Lecture 19: Alias analysis

Subtyping

Polyvios Pratikakis

Computer Science Department, University of Crete

Type Systems and Static Analysis

Based on slides by Jeff Foster
Last time

- Label-flow analysis
 - Assign a label at every “interesting” program point (pointers)
 - Aliasing question: does label R_1 “flow” to label R_2 at runtime?

- Type-based label-flow (for pointers)
 - Annotate types with labels
 - Type-checking is flow checking

- An inference system
 - Type system creates “fresh” label variables
 - Typing creates constraints among variables
 - Constraint solution gives aliasing information
 - We used unification to solve constraints
Limitation of unification

- Unification creates “backwards flow” of labels
- When x and y both alias z, they alias each other too
- For example

  ```
  let x = ref 1 in
  let y = ref 2 in
  let z = if true then x else y in
  x := 42;
  y := 0;
  
  Unification gives
  
  $x : \text{Ref}^R \text{Nat}$
  $y : \text{Ref}^R \text{Nat}$
  $z : \text{Ref}^R \text{Nat}$
  ```
Subtyping

We can solve this problem using subtyping
 ▶ Each label variable represents a set of labels
 ★ In unification, a variable could only stand for one label
 ▶ We write $[\alpha]$ for the set of labels represented by α
 ★ Trivially, $[R] = \{R\}$ for any constant R

For example, assume
 ▶ x has type $\text{Ref}^\alpha \text{Nat}$
 ▶ $[\alpha] = \{R_1, R_2\}$
 ▶ Then x may point to either location R_1 or location R_2
 ★ Again, labels R_1 and R_2 are static approximations, they may refer to many runtime locations
Labels on references

Labeling is slightly different

- We assume each allocation has a unique constant label
 - Generate a fresh one for each syntactic occurence
- Add a fresh variable on each reference type and generate a subtyping constraint between constant and variable
 - $\alpha_1 \leq \alpha_2$ means $[\alpha_1] \subseteq [\alpha_2]$

\[
\frac{
\begin{align*}
\Gamma \vdash e : T \\
R \leq \alpha \\
[\text{T-Ref}] \\
R - \text{fresh} & \quad \alpha - \text{fresh}
\end{align*}
}{
\Gamma \vdash \text{ref}^R e : \text{Ref}^\alpha T
}\]
Subtype inference

- The same approach as before
 - Visit the AST, generate constraints
 - Constraints allow subsets, instead of equalities

- We could change all rules that generate constraints to allow inequalities
 - For example

\[
\Gamma \vdash e : \text{Bool} \\
\Gamma \vdash e_1 : \text{Ref}^{\rho_1} \ T \\
\Gamma \vdash e_2 : \text{Ref}^{\rho_1} \ T \\
\rho_1 \leq \rho \\
\rho_2 \leq \rho \\
\Gamma \vdash \text{if } e \text{ then } e_1 \text{ else } e_2 : \text{Ref}^{\rho} \ T
\]
Subtyping constraints

- We need to generalize to arbitrary types
 - Think of types as representing sets of values
 - For example, \(Nat \) represents the set of natural numbers
 - So, \(\text{Ref}^\rho \ Nat \) represents the sets of pointers to integers labeled with \([\rho]\)
 - Extend \(\leq \) to a relation \(T \leq T \) on types

\[
\begin{align*}
\text{Nat} \leq \text{Nat} \\
\rho_1 \leq \rho_2 \quad \text{Nat} \leq \text{Nat} \\
\text{Ref}^{\rho_1} \text{Nat} \leq \text{Ref}^{\rho_2} \text{Nat}
\end{align*}
\]
Subsumption

- Instead of modifying all rules with constraints, add one more typing rule (remember subtyping from λ-calculus)

$$
\frac{\Gamma \vdash e : T \quad T \leq T'}{
\Gamma \vdash e : T'
}$$

- Like normal subtyping: we can use a supertype anywhere a subtype is expected
Example

```ocaml
let x = ref 0 in
let y = ref 1 in
let z = if true then x else y in
x := 42
```

- Types of `x` and `y` must match as conditional

\[
\Gamma \vdash x : \text{Ref}^\alpha \text{Nat} \quad \frac{\alpha \leq \gamma}{\text{Ref}^\alpha \text{Nat} \leq \text{Ref}^\gamma \text{Nat}} \quad \Gamma \vdash x : \text{Ref}^\gamma \text{Nat}
\]

- So, we have `z : Ref^\gamma Nat` with `\alpha \leq \gamma` and `\beta \leq \gamma`
 - And we can pick \([\alpha] = \{R_x\}, [\beta] = \{R_y\}, [\gamma] = \{R_x, R_y\}\)
Subtyping references

- Let’s try to generalize to arbitrary types

\[
\begin{align*}
\rho_1 & \leq \rho_2 \\
T_1 & \leq T_2 \\
Ref^{\rho_1} T_1 & \leq Ref^{\rho_2} T_2
\end{align*}
\]

- This is broken

```haskell
let x = ref^{R_x} (ref^{R_0} 0) in
let y = x in
  y := ref^{R_1} 1;
  !!x := 3
// x : Ref^x Ref^\beta Nat, R_0 \leq \beta
// y : Ref^\alpha Ref^{\delta} Nat, \beta \leq \delta
// R_1 \leq \delta
// deref of \beta
```

- We can pick $[\beta] = \{R_0\}$, $[\delta] = \{R_0, R_1\}$
 - Then writing through β doesn’t write R_1
Aliasing

Through subtyping, we have multiple names for the same memory location
 - They have different types
 - We can write different types on the same memory location

Solution: require equality under a ref
 - We saw this before: subtyping and references
 - We can write $T_1 = T_2$ as $T_1 \leq T_2$ and $T_2 \leq T_1$

\[
\begin{align*}
\rho_1 \leq \rho_2 & \quad T_1 \leq T_2 & \quad T_2 \leq T_1 \\
\text{Ref}^{\rho_1} T_1 & \leq \text{Ref}^{\rho_2} T_2
\end{align*}
\]
Subtyping on function types

- When is a function type \(T_1 \to T_2 \) subtype of another function type \(T'_1 \to T'_2 \)?

- Similar to standard subtyping
 - Contravariant on the argument type
 - Covariant on the result type

\[
\frac{T'_1 \leq T_1 \quad T_2 \leq T'_2}{T_1 \to T_2 \leq T'_1 \to T'_2}
\]

- Example: we can always use a function that returns a pointer to \(\{R_1\} \) as if it could return \(\{R_1, R_2\} \)

- Example: if a function expects a pointer to \(\{R_1, R_2\} \) we can always give it a pointer to \(\{R_1\} \)
Type system

• Typing is similar, generates \leq instead of $=$ constraints

\[
\frac{x : T \in \Gamma}{\Gamma \vdash x : T} \quad \frac{n : Nat}{\Gamma \vdash n : Nat}
\]

\[
\frac{\Gamma \vdash \text{true} : Bool}{\Gamma \vdash \text{true} : Bool}
\]

\[
\frac{\Gamma \vdash () : Unit}{\Gamma \vdash () : Unit}
\]

\[
\frac{\Gamma \vdash e_1 : Unit \quad \Gamma \vdash e_2 : T}{\Gamma \vdash (e_1; e_2) : T}
\]

\[
\frac{\Gamma, x : S \vdash e : T' \quad T = \text{fresh}(S)}{\Gamma \vdash \lambda x : S.e : T \rightarrow T'}
\]

\[
\frac{\Gamma \vdash e_1 : T \rightarrow T' \quad \Gamma \vdash e_2 : T}{\Gamma \vdash (e_1 \ e_2) : T'}
\]
Type system (cont’d)

\[
\begin{align*}
\text{[T-If]} & \quad \Gamma \vdash e : \text{Bool} \quad \Gamma \vdash e_1 : T \quad \Gamma \vdash e_2 : T \\
& \quad \frac{}{\Gamma \vdash \text{if } e \text{ then } e_1 \text{ else } e_2 : T} \\

\text{[T-Ref]} & \quad \Gamma \vdash e : T \quad R \leq \alpha \\
& \quad \frac{R - \text{fresh} \quad \alpha - \text{fresh}}{\Gamma \vdash \text{ref}^R e : \text{Ref}^\alpha T} \\

\text{[T-Assign]} & \quad \Gamma \vdash e_1 : \text{Ref}^\alpha T \quad \Gamma \vdash e_2 : T \\
& \quad \frac{}{\Gamma \vdash e_1 := e_2 : \text{Unit}} \\

\text{[T-Let]} & \quad \Gamma, x : T_1 \vdash e_2 : T_2 \\
& \quad \frac{}{\Gamma \vdash \text{let } x = e_1 \text{ in } e_2 : T_2} \\

\text{[T-Ref]} & \quad \Gamma \vdash e : \text{Ref}^\alpha T \\
& \quad \frac{}{\Gamma \vdash !e : T} \\

\text{[T-Sub]} & \quad T_1 \leq T_2 \\
& \quad \frac{}{\Gamma \vdash e : T_2}
\end{align*}
\]
Subtyping relation

- In unification, we simplify $T_1 = T_2$ constraints to get $\rho_1 = \rho_2$ constraints
- We can use the subtyping relation $T_1 \leq T_2$ to do the same

$$\begin{align*}
\text{[S-NAT]} & \quad \frac{T'_1 \leq T_1}{T_1 \rightarrow T_2 \leq T'_1} \quad \frac{T_2 \leq T'_2}{T_2 \rightarrow T'_2}
\end{align*}$$

$$
\begin{align*}
\text{[S-NAT]} & \quad Nat \leq Nat \\
\text{[S-BOOL]} & \quad Bool \leq Bool
\end{align*}
$$

$$
\begin{align*}
\text{[S-UNIT]} & \quad Unit \leq Unit \\
\text{[S-REF]} & \quad \frac{\rho_1 \leq \rho_2}{Ref^{p_1}} \quad \frac{T_1 \leq T_2}{Ref^{p_2}} \quad \frac{T_2 \leq T_1}{T_2}
\end{align*}
$$
The problem: subsumption

• We can apply subsumption at any time
 ▶ Makes it hard to develop a deterministic algorithm
 ▶ Type checking is not *syntax-driven*

• Fortunately, not many choices
 ▶ For each expression e we need to decide
 ★ Do we apply the “regular” syntax-driven rule for e?
 ★ or do we apply subsumption (and how many times)?
Getting rid of subsumption

- Lemma: Multiple sequential uses of subsumption can be collapsed into a single use
 - Proof: transitivity of \leq
- We need at most one application of subsumption after typing an expression
- We can get rid of that one application
 - Integrate it into the rest of the rules
 - Each rule is the syntax-driven typing, plus a subsumption
Getting rid of subsumption (cont’d)

- All rules that introduced $T_1 = T_2$ constraints in unification, now introduce subtyping $T_1 \leq T_2$

\[
\begin{align*}
\Gamma \vdash e_1 : T_1 & \rightarrow T' \\
\Gamma \vdash e_2 : T_2 \\
\Gamma \vdash (e_1 \ e_2) : T' \\
\end{align*}
\]

\[\text{[T-App]} \quad T_2 \leq T_1 \quad \frac{}{\Gamma \vdash (e_1 \ e_2) : T'}\]

\[
\begin{align*}
\Gamma \vdash e : \text{Bool} \\
\Gamma \vdash e_1 : T_1 \\
\Gamma \vdash e_2 : T_2 \\
\end{align*}
\]

\[\text{[T-If]} \quad T_1 \leq T \quad T_2 \leq T \quad \frac{}{\Gamma \vdash \text{if} \ e \ \text{then} \ e_1 \ \text{else} \ e_2 : T}\]

- Etc, for the other rules

- We are left with an algorithmic, syntax-directed type system
Solving the constraints

- Solving computes transitive closure of $\rho \leq \rho'$
- As in unification, use a rewriting system to simplify constraints
- Except we have already solved the structural part and only have $r \leq \rho_1$ constraints left
 - If $\{\rho_1 \leq \rho_2\}$ and $\{\rho_2 \leq \rho_3\}$ then add $\{\rho_1 \leq \rho_3\}$
- Repeat until no new edges can be added
- At most $O(N^2)$
- Points-to set $[\rho]$ is then $[\rho] = \{R \mid R \leq \rho\}$
Graph reachability

\[R_1 \leq a \]
\[R_2 \leq b \]
\[a \leq c \]
\[b \leq a \]
Andersen’s analysis

- Flow-insensitive
- Context-insensitive
- Subtyping-based

Properties
- Still very scalable in practice
- Much less coarse than Steensgaard’s analysis
- Precision can still be improved