Lectures 16, 17: Dataflow Analysis

Polyvios Pratikakis

Computer Science Department, University of Crete

Type Systems and Static Analysis

Based on slides by Jeff Foster
Abstract syntax trees

- **ASTs are abstract**
 - They don’t contain all information in the program
 - E.g., spacing, comments, brackets, parentheses
 - Any ambiguity is resolved
 - E.g., $a + b + c$ produces the same AST as $(a + b) + c$

- but not great for analysis
 - An AST has many similar forms
 - E.g., for, while, repeat..until, ...
 - E.g., if, switch, ...
 - AST expressions might be complex, nested
 - E.g., $(10 \times x) + (y > 3?5 \times z : z)$

We want a simpler representation for analysis
 - ...at least for dataflow analysis
Control-flow graph (CFG)

- A directed graph, where:
 - Each node represents a statement
 - Each edge represents control flow (i.e. what happens after what)

- Statements may be
 - Assignments \(x := y \ op \ z \) or \(x := \ op \ y \)
 - Copy statements \(x := y \)
 - Branches \(\text{goto} \ L \) or \(\text{if} \ x \ \text{relop} \ y \ \text{goto} \ L \)
 - etc.
Control-flow graph example

\[
x := a + b
\]

\[
y := a \cdot b
\]

\[
y > a
\]

\[
a := a + 1
\]

\[
x := a + b
\]
Kinds of CFGs

- We usually don’t include declarations (e.g., `int x`)
 - Some CFG implementations do
- We may add special, unique “enter” and “exit” nodes
- We can group “straight-line” code into basic blocks
 - Straight-line: without branches, simple instructions one after the other
Control-flow graph with basic blocks

- Can lead to more efficient implementations
- But, is more complicated
 - We will use single-statement blocks here
Control-flow graph with entry/exit

entry

\(x := a + b \)

\(y := a \times b \)

\(y > a \)

\(a := a + 1 \)

\(x := a + b \)

exit
CFG versus AST

- CFGs are simpler than ASTs
 - Fewer forms, less redundancy, simpler expressions
 - Capture flow of control better, easier to see execution paths

- But, AST is a more faithful representation
 - CFGs introduce temporary variables
 - CFGs lose the block-structure of the program

- AST benefits
 - Easier for reporting errors and other compiler messages
 - Easier to explain to the programmer
 - Easier to unpars and produce code closer to the original
Dataflow analysis

- A framework for proving facts about programs
- Reasons about lots of little facts
- Little or no interaction between different facts
 - Works best on properties about how the program computes
- Based on all paths through the program control-flow
 - Including infeasible paths
Available expressions

- An expression e is available at a program point p if:
 - e is computed on every path leading to p, and
 - the value of e has not changed since it was last computed

- Used in compiler optimization
 - If an expression is available don’t recompute its value
 - Instead, save it in a register the first time, and use that
 - ...if possible
Dataflow facts

- Is expression e available?
- Possible facts:
 - $a + b$ is available
 - $a \times b$ is available
 - $a + 1$ is available
Gen and kill

What is the effect of each statement on the set of facts?

<table>
<thead>
<tr>
<th>Stmt</th>
<th>Gen</th>
<th>Kill</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x := a + b$</td>
<td>$a + b$</td>
<td></td>
</tr>
<tr>
<td>$y := a \times b$</td>
<td>$a \times b$</td>
<td></td>
</tr>
<tr>
<td>$a := a + 1$</td>
<td>$a + 1$</td>
<td>$a + b$ $a \times b$</td>
</tr>
</tbody>
</table>
Terminology

- A **joint point** is a program point where two branches meet.
- Available expressions is a **forward must** problem:
 - **Forward** means the facts flow from “in” to “out” at every node, follow the edge arrows.
 - **Must** means at every joint point, the property must hold on all paths joined.
- There are also **backward** and **may** problems:
 - **Backward** means the facts flow from “out” to “in” at every node, backwards on the edges.
 - **May** means at every joint point, the property must hold on any of the joined paths.
- All combinations:
 - Forward may, backward must, etc.
Dataflow equations

- **If** \(s \) **is a statement**
 - \(\text{succ}(s) \) **is the set of all immediate successor statements of** \(s \)
 - \(\text{pred}(s) \) **is the set of all immediate predecessor statements of** \(s \)
 - \(\text{In}(s) \) **is the set of facts at the program point just before** \(s \)
 - \(\text{Out}(s) \) **is the set of facts at the program point just after** \(s \)

- **Forward must:**
 - \(\text{In}(s) = \bigcap_{s' \in \text{pred}(s)} \text{Out}(s') \)
 - \(\text{Out}(s) = \text{Gen}(s) \cup (\text{In}(s) \setminus \text{Kill}(s)) \)
Live variables

- A variable x is *live* at a program point p if:
 - x will be used on some execution path starting at p
 - before x is overwritten

- Compiler optimization
 - If a variable is not live, there’s no need to keep it in a register
 - If a variable is dead at an assignment, we can eliminate the assignment
Liveness is a *backward may* problem
- To decide if a variable is live at a program point \(p \), we need to look at the paths starting at \(p \)
- The variable is live if it is used on *any* future program point

Backward may:
- \(\text{Out}(s) = \bigcup_{s' \in \text{succ}(s)} \text{In}(s') \)
- \(\text{In}(s) = \text{Gen}(s) \cup (\text{Out}(s) \setminus \text{Kill}(s)) \)
Gen and kill

- All possible facts:
 - a is live
 - b is live
 - x is live
 - y is live

- What is the effect of each statement on the set of facts?

<table>
<thead>
<tr>
<th>Stmt</th>
<th>Gen</th>
<th>Kill</th>
</tr>
</thead>
<tbody>
<tr>
<td>x := a + b</td>
<td>a, b</td>
<td>x</td>
</tr>
<tr>
<td>y := a * b</td>
<td>a, b</td>
<td>y</td>
</tr>
<tr>
<td>y > a</td>
<td>a, y</td>
<td></td>
</tr>
<tr>
<td>a := a + 1</td>
<td>a</td>
<td>a</td>
</tr>
</tbody>
</table>
An expression \(e \) is very busy at a program point \(p \) if:

- On every path from \(p \), expression \(e \) is evaluated before its value is changed

Compiler optimization

- The compiler can lift very busy expression computation

What kind of problem?

- Forward or backward?
- May or must?
Reaching definitions

- A *definition* of a variable x is an assignment to x
- A definition of a variable x *reaches* a program point p if:
 - There is no intervening assignment to x between the definition and p
- Also called “def-use” information
- What kind of problem?
 - Forward or backward?
 - May or must?
Dominators

- A program point \(p \) **dominates** another program point \(p' \) if:
 - \(p \) occurs in all paths from the start of the program to \(p' \)

- What kind of problem?
 - Forward or backward?
 - May or must?
Space of dataflow analyses

<table>
<thead>
<tr>
<th></th>
<th>May</th>
<th>Must</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward</td>
<td>Reaching definitions</td>
<td>Available expressions</td>
</tr>
<tr>
<td>Backward</td>
<td>Live variables</td>
<td>Very busy expressions</td>
</tr>
</tbody>
</table>

- Most dataflow analyses can be classified this way
 - A few cannot: e.g., bidirectional analyses
- Lots of literature on dataflow analysis
So far

- ASTs are very *abstract*, not ideal for program analysis
- Control-flow graph is an alternative representation of the program
 - Captures flow of control, all execution paths
 - Better represents computation steps
 - But, not as close to the original source
- Dataflow analysis: computes a solution to dataflow equations for a program property
 - Depending on property: forward/backward, may/must analysis
 - Worklist algorithm, computes solution per program point
- Examples: available expressions, liveness, very busy expressions, etc.
Formalizing it

- Some algebra background
- Formalization of dataflow analysis
- Properties of dataflow algorithms
 - Termination
 - Solving algorithms
 - Fixpoints
 - Accuracy
- Implementation issues
Partial orders

- A partial order is a pair \((P, \leq)\) of a set \(P\) and a relation \(\leq\) such that:
 - \((\leq) \subseteq (P \times P)\): The relation \(\leq\) is defined only over elements of \(P\)
 - \(\leq\) is reflexive: \(x \leq x\), for all \(x \in P\)
 - \(\leq\) is anti-symmetric: if \(x \leq y\) and \(y \leq x\) then \(y = x\)
 - \(\leq\) is transitive: if \(x \leq y\) and \(y \leq z\) then \(x \leq z\)
A partial order is a lattice if \sqcap and \sqcup are defined such that:

- \sqcap is the *meet*, or *greatest lower bound* operation
 - $x \sqcap y \leq x$ and $x \sqcap y \leq y$
 - if $z \leq x$ and $z \leq y$ then $z \leq x \sqcap y$

- \sqcup is the *join*, or *least upper bound* operation
 - $x \leq x \sqcup y$ and $y \leq x \sqcup y$
 - if $x \leq z$ and $y \leq z$ then $x \sqcap y \leq z$
Lattices (cont’d)

- A finite partial order is a lattice if meet and join exist for every pair of elements.
- A lattice has unique elements \top (top) and \bot (bottom) such that:
 - $x \sqcap \bot = \bot$
 - $x \sqcap \top = x$
 - $x \sqcup \bot = x$
 - $x \sqcup \top = \top$
- In a lattice
 - $x \leq y$ if and only if $x \sqcap y = x$
 - $x \leq y$ if and only if $x \sqcup y = y$
- A partial order P is a complete lattice if meet and join are defined on any set $S \subseteq P$.
Typically, sets of dataflow facts form a lattice

Top element is $\top = \{a + b, a \times b, a + 1\}$

Bottom element is $\bot = \emptyset$
Forward-must dataflow algorithm

Forward-Must(CFG)

for all statements $s \in CFG$

$Out(s) := \top$

$W := \{\text{all statements}\}$

while $W \neq \emptyset$

take s from W

$In(s) := \bigcap_{s' \in \text{pred}(s)} Out(s')$

$tmp := Gen(s) \cup (In(s) \setminus Kill(s))$

if $tmp \neq Out(s)$ then

$Out(s) := tmp$

$W := W \cup succ(s)$

end if

end while
Monotonicity

- A function f on a partial order is **monotonic** if

$$x \leq y \Rightarrow f(x) \leq f(y)$$

- Easy to check that operations to compute In and Out are monotonic
 - $In(s) := \bigcap_{s' \in \text{pred}(s)} Out(s')$
 - $tmp := \text{Gen}(s) \cup (In(s) \setminus \text{Kill}(s))$

- Putting these together
 - $tmp := f_s \left(d_{s' \in \text{pred}(s)} Out(s') \right)$
Useful lattices

- \((2^S, \subseteq)\) forms a lattice for any set \(S\)
 - \(2^S\) is the powerset of \(S\): the set of all subsets
- If \((S, \leq)\) is a lattice, so is \((S, \geq)\)
 - I.e., we can flip a lattice upside-down and still have a lattice
- The lattice for constant propagation is:
Termination

- The algorithm terminates because
 - The lattice has finite height
 - The operations to compute In and Out are monotonic
 - On every iteration:
 - We reduce the size of the worklist or
 - we move the set of facts at a statement down the lattice
Forward dataflow

Forward(CFG)
 for all statements $s \in CFG$
 $Out(s) := \top$
 $W := \{\text{all statements}\}$
 while $W \neq \emptyset$
 take s from W
 $tmp := f_s \left(\{ s' \in \text{pred}(s) \mid Out(s') \} \right)$
 if $tmp \neq Out(s)$ then
 $Out(s) := tmp$
 $W := W \cup succ(s)$
 end if
 end while
Lattices for known analyses

- Available expressions
 - $P = \{\text{sets of expressions}\}$
 - $S_1 \cap S_2 = S_1 \cap S_2$
 - $\top = \{\text{all expressions}\}$

- Reaching definitions
 - $P = \{\text{all assignment statements}\}$
 - $S_1 \cap S_2 = S_1 \cup S_2$
 - $\top = \emptyset$
Fixpoints

- We always start with \top
 - Every expression is available/no definitions reach this point
 - The most optimistic assumption
 - The strongest hypothesis possible: true at the fewest number of states
- Revise as we encounter contradictions
 - Always move down the lattice (using \bot)
- Result: greatest fixpoint
Forward vs. backward dataflow

Forward(CFG)
 for all statements $s \in CFG$
 $Out(s) := \top$
 $W := \{\text{all statements}\}$
 while $W \neq \emptyset$
 take s from W
 $tmp := f_s (d_{s' \in pred(s)} Out(s'))$
 if $tmp \neq Out(s)$ then
 $Out(s) := tmp$
 $W := W \cup succ(s)$
 end if
 end while

Backward(CFG)
 for all statements $s \in CFG$
 $In(s) := \top$
 $W := \{\text{all statements}\}$
 while $W \neq \emptyset$
 take s from W
 $tmp := f_s (d_{s' \in succ(s)} In(s'))$
 if $tmp \neq In(s)$ then
 $In(s) := tmp$
 $W := W \cup pred(s)$
 end if
 end while
Termination revisited

- How many times can we apply the step:
 - $tmp := f_s (d_{s' \in \text{pred}(s)} \ Out(s'))$
 - if $tmp \neq Out(s)$ then ...

- Claim: $Out(s)$ only shrinks
 - Proof: $Out(s)$ starts as \top
 - so it must be $tmp \leq \top$ after the first step
 - Assume $Out(s)$ shrinks for all predecessors s' of s
 - Then $d_{s' \in \text{pred}(s)} \ Out(s')$ also shrinks
 - Since f_s is monotonic, $f_s (d_{s' \in \text{pred}(s)} \ Out(s'))$ shrinks
Termination revisited (cont’d)

- A descending chain in a lattice is a sequence
 - $x_0 \sqsubseteq x_1 \sqsubseteq \ldots$
- The height of a lattice is the length of the longest descending chain in the lattice
- Then, dataflow must terminate in $O(nk)$ time, where
 - n is the number of statements in a program
 - k is the height of the lattice
 - …assuming the meet operation takes $O(1)$ time
Least vs. greatest fixpoint

- Usually in dataflow we start with \(\top \), move down using \(\sqcap \)
 - To do this, we need a *meet semilattice with top*
 - complete meet semilattice: meet defined for all elements
 - finite height ensures termination
 - We compute the greatest fixpoint: the solution highest in the lattice

- In other settings (e.g., denotational semantics) we start with \(\bot \), move up using \(\sqcup \)
 - Computes the least fixpoint
Distributive dataflow problems

- By monotonicity we have $f(x \sqcap y) \leq f(x) \sqcap f(y)$
- A function f is **distributive** if $f(x \sqcap y) = f(x) \sqcap f(y)$
- When using distributive functions, joins lose no information:

$$k(h(f(\top) \sqcap g(\top))) =$$

$$k(h(f(\top)) \sqcap h(g(\top))) =$$

$$k(h(f(\top))) \sqcap k(h(g(\top)))$$
Accuracy

- Ideally, we want the *meet over all paths* (MOP) solution
 - Assume f_s is the transfer function of statement s
 - Assume p is a path s_1, \ldots, s_n
 - We define $f_p = f_n; \ldots; f_1$
 - Let $\text{path}(s)$ be the set of paths from the entry to s
 - Then
 \[MOP(s) = \bigvee_{p \in \text{path}(s)} f_p(\top) \]

- If a dataflow problem is distributive then algorithm produces the MOP solution
What problems are distributive?

- Analyses of *how* the program computes
 - Live variables
 - Available expressions
 - Reaching definitions
 - Very busy expressions

- All Gen/Kill problems are distributive

- Analyses of *what* the program computes are not distributive
 - Constant propagation
Implementation issues

- Dataflow facts are assertions of what is true at every program point
- We represent the set of facts as a bit-vector
 - Order all possible facts
 - The i-th bit represents the i-th fact
 - Intersection is bitwise and
 - Union is bitwise or
- “Only” a constant factor speedup
 - But very useful in practice!
Basic blocks

- A *basic block* is a sequence of statements such that
 - No statement except the last is a branch
 - There are no branches to any statement in the block except the first

- Practically, when implementing dataflow
 - Compute Gen/Kill for each basic block
 - By composing the transfer functions of statements
 - Store *In*/*Out* sets only for each basic block
 - Typical basic block is around 5 statements
Assume forward dataflow

- Let $G = (V, E)$ be the control-flow graph
- and k be the height of the lattice

If G is acyclic, visit it in topological order

- For every edge, visit the head node before the tail node

Running time is $O(|E|)$

- Regardless of the lattice size
CFG visiting order - cycles

- If G has cycles, visit in reverse postorder
 - Order of depth-first search
- Let Q be the max number of back-edges on a path without cycles
 - Depth of loop nesting
 - Back edge goes from descendant node to ancestor node in DFS tree
- Then if $\forall x. f(x) \leq x$ (sufficient, not necessary)
 - Running time is $O((Q + 1)|E|)$
 - depends on definition of \top: f shrinks the fact set
Flow-sensitivity

- Dataflow analysis is *flow-sensitive*
 - The answer produced depends on the order of statements in the program
 - We keep track of facts *per program point*

- Alternative: *flow-insensitive* analysis
 - Analysis result does not depend on the statement order
 - Standard example: types
 - A variable has the same type before and after any statement
Dataflow analysis and functions

- What happens at function calls?
 - Lots of possible solutions in the literature

- Usually, analyze one function at a time
 - Called *intraprocedural* analysis
 - When analyzing multiple functions together called *interprocedural*
 - Special case: *whole-program* analysis

- Consequences of intraprocedural analysis
 - Call to function kills all dataflow facts
 - Depending on language, we may be able to save some: e.g., called function cannot affect caller’s local variables
Dataflow analysis and pointers

- Dataflow is good at analyzing local variables
 - What about values in the heap?
 - Not modeled in traditional dataflow
- In practice, when $*x := e$
 - Assume it can write anywhere
 - All dataflow facts killed!
 - Better: assume it can write all variables whose address is taken
- In general: it’s hard to analyze pointers
Analysis terminology

- Must vs. May
 - Definition depends on which answer is imprecise: yes/maybe, or no/maybe result
 - Not always followed in the literature

- Forward vs. Backward

- Flow-sensitive vs. flow-insensitive

- Distributive vs. non-distributive

- Intraprocedural vs. interprocedural vs. whole-program
Dataflow analysis used in practice

- **Moore’s law:** Hardware advances double computing power every 18 months
- **Proebsting’s law:** Compiler advances double computing power every 18 years
 - Costs less than making chips, but not very much worth the trouble for optimization

- **Useful for other things:**
 - bug-finding: memory leaks, security vulnerabilities, etc.
 - support for high-level language-features
 - program understanding
 - …