive
an order, send a receipt, send a bill, and receive a payment. As
presented so far, the example remains agnostic about the service(s)
that interact with the warehouse. For example, it may be that one
additional service interacts with all four message classes, or it may
be that a “store” service does the orders and receipts and a “bank”
service receives bills and makes payments.

In a simplified syntax, these operations might be declared as fol-
lows.

message_class: order,
kind: one-way,
input: tuple [

requester_id: string,
invoice_id: string,
part_list: list [

tuple [part_id: string,
quantity: int,

]
]

total_cost: dollar_amount,
...
];

message_class: receipt,
kind: notification,
output: tuple [...];

message_class: bill,
kind: one-way,
input: tuple [...];

message_class: payment,
kind: notification,
output: tuple [...];

For this and other examples, we hide the XML encoding and
other details of the syntax typically used in the standards.

The following syntax could be used to specify a warehouse ser-
vice where receipt was a return value for order, and payment a
return value for bill.

message_class: order_with_receipt,
kind: request_response,
input: tuple [...] // for order
output: tuple [...]; // for receipt

message_class: bill_with_payment,
kind: solicit_response,
output: tuple [...], // for bill
input: tuple [...]; // for payment

The example below illustrates an e-service from data-intensive
science, which typically have two classes of messages: experimen-
tal data, which is voluminous, and calibration data, which is small.

EXAMPLE 2.2. Scientific e-service with I/O signature. Suppose
that some local authorities would like to determine the best location
for installing a waste pipeline. In this scenario, the final decision
(besides political reasons!) relies on the advice of environmental
scientists, who need to run several simulation, statistical and visu-
alization e-services. We assume here that one of these e-services,
called Waste Transport, generates the transport characteristics of
waste for a particular coastal area given a pollution source. This e-
service takes as input experimental data such as local bathymet-
ric, atmospheric, and sea circulation data, and produces as
output transport data. The calibration data1 of this e-service in-
cludes the boundary conditions for the particular coastal area
i.e., coastline characteristics such as open ocean vs. Mediterranean
basin. The Waste Transport e-service can be easily modeled using
I/O signatures as presented previously, with the additional distinc-
tion between the two categories of data being used.

2.2 Pre- and post-conditions
WSDL describes a single interaction with an e-service in terms

of request or response messages. In service discovery, it is useful to
search via properties expected of an input to the e-service or guar-
anteed of an output, where these properties may be based on the
values, rather than the data types. For example, an e-service may
require as input not just any well-formed credit card but a valid
one; its output may be a boolean but it may have the effect of deb-
iting the account associated with the credit card by $20. For this
reason description formalisms like DAML-S allow the annotation
of services with pre- and post-conditions expressed as propositions
or external predicates of the inputs and outputs. The formalism in
DAML-S is general enough that it does not require parameters in
the predicates to be inputs or outputs of the service call.

EXAMPLE 2.3. Pre- and post-conditions for atomic e-services.
In Example 2.1 a post-condition of Order(requester id, in-
voice id, ����� , part id) is ClientOf(requester id) �
Bill(requester id, invoice id, amount). A post-condition
of Payment(requester id, invoice id, amount) is Receipt
(requester id, invoice id, amount).

The Datalog-style condition language above allows automated
analysis for composite services. For example, if one also had a
bank service description where Bill(requester id, invoice
id, amount) has as a post-condition account balance (re-
quester id,b) � b � amount � Payment(requester id,
invoice id, amount) then we can derive the fact that an order
from a valid client with a sufficient account balance will result in a
receipt.

2.3 Signatures with Behavior
I/O signatures and pre-/post-conditions deal with individual ser-

vice operations in isolation. However, the lifecycle of a service
instance will generally consist of several related calls. Although in
principal one could use DAML-S style pre- and post-conditions to
fully describe sequential restrictions that occur over the course of
a service, the DAML-S model provides no particular support for
describing and reasoning about such sequential changes over time.
This is mainly due to the lack of explicit modeling of the “states”
in e-services. Such a limitation can be removed by using state ma-
chines or other reactive-system models. For example, a natural ex-
tension of the WSDL model is to describe the state changes that
occur during the run of a service; that is to describe the behavior

1In current practice the e-service must be re-compiled for each new value
of the calibration data, but we expect that in future systems the parameters
can be installed dynamically.

?o

“ Trusting” Warehouse

!r

!b

?p

?p

!r

!r

!border

receipt

bill

payment

“ Cautious” Warehouse

order

receipt

bill

payment

Figure 2a Figure 2b

!b ?p !r ?o

(a) “Cautious” Warehouse

?o

“Trusting” Warehouse

!r

!b

?p

?p

!r

!r

!border

receipt

bill

payment

“Cautious” Warehouse

order

receipt

bill

payment

Figure 2a Figure 2b

!b ?p !r ?o

(b) “Trusting” Warehouse

Figure 2: Two automata-based specifications for “warehouse”

of the service. In full generality one can model the service as a
reactive Turing machine that at any time can receive and/or output
a set of messages based on its internal state, transforming its state
and tape with each input or output action.

Since the general model would prevent any kind of automation,
we abstract to a more tractable formalism. The most obvious tac-
tic is to reduce the service model to a finite state machine that can
consume inputs and produce outputs. Although several concrete
models have been suggested for capturing e-service behavior, from
state-machine models to trace-based formalisms like Message Se-
quence Charts [20], the model we use here is a variant of a Mealy
machine [42]. Our variant is a 6-tuple ���
	���
�	���	���	���	���� , where �
is the collection of control states, with �
�� � the initial state and
����� final states, � and � are input and output alphabets both
containing the distinguished element �! #"$" , and �%�&�(')�*'+�,')� .
A Mealy machine at each state can make transitions while either
consuming an input, emitting an output, both or neither, with �! #"$"
signifying absence of either input or output. In some contexts we
allow machines to have infinite executions; in other contexts we
focus on executions that terminate in a final state.

EXAMPLE 2.4. Warehouses with behavioral descriptions. Fig-
ure 2 shows Mealy automata descriptions of two warehouse ser-
vices both compliant with the signature in Example 2.1. The au-
tomaton of part (a) specifies the case where the warehouse will re-
ceive an order, then send a bill, then receive a payment, and finally
send a receipt. We denote the start state of the automaton with
an arrow head, and the final state(s) using a circle with small dot
inside it. We follow notation typical of process algebras for in-
dicating whether a transition is based on a receive (e.g., ‘?o’) or
a send (e.g., ‘!b’). Although not illustrated, “internal” transitions
that don’t receive or send any messages are also supported in the
formal model.

In Figure 2(a) we imagine that in addition to sending a receipt,
the warehouse arranges for the physical shipping of the goods to the
ordering party. We describe the warehouse of part (a) as “cautious”,
because it does not issue a receipt until it has received payment for
the order. In contrast, the automaton of Figure 2(b) allows for two
activities to proceed in an interleaved fashion: the sending of a
receipt (and arranging for shipment), and the sequence of sending
a bill and receiving a payment.

Behavioral signatures enable the application of standard tech-
niques for automated verification to derive properties of e-services.
The automata of Figure 2 model the execution of a single enactment
of the warehouse service, i.e., a single case of receiving an order

and processing it. It is also useful to consider the behavior of an e-
service over time, as it performs multiple enactments. In the most
general case, these enactments will be interleaved. As discussed in
later sections, in some cases it is useful to model sequential execu-
tion of the enactments of a service such as warehouse. In each of
the warehouse automata this can be accomplished by adding a �! #"$"
transition from the final state to the initial state.

EXAMPLE 2.5. Verifying properties of the Warehouse. We give
a simple example of how Mealy signatures facilitate the verifica-
tion of service properties. One standard language for specifying
properties is Propositional Linear Temporal Logic (LTL) [29]. LTL
can describe properties of the sequences of messages (or states) that
an automaton description moves through. We present some exam-
ple LTL expressions2 , in the context of the warehouse automata
extended with the �! #"$" transition from final state to initial state.

(a) G(([?o] ��� [!b]) X [!b]), i.e., “if an order has been
received but a bill not yet sent, then in the next state a bill
has been sent”

(b) G([?o] � F([!b])), i.e., “if an order has been received
then eventually a bill will be sent”

It is easy to see that the cautious warehouse satisfies both of these
expressions, and that the trusting warehouse satisfies (b) only.

The Web Services Conversation Language (WSCL) [69] pro-
vides a different approach to specifying the behavior signature of
an e-service. WSCL permits specification of input/output mes-
sage classes as in WSDL, and also transitions that are pairs of
input/output messages. The intended meaning of

����� 	 �	��

in a

valid execution of the e-service is that a message of kind
� �

can
occur immediately after a message of kind

���
. Associated with a

transition there may be a condition, that refers to the kind of docu-
ments being exchanged in

���
. A WSCL conversation can be mod-

eled as a finite state automaton whose states are the I/O message
classes, and whose transitions are labeled with conditions referring
to data being sent/received from the source state. It remains open
to characterize the exact relationship between WSCL and Mealy
automata. Note that the number of states of a WSCL automaton is
bounded by the number of message classes of the service.

2.4 Working with Data
The Mealy machine model loses generality in abstracting away

from the concrete message formats of WSDL into a finite collection
of message classes. This subsection examines models that extend
Mealy machines with information about the structure and manipu-
lation of data.

The type theory community has considered type systems that
combine the sequential behavior of message channels with tradi-
tional programming language typing of messages. Reference [41]
introduces a type-checking algorithm for a rich process calculus
against these “session types”; the resulting systems (see also [36])
provide incomplete methods for verifying a claimed finite-state be-
havior of a process.

Moving beyond just the structure of data, we can attempt to
model as well the transformations being performed on the data. To
maintain some tractability we will use data management oriented
extensions of Mealy machines. We use a variant of the relational
machine model of [4]. Our variant is a tuple ���
	��
 	 �,	���	 ��	�
 	 ��� ,
where �
	��
�	�� are as above; ��	���	�
 are data-

2The modal operators F, G, and X have the meaning eventually, always,
next, respectively.

base schema; and � is a set of elements of the form
� � � 	�� � 	���	��

with ��� � � . � is a boolean query over schemas � and
 (the
guard), while � is a database transformation taking as input databases
conforming to � and
 and producing output conforming to � and

 . The idea is that a transition, if enabled by � , consumes in-
puts conforming to each input schema, while producing outputs
conforming to each output schema and updating the hidden stores
conforming to
 .

The schema, query, and transformation languages used can be
seen as parameters of this machine model: ideally we would want
to use fragments of XML-Schema [71] and XQuery [72] for the
query and transformation languages, respectively. To exhibit the
kinds of analysis enabled by this model, however, we will assume
relational schemas and relational calculus queries for the guard and
transformation languages. We will call these relational Mealy ma-
chines (RMMs). This extends the model of [4] by allowing non-
determinism, explicit control states, and guards.

We illustrate the notion of RMM next, using a format inspired
by the relational transducers of [4]. A second illustration of RMM
is given in Example 3.2.

EXAMPLE 2.6. Warehouse with bulk data. In this example we
recast the warehouse automata of Example 2.4(a) into the frame-
work of RMMs. Following the spirit of [4], we (i) use a variant of
Datalog to express the transformation, and (ii) assume a single con-
trol state (and thus do not mention it). A sketch of the specification
for the “cautious” warehouse now follows.

schema
database: price, ...;
input: order, payment;
hidden: past_order, past_payment;
output: bill, receipt;

state rules
past_order(r,i,p,q,tc) +:- order(r,i,p,q,tc);
past_payment(r,i,tc) +:- payment(r,i,tc);

output rules
bill(r,i,tc) :- order(r,i,p,q,tc),

NOT past_order(r,i,p,q,tc);
price(p,pr), tc = mult(q,pr);

receipt(r,i,p,q,...) :- order(r,i,p,q,tc),
payment(r,i,tc),
NOT past_payment(r,i,tc),
...;

In this specification, the database is intended to model a large
external database that is available for reference by the service. The
input holds relation schemas for which input data will be received;
the hidden holds internal data (internal states for each enactment
being processed); and the output holds relation schemas for which
output data will be produced.

Processing occurs in a sequence of phases. At each phase, a new
instance for all input relations is presented. Based on this new in-
stance, and the current values for the state relations, the state and
output rules are fired in parallel to obtain new values for all of
the state and output relations. We use mult(q,pr) to indicate
the multiplication of quantity q by price pr. We have omitted some
details of the rule for receipt, which could include information
about when the items will be shipped.

The hidden relations are assumed to be cumulative (as sug-
gested by the ‘+:-’ operator). Intuitively, the “past ” relations
prevent an enactment step from happening twice. For example,
for each enactment (as identified by a requester id and in-

voice id) the rule for bill will insert a tuple into that relation
during exactly one phase of the transducer execution.

In comparison with Example 2.4, the RMM just described spec-
ifies the e-service in terms of bulk or set-at-a-time processing of

enactments, rather than single enactment at a time. One can think
of each “move” of the RMM above as processing the data asso-
ciated with multiple enactments of a Mealy e-service like that of
Example 2.4. It is thus natural to analyze the more refined RMM
model, that captures the efficient bulk implementation.

If a service description is published as an RMM, what analy-
sis can be performed to validate it? This will depend on what
additional information about the environment and service data is
available. This supplementary information can be captured by the
notion of an instantiated relational Mealy machine (IRMM). An
IRMM is an RMM � supplemented with a finite set � bounding
the active domain of relations in � , and an initial database instance�

for schema
 . An IRMM as above is said to be an IRMM based
on � . An IRMM

� � 	��+	 �

is initialized with the stores
 set ac-

cording to
�

, and the environment restricted to send only instances
with domains in � .

Associated with an RMM � are a number of analysis problems:

� Given an IRMM IM based on � and LTL formula � (e.g.
over propositions associated with the transitions of �), does
IM satisfy � ?

� Given � as above, which control states are reachable from
the initial state in some IRMM based on � ?

� Given � , does there exist a relational calculus query � over
the ��� and
	� , such that � holds on the intial state of IRMM
IM iff IM satisfies � ?

Since every IRMM is finite state, the first problem above is de-
cidable but with exponential complexity in the size of the initial
data, assuming that the relations in � are restricted to singleton
instances. The second question is undecidable for relational cal-
culus queries by reduction to satisfiability, while the third is also
undecidable in the setting of relational calculus, via reduction to
the boundedness problem for Datalog. It is reasonable to look for
restrictions on queries and state machine structure that render the
latter two problems tractable and decrease the data complexity of
the first problem. One approach would be to restrict to conjunctive
queries, to fix the size of updatable internal data structures, inputs,
and outputs (e.g. to have them be scalars); this is sufficient to get
decidability of the second problem.

Reference [4] studies static analysis of a restricted relational ma-
chine model geared towards describing e-services. A wide range of
problems are shown to be undecidable. Some decidability results
are obtained for a restricted class of transducers, called “spocus”;
speaking loosely these have the form illustrated in Example 2.6.
The corresponding “instantiated” problems are not studied, nor the
general problem of verifying properties of relational machines in-
stantiated by data. An interesting issue is what sort of logic is
appropriate for describing properties uniformly over the data. A
simple fragment of First-order Linear Temporal Logic is consid-
ered in [4]. A more powerful logic would be needed to express that
an e-service specified as a nondeterministic relational machine has
some strategy for reacting to particular behaviors of the environ-
ment. Interestingly, [4] also provides a family of “log” relations,
that can serve as kind of “projection” of the execution history of
their restricted relational machines; results are obtained concern-
ing whether one machine simulates another, in the sense that they
produce the same logs.

3. DESCRIBING COMPOSITE E-SERVICES
The goal of this section is to describe some of the frameworks

that have been proposed for combining e-services. Prior to this we
develop a formal model for composition. Three key dimensions of

store

ware-
house2

bank

ware-
house1

o
rder1

ok

receipt1

order
2

receipt2

bi
ll 2

pa
ym

en
t 2

bill 1
pay

men
t 1

authorize

An e-composition

Figure 3

store

ware-
house2

bank

ware-
house1

o
rder1

ok

receipt1

order
2

receipt
2

bi
ll 2

pa
ym

en
t 2

bill 1
paym

ent 1

authorize

take

buy

Will probably
use this one:

Figure 3: A composite e-service

composition are: (a) the use of bounded vs. unbounded queues, (b)
the perspective of “open” vs. “closed” environments, and (c) the
topology for communication between services.

Subsection 3.1 introduces a general framework for studying com-
positions of e-services (“e-compositions” for short), which is based
on peer-to-peer communication, and considers dimensions (a) and
(b). The aim of 3.1 is to motivate and develop a precise notion
of composition, to define the global behavior of a composed sys-
tem, and to illustrate with some examples. Subsection 3.2 then dis-
cusses approaches for “building” e-service compositions, including
dimension (c). This includes discussion of approaches typical of e-
commerce, scientific, and telecommunications application areas.

3.1 A Framework for Studying E-Composition
Our first example illustrates the basic components of e-services

composition.

EXAMPLE 3.1. Warehouse in a composition. We consider a
simple e-composition of four e-services, depicted in Figure 3. A
(retail) Store supports interaction with customers (who are not shown);
the customers buy goods and take them away. The Store also has
interaction with a Bank and two warehouses, in order to replenish
inventory. Figure 3 shows the four services, message classes be-
tween them, and also the two messages that can interface with cus-
tomers. The two warehouses here are intended to have signatures
and behaviors as in the warehouse examples of Section 2.

The typical interaction with a customer is simple: the customer
issues a buy request and the Store responds with take. In a sim-
plified scenario of inventory replenishment, the Store requests an
authorization from the Bank; after receiving an approval from the
Bank, the Store can send one or more orders to the Warehouses.
When a Warehouse receives an order, it responds by billing the
Bank for the amount on the order, and sends the Store a receipt.
The Bank, in turn, makes a payment to Warehouse after receiving
a bill.

The example above is an open system, because it permits mes-
sages to and from an external environment. In some cases it is
useful to model a composition as a closed system. For example,
if we are interested exclusively in the interaction of the Store, the
Bank, and the two Warehouses, then we might ignore the buy and
take messages, and study the remainder as a closed system. This
distinction, and variations on it, is important in the discussions of
analysis and synthesis of e-compositions (see Sections 4 and 5.)

The intuition underlying our framework for e-compositions is
shown in Figure 4. We generally use the term peer to denote an
e-service participating in a composition. As shown there, each
peer has one or more queues, that receive messages from other
e-services in the composition. In terms of modeling WSDL in
this framework, one could represent each WSDL port as a separate
queue (although WSDL does not specify any particular implemen-
tation framework).

We now begin the formalization necessary in order define the
global behavior of an e-composition. That definition will be needed

Peer 1

Peer 2

Peer n

W
at

ch
er

A representative ad hoc e-composition, with watcher

Figure 4

Will probably
use this one:

Peer 1

Peer 2

Peer n

���

Peer 1

Peer 2

Peer n

W
at

ch
er

Figure 4: Abstract model of e-service composition

to discuss some of the problems of analysis and synthesis in Sec-
tions 4 and 5. Our model makes two abstractions: (a) the model
essentially assumes that there is just one message queue per peer,
and (b) the focus is on tracking for each message sent what class
or kind of message it is (e.g., authorize, order). We focus here
on closed systems. The model can be extended naturally to open
systems, to distinguish between multiple queues, and to track the
contents of messages.

An e-composition schema (ec-schema) is a triple
� � 	 � 	��
 ,

where � is a finite set of message classes,
�

a finite set of (ab-
stract) peers (e-services), and � is a finite set of one-way commu-
nication channels. For a peer � � � , a (peer) implementation of
� is a (possibly nondeterministic) computable function which maps
a sequence of incoming and outgoing messages for � into

�
halt,

no-op ��� (outgoing messages from �). An ec-implementation of�
is a mapping � such that for each � � � , � � �
 is an implementa-

tion of � .
This definition of peer implementation is quite general; we shall

consider restrictions below, e.g., that each peer implementation cor-
responds to a Mealy machine or an RMM, as in Section 2.

Before discussing the global behavior of peer implementations a
key question is: should the queues be bounded or unbounded? Un-
bounded queues are studied in [15, 45, 61, 11, 12, 5, 17] and are an
appropriate abstraction in cases where there might be intermittent
connectivity or processing bottlenecks (e.g., because a machine has
gone down). This contrasts with much previous work on commu-
nicating processes (e.g., [40, 50, 48]) in which message passing is
essentially immediate or based on bounded-length queues.

Standards such as BPEL4WS do not discuss in detail which queue-
ing models are permitted. In applications discussed in [13], threads
of an e-service block while waiting for an incoming message, and
the message is assumed to be processed as soon as it arrives. This
suggests a model involving queues bounded to have length one.
BPEL4WS also provides constructs for specifying time bounds on
how long the thread will block waiting for an incoming message.

What can we take to be the global behavior of a composite ser-
vice? It is typical in verification of communicating finite state ma-
chines [24] to associate with each machine a propositional labeling
of states (or a labeling of transitions), and to study global behav-
ior by examining the sequence of labels that different peers travel
through. That is, the model permits a level of indirection between
the states that the peers travel through and the observable behaviors
associated with those states.

Another possibility, following [17], is to study the global be-
havior of a composition of machines by examining the language
generated by messages between the peers. To this end, we posit the
conceptual existence of a “watcher”, which simply records each
message or message class that is passed from one peer to another.
So the observables are exactly all the messages. Let � be an im-
plementation of ec-schema

�
	 � � 	 � 	��
 . For the case of un-

!o 1

!o
2

?r
2?r 1

!o
2

!o 1

?r 1
?r

2

Store

!a ?k

ok

authorize

take

buy

receipt1

order1

receipt2

order2

?y !t

inventory_
replenishment

customer_care

store_inventory
part qty

. . .

store_database

Store, Bank, and Warehouse1

Figure 5

Figure 5: The store e-service

bounded queues, the ec-language of � , denoted � � �
 , is defined to
be the set of words over � that are generated by an execution of the
peers in � , where each peer ends up in a final state with an empty
queue. This is restricted to the case of bounded queues by looking
only at words that are generated by executions in which the length
of each queue never exceeds the bound.

We now illustrate some of the implications of the definition of ec-
language. In Example 3.3 we examine an e-composition that gen-
erates the same language under bounded and unbounded queues,
and Example 3.4 shows a contrasting case.

EXAMPLE 3.2. An implementation for Store. We consider now
a peer implementation for the composition of Example 3.1. Fig-
ure 5 shows diagramatically an implementation for a simplified
Store. In the Store we have two essentially independent activities,
one for customer care which is straightforward, and the other for
inventory replenishment. The latter forms part of the overall opera-
tion of the composition. An enactment of the inventory replenishment
portion of the Store first sends an authorize to the bank, and re-
ceives an ok. It may then send orders to either warehouse and re-
ceive receipts from them. Note that, according to the structure of
Store, if the Store initiates an order against Warehouse � , then it
won’t initiate a second order against Warehouse � until a receipt has
been obtained for the first order.

We assume here that for the customer care and inventory replen-
ishment automata considered separately, multiple enactments can
occur in sequence. The processing of the two automata will interact
via the store database, which holds a store inventory relation hold-
ing part numbers and quantities on hand. We assume that when
customers take goods the store inventory relation is updated, and
that when quantities get below a threshold then appropriate orders
are placed against one of the warehouses.

It is straightforward to formally specify the Store using an RMM.
In particular, a variation on the classical cross-product construction
for finite automata can be used to create the finite state control part
of this RMM.

We now combine the inventory replenishment portion of Store
with Mealy peers for the other e-services of Figure 3.

EXAMPLE 3.3. Language generated by a composite e-service.
Fig. 6 shows Mealy automata specifications for the Bank and Ware-
house1 e-services. Warehouse2 is assumed to be analogous to
Warehouse1. In one enactment of the Bank, similar to the inven-
tory replenishment part of Store, there is a single authorize-ok
pair of messages, followed by zero or more bill-payment pairs.

?a !k

!p 1

!p
2

?b
2?b 1

!p
2

!p 1

?b 1?b
2

(a) Bank

Bank, and Warehouse1

Figure 6

authorize

ok

bill1

payment1

(b) Warehouse1

!r

!b

?p

?p

!r

!r

!b
order1

receipt1

bill1

payment1

?o

; null

(a) Bank

?a !k

!p 1

!p
2

?b
2?b 1

!p
2

!p 1

?b 1?b
2

(a) Bank

Bank, and Warehouse1

Figure 6

authorize

ok

bill1

payment1

(b) Warehouse1

!r

!b

?p

?p

!r

!r

!b
order1

receipt1

bill1

payment1

?o

; null

(b) Warehouse1

Figure 6: Mealy machines for Bank and Warehouse1

Warehouse1 is essentially the “Trusting” warehouse of Figure
2(b), except with a �! #"$" move, so that arbitrarily many warehouse
enactments can occur within a single “global” enactment of the
composite service.

What about the language accepted by this peer implementation?
It can be verified that in the case of unbounded queues, the ec-
language generated by this implementation is

���
SH
� ��� �

SH
��� � 	�� � � ��

	� 	 ��� � SH

��� � 	�� � � ��

	��
 	
where SH is the shuffle operator. Thus, this implementation corre-
sponds to the case where the timing of sending receipt

�
from Ware-

house1 to Store is independent of the timing of the correspond-
ing messages bill

�
and payment

�
between Bank and Warehouse1.

By using a different implementation for Warehouse1 a specific se-
quencing could be enforced, e.g.,

� � � � � ��� � would be enforced by
use of a “cautious” Warehouse1.

What about the behavior if the queues are bounded? In this peer
implementation, the sequencing of messages is tightly controlled
by the interaction of the peer Mealy automata. It can be shown that
in all halting executions of the composite service, all queues have
length no bigger than 1, except for the queue into Bank, which may
have length 2. Further, for each halting computation accepting a
word
 , another halting computation can be constructed that gen-
erates
 and keeps the queue-length into Bank bounded by 1 (due
to the structure of the automaton in Bank). So, the same language
is accepted under unbounded queues and queues of length 1.

In the example above, the behavior with unbounded and bounded
queues is essentially the same. As illustrated now, the presence of
unbounded queues can lead to different behaviors.

EXAMPLE 3.4. Composite behavior with unbounded queues.
Consider the Mealy automata shown in Figure 7(a), (c) and (d).
These can be viewed as abstracted versions of the inventory replen-
ishment portion of Store, of Warehouse1, and of Bank of Exam-
ple 3.3. However, unlike the previous case, there are no “hand-
shake” messages between the peers. It is easily verified that if �
is the ec-language generated by Store’, Warehouse’, and Bank’ then
�
� � � � � � 	 � � ��� � ��� ����� � , and so � is not regular. Also,
if Store” is substituted for Store’, then the language generated is
precisely

��� � � � � � ����� � .

Results that give further insight into the structure of ec-languages
are described in Sections 4 and 5.

!b

?o

?b

?a

Figure 7

!o

!a

!o

!a

(a) Store’ (b) Store’ ’
(c) Warehouse’ (d) Bank’

(a) Store’ (b) Store” (c) Warehouse’ (d) Bank’

Figure 7: Abstract Mealy automata

3.2 Building E-Compositions
We now describe approaches for actually building e-compositions.

We consider first the most general situation, called peer-to-peer,
in which the individual e-services are essentially equals. We then
move to a mediated approach based on a “hub-and-spoke” topol-
ogy, where one service is given the special role of process mediator.
The other services can communicate, in terms of both control and
data sharing, with the mediator but not with each other. A variation
is the brokered approach, where process control is centralized but
data can pass between all of the peers. Finally, we mention some
alternative topologies. A general conclusion is that in many practi-
cal cases e-compositions will have a tree-based topology, possibly
with data flows that cross outside the tree structure.

Several standards and approaches have been proposed recently
for specifying the composition of web services ([49, 60, 13, 7, 14,
47, 31, 22]; see also [63, 68, 66]). Although not intended to give an
exhaustive description of or comparison between all of these, the
discussion below reflects key aspects of the proposals and offers
some contrasts between them.

We examine in turn the two main components of e-composition
standards: (a) a mechanism for specifying how pairs of e-services
are to be linked, and (b) a mechanism for specifying the internal
process flow of an e-service.

Consider the problem of specifying a peer-to-peer e-composition
as in Example 3.1. It is assumed that an e-service can be con-
structed to satisfy an interface specification (e.g., in WSDL), and
that it can be launched without specifying the configuration details
of what other running services it will interact with. Those config-
uration details can be given during execution, typically in the form
of an XML file. The issue arises of specifying how messages from
different peers are to be matched up. Should the bill message
from the Warehouse1 be sent to the Bank or to Warehouse2? In
our examples this matching is given implicitly, because of the nam-
ing conventions used. But in practice the namespaces for messages
from distinct e-services will be different.

Standards such as BPEL4WS assume that the e-service message
interfaces are specified using WSDL. BPEL4WS provides syntax
for service links, which are used to specify that for the purpose of
a particular e-composition, a port of one peer is linked to a port
of another peer. This permits a level of indirection in the naming
of ports and operations. In BPEL4WS, the XML Schema type as-
sociated with a message source may be a subtype of the type of
the message target; Subsection 4.1 below discusses the issue of
verifying this relationship.

While it is possible to build up an e-composition wholly from
already existing services, it is common in e-commerce contexts to
create a new service that coordinates the existing ones. This leads
to a “hub-and-spoke” topology, where the central peer plays the
role of mediator. Languages such as BPEL4WS [13] and BPML [7]
are representative tools here. Figure 8 shows how the composition
of Example 3.1 might be implemented under this approach, ignor-
ing for now the interaction between the Store and customers. Note
that all control and message passing flows through the mediator.

The intent of BPEL4WS, BPML, etc., is to provide a focused

bank

A mediated e-composition

Figure 8

ware-
house1

ware-
house2

store

control

a
k’

r
o

b2

p2

r2
o2

r1

o1

b1
p1

k
a’

b
p

What to call the thing in the center –
control? Mediator? Process mediator? …

BPEL4WS seems to like “ coordination” as a
general term for this kind of thing

bank

ware-
house1

ware-
house2

store

media-
tor

a
k’

r
o

b2

p2

r2
o2

r1

o1

b1
p1

k
a’

b
p

Will probably
use this one:

Figure 8: E-composition with hub-and-spoke topology

language for specifying the behavior of mediator e-services, rather
than to provide a general-purpose programming language. Be-
cause mediators play the role of coordinating the activities of other
web services there is a natural correspondence between the pro-
cess flow languages for mediators and workflow languages (see
[67, 65]).

The following example3 describes how the mediator e-service
of Figure 8 might be specified using a proposed standard such as
BPEL4WS. Such standards provide for internal variables of type
XML Schema, for the exchange of messages à la WSDL, support-
ing both send and receive, possibly with return messages, and for
transfer of values between the internal variables, message inputs,
and message outputs. They also provide a family of process flow
constructs, such as sequencing, conditional branching, and paral-
lelism with synchronization between threads.

EXAMPLE 3.5. Mediated e-composition. A simplified imple-
mentation for the Mediator of Figure 8 is shown diagrammatically
in Figure 9. Part (a) of that figure shows the global structure of the
Mediator. First there is processing involving the Store authorizing
the Bank to make payments, followed by a do until loop that will
process orders as they arrive until some pre-established deadline
arrives.

In this example the initial receive has the effect of initializing
a new enactment of the overall processing of Mediator and of the
e-composition in general. All other activities will occur within the
context of a previously initiated enactment.

Inside the do until loop the first step involves the “pick” con-
struct. This allows the process to wait for the first of two or more
events to take place. In this case, it waits until either a new or-
der is received from the Store or some pre-determined end date
has arrived. The pick construct can thus be used to ensure that a
process thread is not blocked indefinitely by waiting for an incom-
ing message that never arrives. The right-hand side of the pick is
a case statement, with outcome based on whether the order is for
Warehouse1 or Warehouse2. In an actual specification, in order
to prevent hanging, the pick construct might be used to surround
each of the receive’s except for the initial one, e.g., including the
receive ok from the Bank.

The overall effect of the do until loop is to process orders
from the Store in a sequential fashion, until the end date has been
reached.

Figure 9(b) shows the module for processing orders from Ware-
house1. This illustrates the use of parallelism and synchroniza-
tion between threads. The thread on the left concerns the order-
processing interaction of the Mediator with Warehouse1 and the
Store, and the thread on the right concerns the interaction with the
3The proposed standards provide explicit mechanisms for handling faults
and exceptions, along with compensations and/or rollbacks; we shall not
discuss those aspects here.

Simplified specification of
example mediator behavior

Figure 9

receive authorize [from Store];
send authorize’ [to Bank];
receive ok [from Bank];
send ok’ [to Store];

do until flag

pick
first
trueend_date has

been reached

flag := true

receive order [from Store]

case:
warehouse

Warehouse1 Warehouse2

module for
processing
Warehouse1
order

module for
processing
Warehouse2
order

end case

(a) Main body (b) Module for processing Warehouse1 order

begin
parallel

send Order
[to Warehouse1]

receive Receipt1
[from Warehouse1]

send Receipt
[to Store]

Receive Bill1
[from Warehouse1]

send Bill
[to Bank]

receive Payment
[from Bank]

send Payment1
[to Warehouse1]

end
parallel

(a) Main body

Simplified specification of
example mediator behavior

Figure 9

receive authorize [from Store];
send authorize’ [to Bank];
receive ok [from Bank];
send ok’ [to Store];

do until flag

pick
first
trueend_date has

been reached

flag := true

receive order [from Store]

case:
warehouse

Warehouse1 Warehouse2

module for
processing
Warehouse1
order

module for
processing
Warehouse2
order

end case

(a) Main body (b) Module for processing Warehouse1 order

begin
parallel

send Order
[to Warehouse1]

receive Receipt1
[from Warehouse1]

send Receipt
[to Store]

Receive Bill1
[from Warehouse1]

send Bill
[to Bank]

receive Payment
[from Bank]

send Payment1
[to Warehouse1]

end
parallel

(b) Module for processing Warehouse1 order

Figure 9: Inside a mediator

Bank. The dotted arrow indicates that the send Receipt activ-
ity can begin only after the receive Payment activity has termi-
nated.

The language generated by this e-composition is

� � � � � � ��� �
SH
��� ��� � 	�� � � �
 SH

��� 	 � ��
 	
SH
��� � � � 	�� � � �
 SH

��� 	 � �
 �
 �

The shuffle products here are the result of the parallel threads and
synchronization links. Unlike the language of Example 3.3 there
is no outer shuffle product; this follows from the form of the case
statement in Figure 9(a).

In the proposed standards the synchronization relationships be-
tween parallel threads can become quite intricate, but some restric-
tions are imposed. For example, in BPEL4WS a synchronization
link cannot cross the boundary created by a while loop.

The above example illustrates how languages like BPEL4WS
resemble workflow languages. In terms of expressiveness, it can
be shown that a mediator built with the process flow constructs
just illustrated, other than temporal conditions, can be simulated
by a Mealy machine. Thus, a bounded-queue e-composition us-
ing such a mediator and Mealy peers can be simulated by a finite
state automaton. The analogous result holds if the peers are RMMs.
BPML, in contrast, supports a a construct to spawn nested enact-
ments without necessarily waiting for them to complete. In Ex-
ample 3.5 the spawn construct could be placed directly before the
case construct; this would allow the Mediator to process an arbi-
trary number of orders in parallel. If a spawn construct is available
to the mediator, then a bounded-queue composition with all other

Structure of simple Scientific Workflow

Figure 10

notifications
Atmo-

spheric
Simu-
lation

Sea
Circu-
lation

Waste
Transport

Broker

control and calibrations

Workflows and XML

Figure 11

Workflow Model

Workflow Schema

XML Schema

XML Instance

Figure 10: Brokered E-composition

peers Mealy may not be simulatable by a finite state automaton.
The case for unbounded queues is considered in Section 5.

We have illustrated the mediated approach where all “leaves” are
atomic e-services. We can also let some or all of the leaves be me-
diated e-compositions. Assuming that the new mediator is linked
to exactly one e-service from each of the existing e-compositions,
this will lead in most practical cases to an e-composition whose
topology is a tree.

We consider now a variant of the mediated approach, called here
the brokered approach. Here the family of peers is controlled by a
single peer (the “broker”), but data can be passed between any pair
of peers. This approach is embodied in GSFL [47] for scientific
workflow and AZTEC [22] for telecommunications applications.

EXAMPLE 3.6. Brokered e-composition. Figure 10 shows the
topology of a scientific workflow in which the Waste Transport ser-
vice of Example 2.2 is combined with Atmospheric Simulation and
Sea Circulation services. The communication between the Broker
and the data-intensive services is for control and the passing of cal-
ibration data. The communication between the other services is
peer-to-peer, in the form of notifications about data location and
availability.

In this example the Sea Circulation might take as input bathy-
metric data (not shown) and data from the Atmospheric Simulation
service, and the Waste Transport might take as input bathymetric
data for the same coastal area, as well as, data from Atmospheric
Simulation and Sea Circulation. The data stores, including the in-
puts from outside the system, are not shown.

The field of scientific workflow is experiencing renewed interest
due to the emergence of Grid computing [33] and the influence of
the web services paradigm. Effort is currently underway to develop
a coordination language [47] and system suitable for Grids. While
this borrows from web services standards (e.g., by using a similar
mechanism for defining message types and signatures, and for link-
ing services together) there are three key differences: (a) the use
of a broker that can direct peers to communicate with each other,
(b) the emphasis on data-intensive e-services, and (c) the need to
store and manipulate data provenance. We briefly discuss (c) in
Section 6. With regards to (b) it is typical to compute data in batch,
in part because most of the services perform aggregation operations
over their input data. In most disciplines each “data product” is cre-
ated by executing services along a directed acyclic graph [18]. As
a result the control flow constructs needed for scientific workflow
may be simpler than those used in business processes; perhaps just
sequence, conditionals, and simple flavors of parallelism will suf-
fice for the abstract model. Because many of the individual compu-
tations last days or weeks, the system underlying the abstract model
must address a variety of issues involving asynchronous events and
automated recovery [34]. In the Grid context where multiple com-
puters may be capable of the same computation, there are rich op-
portunities for optimization. One can carefully select where and

when intermediate data sets should be created.
As broker languages for scientific workflow mature it will be es-

sential to incorporate constructs that make it easy to combine sci-
entific workflows. What about the topology of those composite
workflows? There may be a hierarchy of brokers that coordinate
with each other. In addition, data-intensive services, which form
the leaves of this hierarchy, may be put into pairwise notification
relationships.

The AZTEC model [22] was developed for telecommunications
applications, and adopts a topology based on the brokered approach.
An AZTEC broker can be used to “glue” together a family of com-
munication services (residing on, e.g., terminal devices, conference
managers, media gateways) and software services (e.g., billing,
web-based control interfaces). This is a brokered architecture be-
cause communication traffic and perhaps also data will pass di-
rectly between the peers being controlled by the broker.

In terms of flow of control, a chief characteristic of telecom ap-
plications is that asynchronous events from a peer may act as an
interrupt for the broker and other peers. For example, many tele-
com services are now offered on a pre-paid basis; if the pre-pay
account runs out of money then the service should be terminated
as quickly as possible. Three aspects of the AZTEC model enable
this: (i) instead of supporting a top-level process flow, an AZTEC
specification is based on a family of flowcharts, each one in charge
of handling a class of events; (ii) AZTEC allows an arbitrary num-
ber of these “event-handling” flowcharts to launch and execute si-
multaneously; and (iii) AZTEC provides mechanisms allowing one
flowchart to pre-empt the processing of others (e.g., a “ran out of
money” flowchart can abort all other flowcharts). This contrasts
with “glue” languages for business e-services; in handling asyn-
chronous events, it is typical for a BPEL4WS mediator thread to
block and wait for the event. BPEL4WS supports exceptions and
compensating actions which might in principle be used to support
such interrupts, but to support this at least some of the interrupts
would need to be viewed as exceptions at the outermost scope of the
BPEL4WS specification. The exception-handling code for these
would cut across the modular structure that BPEL4WS offers. An-
other difference between AZTEC and standards such as BPEL4WS
is how synchronization between threads is achieved. In AZTEC a
primary vehicle for synchronization is the use of blocking reads
against a shared internal store.

The “glue” languages used in the mediated and brokered ap-
proaches are largely procedural. The emerging field of peer-to-
peer databases [38, 26] supports a more declarative flavor in which
query answering may involve searching across other peers to locate
and obtain needed data. The messaging and evaluation strategies
are not specified by the user, but are left to the execution engine.
As a particular example we discuss here ActiveXML [51, 2], which
provides an interesting mixture of peer-to-peer data management
with XML data and the web services paradigm.

An ActiveXML document is an XML document that may in-
clude intensional data, that is, links to other data sources, including
ActiveXML documents and web services that produce data. In re-
sponse to a query against a “root” ActiveXML document, one or
more of the linked ActiveXML documents might be visited. The
requester may desire that all data is materialized, or that some of
the data be left intensional. Reference [51] provides a framework
and algorithms for providing query answers, taking into account
the desired target schema and materialization policy.

What is the topology of an ActiveXML environment? At a basic
level the peers can form an arbitrary graph. Since query processing
is guided largely by the structure of the target (virtual, expanded)
ActiveXML document, it is also useful to consider the topology

from the perspective of that document. Examples and techniques
in [51, 2] focus mainly on the tree-based topology associated with
an ActiveXML document.

As discussed in this subsection, a variety of proposals have been
made for specifying composite e-services. But each of the pro-
posals makes use of a subset of core constructs, such as parameter
passing, parallelism with restricted synchronization, and spawning
of subenactments. This situation is reminiscent of the variety of
semantic database models that arose in the late 1970s and early
1980s [43]. Reference [8] provides a framework to unify many
of the semantic database models by providing a meta-model from
which the models can be generated. Tools are provided so that
a mapping between models � �

and � �
can be used to generate a

mapping taking an instance and schema of � �
into a corresponding

pair for � �
. It would be worthwhile to explore whether a similar

meta-model can be created to embrace the proposals for building
e-compositions.

4. ANALYSIS OF E-COMPOSITIONS
A main motivation for service descriptions is that they enable

automated analysis. The need for analysis is particularly acute for
composite services built up from several independently-designed
components: what can we conclude about a composite service based
on descriptions of its components? The most basic question to ask
about a set of services is: can they be composed to form a service
that generates any interesting behavior at all? We call this compati-
bility analysis. A more ambitious goal is signature generation: ob-
taining a signature for a composite service. Both of these problems
have variants for every service description formalism, and may also
depend on the message-passing mechanism that connects services.
We will discuss these analyses for several of the “generalized sig-
nature” formalisms introduced in Section 2, and for both bounded
and unbounded queues. The ultimate goal is to be able to statically
verify properties (e.g. in temporal logic) for composed services
analogous to the ones discussed for atomic services. Verification
often proceeds through signature generation, but may be solvable
via more direct means.

4.1 Static Input/Output Signatures
WSDL-style signatures can be taken to imply a simple notion of

compatibility in terms of exact match of the corresponding mes-
sage schemas for receipt and sending of messages, which is trivial
to check syntactically. A more liberal notion might require only
subtyping between the incoming and outgoing message signatures.
Glue languages such as BPEL4WS only require that the schema
of messages for a message sender be a subtype, in the sense of
language inclusion, of the schema for a message receiver. Since
these languages do not necessarily mandate or expect that explicit
XML Schema derivation operations are used to enforce the sub-
typing relationship, compatibility analysis in general may be in-
tractable [58], thus algorithms for subtyping that are efficient in the
most prevalent cases (e.g. along the lines of [54]) may be helpful.

Signature generation for the composition of compatible service
is straightforward.

4.2 Behavioral Signatures
We now turn to behavioral signatures, and mention some of the

basic results in three contexts: bounded-queue; unbounded-queue;
and “white-box”, e.g., where a mediator is described explicitly us-
ing a standard such as BPEL4WS.

For the Mealy machine model of Subsection 2.3 it is a simple
matter to compute an exact signature for the bounded-queue com-
position of atomic services via a product construction. The number

of control states will generally be exponential in the combined rep-
resentation of the component machines. Compatibility analysis can
also be performed. For a set of machines which exchange messages
with an external environment, compatibility is probably most nat-
urally defined as the existence of some environment for which the
product machine fails to deadlock (this is analogous to the defini-
tion in [27]).

As mentioned in Section 2 verification can be performed effec-
tively on Mealy machine signatures; for LTL this can be done in lin-
ear time in the state space of the machine. This fact combined with
the above observation gives, in principle, a way to verify complex
properties of concurrent systems of Mealy machines composed un-
der bounded-queue composition. In practice this will generally be
too expensive, but standard techniques from the verification com-
munity [24, 37] can be applied to avoid explicit computation of the
signature in performing verification of the joint space.

We now explore the case when the message queues have no pre-
determined bounds. Analysis is far more difficult because finite
state machines with unbounded FIFO queues are Turing complete
[15], and hence nontrivial properties of such compositions are un-
decidable. In particular, for Mealy machines composed using un-
bounded queues the LTL verification problem is undecidable. In
this context, signature generation must generate a Mealy machine
that is only a conservative approximation to the composite sig-
nature. Existing work on abstraction techniques for unbounded
queues [25] can be applied directly here. Reference [12] gives tech-
niques for solving verification problems in this unbounded context
without approximation, although they are necessarily incomplete.
Developing restrictions on ec-schemas to trim the computational
power of the Mealy e-compositions is possible, but the types of
e-compositions will be severely limited [44].

One key aspect in an e-composition is to determine the depen-
dencies among the messages communicated in completing an exe-
cution. For example, one can study the languages generated by an
e-composition (see Subsection 3.1), e.g., asking about their posi-
tion in the Chomsky hierarchy. Using an idea similar to Example
3.4, one can easily construct a Mealy ec-implementation whose ec-
language is not regular nor context free. It was shown [17] that each
Mealy ec-language is always context sensitive, and is accepted by
some finite-state quasi-realtime automaton with 3 queues.

In the preceding discussion, the peers were viewed essentially
as “black boxes”. As discussed in Subsection 3.2 a common prag-
matic way to build composite web services is by building a media-
tor or broker as a “white box”. The process flow languages used are
similar to typical workflow languages. Reference [64] has shown
how programs from these languages can be simulated using Petri
nets [53], and the same should hold for the typical e-service glue
languages. The formalism of [64] corresponds to a model where
peers have multiple unbounded input queues. The mapping to Petri
nets permits static verification of properties such as guaranteed ter-
mination and absence of unreachable nodes. This verification can
be expensive, e.g., in some models verifying node reachability can
be EXPSPACE-hard.

For formalisms such as the pi-calculus, there are several typing
systems [55, 41, 36] that allow one to efficiently check assertions
about the behavior of a composition. The type systems range in
expressiveness. Some specify only how often a particular message
type can be sent on a channel. Others, such as the session-types of
[41], allow the specification of sequential properties of messages.
The formalisms generally require both simple and composite pro-
grams to be annotated with types, rather than allowing the type of
the composition to be inferred.

4.3 Data-Intensive E-Compositions
A generalized data-processing extension of Mealy machine would

have state change operations and data schemas given by XQuery
and XML Schema respectively. Compatibility analysis would re-
quire both subtyping analysis of XML Schema, as for I/O sig-
natures, and also type-checking analysis for the transformations.
Since exact type-checking of even simple transformation languages
is known to be undecidable [6], compatibility analysis would again
have to be approximate. For the RMM model of Section 2, a simple
match of relational schemas is sufficient.

For the data-enhanced RMM model, one can easily perform sig-
nature generation for the parallel composition: registers receiving
input from other composed machines will become internal regis-
ters. Since static verification problems are undecidable on the full
class of RMMs, the more interesting question concerns calculating
signatures within restricted subclasses. Reference [4], for example,
demonstrates a restricted class of “spocus transducers”, for which
several important static analysis problems become decidable. This
class is clearly not closed under parallel composition in general, but
there may be interesting subclasses that are closed.

5. SYNTHESIS OF E-COMPOSITIONS
An alternative to procedural languages like BPEL4WS for ser-

vice construction is to generate implementations from declarative
specification of behavior. It is not practically feasible to synthesize
commercial-grade services this way, due to the difficulty in captur-
ing behavior in sufficient detail and the computational intractability
of synthesis procedures. But it is possible to generate implemen-
tation skeletons and test harnesses that can be refined into full im-
plementations. Here we will focus the discussion on the behavioral
specifications of Section 2, splitting again into the bounded and
unbounded queue case.

Looking first at atomic services, the synthesis problem for finite
state specifications has been studied intensely within the automata
theory and verification community beginning with [16, 1]. A key
distinction is between synthesizing a closed versus open system.
Clearly the atomic closed case has little relevance for e-services.
The synthesis problem for individual open systems where the spec-
ifications are given in LTL can be solved, but the complexity is
high.

5.1 Mealy Implementations
This subsection considers first synthesis for bounded queues, for

both closed and open systems. It then discuss the closed case for
unbounded queues.

We start by considering synthesis of a collection of Mealy ma-
chines interacting via bounded queues. The synthesis problem here
takes as input a formula and an ec-schema. As before there is a
variant of the problem for open and closed systems, and in the case
of e-compositions both open and closed are relevant. In the closed
case, a ‘folkloric’ result is that synthesis from a formula can be
decided by linear reduction to the satisfiability test for the logic
– hence it can be done in PSPACE for LTL and in PTIME for � -
regular sets represented explicitly by an automaton. The open case
is the subject of much research [57, 48]. It is shown in [57] that
the problem is undecidable for general ec-schemas, but decidable
for ec-schemas with linear topology. Further work [48] extends the
decidability results to ec-schemas with hierarchical topology. The
worst-case complexity, even for the linear case, is non-elementary.

We next address unbounded queues. When the environment is
unrestricted, it is unlikely that there will be a feasible synthesis
result for any interesting class of topologies. We consider here the

closed case; it is hoped that the results for closed systems can be
extended to open systems with constrained environments.

Let
�

be an ec-schema and � a language over the message classes
in
�

. � is said to be (strongly) realizable if there exists a Mealy e-
composition such that its ec-language is contained in (resp., equal
to) � . The synthesis problem is to effectively construct such a
Mealy e-composition from � .

Before addressing realizability we mention two properties that
languages generated by (unbounded queue) e-compositions will
satisfy. This provides some insight into what languages might be
realizable. Recall now the first e-composition described in Exam-
ple 3.4, and that Warehouse’ can delay accepting the first o from its
queue until Store’ has produced its last o. The behavior can arise
primarily because (1) a peer can make a local decision about when
to pull a message off its queue. Another key fact about unbounded-
queue e-compositions is that (2) a peer can make local decisions
about when to output a message and hence, impact the location of
that message relative to the global word being generated. In a me-
diated e-composition, factor (2) is reduced, but factor (1) remains
and is sufficient to allow non-regular ec-languages.

To characterize Mealy ec-languages it is necessary to model the
two factors just mentioned. A close examination shows that factor
(2) can be dealt with by examining the “local views” by each peer
of the global conversation. If

���
is the set of message classes that

either enter or leave � , then the projection �����
�

 of a word

over the full alphabet is obtained by removing from
 all messages
not in

� �
. Given a word
 , the join over
 is the set of words�
	 �

for each peer � , � � �
��	
 	

� � �
�

 � . It is easily verified that

each ec-language is closed under such projection-joins. To model
the effect of factor (1), a “prepone” relation between words over���

can be defined. In particular,
 � � � �
 �

is in the prepone of

 � � � �
 �

whenever
� �

is an output from � and
� �

is an input of
� . Intuitively, this corresponds to the idea that if � can produce

���
without having

� �
, then � can also produce

� �
after some other

peer has put
�	�

onto � ’s queue.
A result in [17] states that for each regular language � the closure

� �

of � under the projection-join and prepone operators is strongly
realizable, i.e., there is a Mealy e-composition that generates � �

. In
general the converse is false. However, if the e-composition has a
tree topology, then the converse holds [17]. Reference [35] iden-
tifies three conditions on an � -regular language that are sufficient
for the language to be strongly realizable.

We now turn to realizability. An effective characterization for
this remains open. By [17] a sufficient condition for realizability of
regular � is the existence of a a regular language � � , such that the
the prepone and projection-join closure of � � is contained in � . A
syntactic characterization of these � ’s is not known. A special case
would be to characterize the LTL formulas which define a closed
language.

5.2 The Data-Intensive Context
Given the complexities involved in synthesizing even finite-state

service skeletons, the idea of generating machines that perform
data-manipulation commands in SQL or XQuery may seem far-
fetched. However, data-integration systems ([9, 39, 21]) can be
seen as performing a particular kind of data-intensive synthesis:
they implement a simple declarative specification (in the form of a
global view) on top of a set of “data-source” services. The interface
of these components is unusual from the perspective of web-service
descriptions: it is a collection of query-capabilities rather than a tra-
ditional programming language datatype, and the synthesis engine
must be aware of the query language semantics.

An interesting research direction is to extend this from single

global views to relational machines with queries over a global schema.
The result of the synthesis will be a reactive mediator making queries
to the services that provide access to source data. As in the case
of traditional integration middleware, one will be interested in not
simply synthesizing an arbitrary implementation (which could al-
ways done by transferring all data to the mediator), but in producing
an optimal one. This will require both a notion of equivalence on
RMMs and extension of cost metrics for query plans to the setting
of a reactive RMM.

6. SPECIFICATIONS AS DATA
One of the main characteristics of the emerging XML dialects

(e.g., WSDL, BPEL4WS, BPML, GSFL) for e-composition is the
representation in terms of XML Schemas of the various process
flow models employed for describing and composing e-services. A
mediated e-composition is specified using a family of interrelated
XML documents, including the specification of the mediator itself,
the WSDL signatures of other peers, and the service links that bind
them together. XML Schema types are also used to characterize the
data exchanged between the external peers and the internal tasks
of an e-composition. This comprehensive usage of XML provides
the opportunity of using new tools to study a variety of classical
problems, including type and other consistency checking, runtime
analysis, and modular program construction. In turn, it is possi-
ble for the emerging standards to incorporate data elements into
process flow specifications that will aid in performing consistency
checking and runtime analysis.

One benefit of specifying e-compositions using XML is the pos-
sibility of verifying properties of the e-composition using XML
query and constraint languages. Some representative properties
that might be checked include:

(a) Referential. In BPEL4WS, service links should refer to peers
that are participating in the e-composition.

(b) Cardinality. For each BPEL4WS synchronization link there
should be exactly one source and one target.

(c) Structural. In BPEL4WS, internal synchronization links should
not cross while scopes.

(d) Value-based. For every request-response operation foo, if a
request foo occurs in a process then a matching reply
foo should occur on subsequent paths.

(e) XPath output. Again in BPEL4WS there are requirements
stating that in certain kinds of variable assignments, the XPath
expression used to obtain a part of an internal variable must
evaluate to a single node.

For property (a), the referential integrity constraints included in
XML Schema suffice. Properties (b), (c) and (d) lie outside of the
constraints under consideration by XML Schema, but they are con-
sidered in [28, 10].

Another example of (e) is checking whether the arguments of
a function call will always match the signature of that function.
In BPEL4WS, this involves checking whether � ����
 has type � ,
where � is an XPath expression,

�

is a container, and � is the type
given by the function signature. Testing such constraints might be
resolved by using a combination of XPath analysis and control flow
analysis. In some cases, however, conservative static tests could be
specified using (a subset of) XQuery. An interesting alternative
is provided by XL [32], where all data manipulation is done by
XQuery, and so one has a syntactic, conservative type checking
mechanism built directly into the language.

Another kind of static analysis where XML tools may be use-
ful involves the correlation sets found in BPEL4WS and related

standards. A correlation set is a set of message parameters used
to uniquely identify each global enactment and to prevent inter-
ference. In the case of a mediated e-composition, different peer
services may use different parameter sets to identify enactments;
in this case the mediator must maintain translation tables between
those peers. Furthermore, in some cases a single global enactment
may involve an unbounded number of enactments of some individ-
ual service or subset of services (e.g., Example 3.3, where multiple
orders may arise). A challenge is to determine at compile time
whether the correlation set is indeed adequate for uniquely identi-
fying global enactments, and whether the values being assigned to
the correlation set parameters will consistently and uniquely iden-
tify the global enactment of a message.

A process flow model such as BPEL4WS described using an
XML Schema and a particular process flow instance – e.g., a par-
ticular BPEL4WS specification along with associated WSDL and
service link specifications – can be viewed as an XML instance of
that schema. But we need more than just XML Schema to capture
the internal relationships that a process flow model imposes on its
specifications. It would be useful to develop a family of “constraint
templates” that can be associated with XML Schemas correspond-
ing to process flow models. This might allow for the development
of an automated mechanism that takes as input the augmented XML
Schema of a process flow model and a specification in that model,
and produces the set of constraints that must be satisfied by the
XML instance. Finally, recall the discussion of meta-models for
e-service glue languages from the end of Section 3. Such a meta-
model should encompass the constraint templates just described.

Since an e-composition specification is an XML document, it
is possible to query it using XML query languages. Going a step
further, it is possible to represent an individual enactment and its
state during execution using an annotated version of the specifica-
tion. Reference [23] shows in the simplified context of structured
workflows [46] how such runtime descriptions can be exploited to
predict future behavior of the execution, such as whether a variable
will be subsequently overwritten. In a structured workflow the use
of control flow constructs (e.g., sequence, choice, loop, parallel)
must follow a discipline of proper nesting and so there is a natural
mapping of the implicit tree-like structure to XML.

XML-based representations of enactments are useful for log-
ging their history or audit trail, with obvious applications in e-
commerce. In scientific workflow the term provenance4 is used
to describe the history of how a “data product” was derived. In
most cases the provenance of a data product can be as important
as the data product itself [18]. As mentioned in Example 3.6, data
products from scientific applications usually result from executing
a DAG of data-intensive e-services. The DAG alone does not give
the full provenance: it must be annotated with a wide variety of in-
formation, including the calibration data used for each service, in-
formation about the software used, and information about how the
raw data was collected. Once a suitable model for the DAGs and
annotation data is agreed upon, it should be possible to collect the
provenance information into an XML data store for later querying.
In practice collecting this information involves several challenges.
In many scientific workflows there are human steps which must be
logged. If there are rollbacks and recoveries due to system failures
the provenance must reflect an accurate trace of the net effect.

So far we have discussed queries to access enactment executions
and histories. What about using queries to combine e-composition
specifications? Working in the context of structured workflow sche-
mas, reference [23] makes a proposal in this direction based on

4We focus here on a macro form of provenance; a micro form which focuses
at the level of data items is studied in, e.g., [19].

the notion of workflow splicing. This work supposes a library of
“templates” and concrete schemas, where a template may include
gaps where other templates or concrete schemas can be plugged in.
XQuery can be used to construct concrete workflow schemas that
satisfy given properties, such as the ability to interface with a vari-
ety of Bank. It would be fruitful to explore how far the techniques
of [23] can be extended to richer e-composition formalisms, like
BPEL4WS, BPML, DAML-S, and GFSL.

7. CONCLUSIONS
This paper has attempted to reveal some of the fundamental char-

acteristics of the emerging paradigm of e-services and their compo-
sition, to identify how existing theoretical perspectives and results
can be used to understand those characteristics, and to highlight
directions for new research. The discussion of the paper can be
summarized in three broad themes.

First, under the assumption of bounded queues, composite e-
services can be studied using tools from the verification commu-
nity, including automata-based models, temporal logics, and syn-
thesis algorithms. The e-services area raises generalized versions
of those problems in the context where data manipulation is incor-
porated, as in the Relational Mealy Machines discussed here.

Second, it is useful to study a model of composite e-services
with unbounded queues. Under this assumption the behavior of
e-compositions is quite different. We present some initial results
in the unbounded queue case relevant to the domain of e-services,
including a handful of characterizations of the global behavior of e-
compositions, and some early progress towards understanding syn-
thesis.

And third, the use of XML in many aspects of e-services raises
opportunities to apply techniques from the data management com-
munity in the context of specifying compositions of e-services.
These range from revisiting the classical notions of types and sub-
types for input/output signatures, to the application of XQuery and
XML constraint tools to e-composition specification.

This short paper was unable to address a variety of other is-
sues raised in the new field of e-services composition. We have
not considered e-service discovery beyond identifying some of the
formalisms that can be used to describe e-services. We have not
addressed optimization of e-compositions; a promising area is to
extend optimization techniques for distributed databases to the con-
text of scientific workflows. And we have not addressed the large
and important area of transactional properties of e-compositions.
We expect that in all of these areas, as with those discussed in the
paper, the e-services perspective will give rise to new questions and
research results in semi-structured data, integrity constraints, trans-
action management, optimization, and verification.

Acknowledgements
The authors thank Glenn Bruns and Patrice Godefroid for a careful
reading of a draft of this paper. The work by Su is supported in part
by NSF grants IIS-9817432 and IIS-0101124.

8. REFERENCES
[1] M. Abadi, L. Lamport, and P. Wolper. Realizable and unrealizable

specifications of reactive systems. In Proc. of 16th Int. Colloq. on
Automata, Languages and Programming, volume 372 of LNCS,
pages 1–17. Springer Verlag, 1989.

[2] S. Abiteboul, A. Bonifati, G. Cobena, I. Manolescu, and T. Milo.
Dynamic XML documents with distribution and replication. In Proc.
ACM SIGMOD Int. Conf. on Management of Data, 2003.

[3] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: From
Relations to Semistructured Data and XML. Morgan Kaufmann,
1999.

[4] S. Abiteboul, V. Vianu, B. Fordham, and Y. Yesha. Relational
transducers for electronic commerce. Journal of Computer and
System Sciences, 61(2):236–269, 2000.

[5] P.A. Abdulla, A. Bouajjani, and B. Jonsson. On-the-fly analysis of
systems with unbounded, lossy FIFO channels. In Proc. Computer
Aided Verification, pp. 305–318, 1998.

[6] N. Alon, T. Milo, F. Neven, D. Suciu, and V. Vianu. XML with data
values: Typechecking revisited. In Proc. ACM Symp. on Principles
of Database Systems, 2001.

[7] A. Arkin. Business Process Modeling Language (BPML), Version
1.0. BPML.org, 2002.

[8] P. Atzeni and R. Torlone. Management of multiple models in an
extensible database design tool. In Proc. Int. Conf. on Extending
Database Technology, 1996.

[9] C. Baru, A. Gupta, B. Ludäscher, R. Marciano, Y. Papakonstantinou,
P. Velikhov, and V. Chu. XML-based information mediation with
MIX. In SIGMOD, 2000.

[10] M. Benedikt, G. Bruns, J. Gibson, R. Kuss, and A. Ng. Automated
update management for XML integrity constraints. In Proc.
Workshop on Programming Languages for XML (PLAN-X), 2002.

[11] B. Boigelot and P. Godefroid. Symbolic verification of
communication protocols with infinite state spaces using QDDs. In
Proc. 8th Int. Conf. on Computer Aided Verification, volume 1102 of
LNCS, pages 1–12. Springer-Verlag, August 1996.

[12] B. Boigelot, P. Godefroid, B. Williams, and P. Wolper. The power of
QDDs. In Proc. Fourth Static Analysis Symposium, Sept. 1997.

[13] Business Process Execution Language for Web Services (Version
1.0). http://www.ibm.com/developerworks/library/ws-bpel, 2002.

[14] ebXML Business Process Specification Schema (Version 1.01).
http://www.ebxml.org/specs/ebBPSS.pdf, May 11 2002.

[15] D. Brand and P. Zafiropulo. On communicating finite-state
machines. Journal of the ACM, 30(2):323–342, 1983.

[16] J. Buchi and L. Landweber. Solving sequential conditions by
finite-state strategies. Transactions of the American Mathematical
Society, 138:295–311, 1969.

[17] T. Bultan, Z. Fu, R. Hull, and J. Su. Conversation specification: A
new approach to design and analysis of e-service composition. In
Proc. World Wide Web Conf., 2003.

[18] Workshop on data derivation and provenance, October 2002.
http://www-fp.mcs.anl.gov/˜foster/provenance/.

[19] P. Buneman, S. Khanna, and W.-C. Tan. Why and where: A
characterization of data provenance. In Proc. Int. Conf. on Database
Theory, 2001.

[20] CCITT. Recommendation Z.120: Message Sequence Chart (MSC).
CCITT, Geneva, 1992.

[21] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland,
Y. Papakonstantinou, J. Ullman, and J. Widom. The TSIMMIS
project: Integration of heterogeneous information sources. In Proc.
of Info. Processing Society of Japan, Tokyo, Japan, October 1994.

[22] V. Christophides, R. Hull, G. Karvounarakis, A. Kumar, G. Tong,
and M. Xiong. Beyond discrete e-services: Composing
session-oriented services in telecommunications. In Proc. of
Workshop on Technologies for E-Services (TES), Springer LNCS
volume 2193, Rome, Italy, September 2001.

[23] V. Christophides, R. Hull, and A. Kumar. Querying and splicing of
XML workflows. In Proc. of Intl. Conf. on Cooperating Information
Systems (CoopIS), 2001.

[24] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press,
2000.

[25] A. Deutsch. A storeless model for aliasing and its abstractions using
finite representation of right-regular equivalence relations. In IEEE
Int. Conf. on Computer Languages, pp. 2–13, 1992.

[26] N. Daswani, H. Garcia-Molina, and B. Yang. Open problems in
data-sharing peer-to-peer systems. In Proc. Int. Conf. on Database
Theory, pages 1–15, 2003.

[27] L. de Alfaro and T. A. Henzinger. Interface automata. In Proc. ACM
Symp. Foundations of Software Engineering, 2001.

[28] A. Deutsch and V. Tannen. Containment for classes of Xpath
expressions under integrity constraints. In Proc. Workshop on
Knowledge Representation meets Databases (KRDB), 2001.

[29] E. A. Emerson. Temporal and modal logic. In J. Van Leeuwen,

editor, Handbook of Theoretical Computer Science. Elsevier Science
Publishers, 1990.

[30] DAML-S Coalition (A. Ankolekar et al). DAML-S: Web service
description for the semantic web. In The Semantic Web - ISWC 2002,
Proc. 1st Int. Semantic Web Conference, volume 2342 of LNCS,
pages 348–363, June 2002.

[31] DAML Services Coalition (A. Ankolekar et al). DAML-S: Semantic
markup for web services. In Proc. of Int. Semantic Web Working
Symposium (SWWS), pages 411–430, July/August 2001.

[32] D. Florescu, A. Grühagen, and D. Kossmann. XL: An XML
programming language for web service specification and
composition. In Proc. World Wide Web Conf., pages 65–76, 2002.

[33] I. Foster and C. Kesselman, editors. The Grid: Blueprint for a Future
Computing Infrastructure. Morgan Kaufmann Publishers, 1998.

[34] J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke.
Condor-G: A computation management agent for multi-institutional
Grids. In Proc. IEEE Symp. High Performance Distributed
Computing (HDPC), 2001.

[35] X. Fu, T. Bultan, and J. Su. Conversation protocols: A formalism for
specification and verification of reactive electronic services.
Submitted for publication, 2003.

[36] S. Gay and M. Hole. Types for correct communication in
client-server systems. Tech. Report CSD-TR-00-07, Dept. of
Computer Science, Royal Holloway, Univ. of London, Dec. 2000.

[37] P. Godefroid and D. Long. Symbolic protocol verification with
queue BDDs. In Proc. IEEE Symposium on Logic In Computer
Science, pages 1–12, 1996.

[38] S. Gribble, A. Halevy, Z. Ives, M. Rodrig, and D. Suciu. What can
databases do for Peer-to-Peer? In Workshop on Databases and the
Web (WebDB), 2001.

[39] L.M. Haas, D. Kossmann, E. L. Wimmers, and J. Yang. Optimizing
queries across diverse data sources. In Proc. Int. Conf. on Very Large
Data Bases, pages 276–285, 1997.

[40] C. A. R. Hoare. Communicating sequential processes.
Communications of the ACM, 21(8):666–677, 1978.

[41] K. Honda, V. Vasconcelos, and M. Kubo. Language primitives and
type discipline for structured communication-based programming.
In Programming Languages and Systems, 7th European Symposium
on Programming, 1998.

[42] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory
Languages, and Computation. Addison-Wesley Publishing
Company, Reading, Mass., 1979.

[43] R. Hull and R. King. Semantic database modeling: Survey,
applications, and research issues. ACM Computing Surveys,
19(3):201–260, September 1987.

[44] O. H. Ibarra. Reachability and safety in queue systems. In
Implementation and Application of Automata, 5th International
Conference (CIAA), pages 145–156, July 2000.

[45] T. Jéron. Testing for unboundedness of FIFO channels. In Proc.
STACS-91: Symp. on Theoretical Aspects of Computer Science, vol.
480 of LNCS, 322–333, Hamburg, 1991, Springer-Verlag.

[46] B. Kiepuszewski, A. ter Hofstede, and C. Bussler. On structured
workflow modelling. In Proc. 12th Conf. on Advanced Information
Systems Engineering (CAISE), Stockholm, Sweden, June 2000.

[47] S. Krishnan, P. Wagstrom, and G. von Laszewski. GSFL: A
workflow framework for Grid services. Technical Report Preprint
ANL/MCS-P980-0802, Argonne National Laboratory, August 2002.

[48] O. Kupferman and M. Y. Vardi. Synthesizing distributed systems. In
Proc. IEEE Symposium on Logic In Computer Science, 2001.

[49] F. Leymann. Web Services Flow Language (WSFL 1.0), May 2001.
[50] R. Milner. A Calculus of Communicating Systems. Springer-Verlag,

Berlin, 1980. Lecture Notes in Computer Science, Vol. 92.
[51] T. Milo, S. Abiteboul, B. Amann, O. Benjelloun, and F. Dang Ngoc.

Exchanging intensional XML data. In Proc. ACM SIGMOD Int.
Conf. on Management of Data, 2003.

[52] Object Management Group (OMG). The Common Object Request
Broker: Architecture and Specification (CORBA) rev. 2.6. OMG
technical document see www.omg.org, 2001.

[53] J.L. Peterson. Petri nets. ACM Comp. Surveys, 9(3):223–251, 1977.
[54] B. Pierce and H. Hosoya. Regular expression pattern matching for

XML. In Proc. ACM Symp. on Principles of Programming

Languages, pages 67–80, 2001.
[55] B. Pierce and D. Sangiorgi. Typing and subtyping for mobile

processes. In Proc. IEEE Symp. on Logic In Comp. Science, 1993.
[56] L. Pinzon, H.-M. Hanisch, M. Jafari and T. Boucher. A comparative

study of synthesis for discrete event controllers. Tech. Report,
Rutgers Center for Operations Research, Rutgers U., Sept. 1997.

[57] A. Pnueli and R. Rosner. Distributed reactive systems are hard to
synthesize. In Proc. IEEE Symp. on Foundations of Computer
Science, pages 746–757, 1990.

[58] H. Seidl. Deciding equivalence of finite tree automata. SIAM Journal
of Computing, 19(3):424–437, 1990.

[59] Simple Object Access Protocol (SOAP) 1.1.
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
Toc478383487, 2000.

[60] S. Thatte. XLANG: Web services for business process design, 2001.
[61] K.J. Turner et al. Using Formal Description Techniques – An

Introduction to Estelle, Lotos and SDL. Wiley, 1993.
[62] Universal Description, Discovery and Integration of Web Services

(UDDI) 3. http://www.oasis-open.org/committees/uddi-spec/
tcspecs.shtml#uddiv3, 2002.

[63] W. M. P. van der Aalst. Don’t go with the flow: Web services
composition standards exposed, IEEE Intelligent Systems, Jan/Feb
2003.

[64] W.M.P. van der Aalst. The application of petri nets to workflow
management. J. of Circuits, Systems and Computers, 8(1), 1998.

[65] W.M.P. van der Aalst, A.P. Barros, A.H.M. ter Hofstede, and
B. Kiepuszewski. Advanced workflow patterns. In Proc. 7th Int.
Conf. on Cooperative Information Systems (CoopIS 2000), volume
1901 of LNCS, pages 18–29. Springer, 2000.

[66] W.M.P. van der Aalst, M. Dumas, A.H.M. ter Hofstede, and
P. Wohed. Pattern based analysis of BPML (and WSCI). Technical
Report FIT-TR-2002-05, QUT, Queensland University of
Technology, Brisbane, 2002.
http://tmitwww.tm.tue.nl/staff/wvdaalst/Publications/p176.pdf.

[67] Workflow management coalition. http://www.wfmc.org/.
[68] P. Wohed, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter

Hofstede. Pattern based analysis of BPEL4WS. Technical Report
FIT-TR-2002-04, QUT, Queensland University of Technology, 2002.
http://tmitwww.tm.tue.nl/staff/wvdaalst/Publications/p175.pdf.

[69] Web Services Conversation Language (WSCL) 1.0.
http://www.w3.org/TR/2002/NOTE-wscl10-20020314, 2002.

[70] Web Services Description Language (WSDL) 1.1.
http://www.w3.org/TR/2001/NOTE-wsdl-20010315, 2001.

[71] XML Schema, Parts 1 and 2. http://www.w3.org/TR/xmlschema-1/
and .../xmlschema-2/, May 2 2002.

[72] XQuery 1.0: An XML query language. http://www.w3.org/TR/2002/
WD-xquery-20021115/, November 15, 2002.

