Lecture 15: The Curry-Howard Correspondance

Polyvios Pratikakis

Computer Science Department, University of Crete

Type Systems and Static Analysis
Curry-Howard Correspondance

- Another use of λ-calculus
- Roughly:
 - Types correspond to theorems
 - Programs correspond to proofs
 - Typed languages correspond to logics
 - A typechecker is a proof verifier
Classical propositional logic

- Formulas of the form

\[\phi ::= p \mid \bot \mid \phi \lor \phi \mid \phi \land \phi \mid \phi \rightarrow \phi \]

- Where \(p \in \mathcal{P} \) is an atomic proposition, e.g. “Socrates is a man”

- Convenient abbreviations:
 - \(\neg \phi \) means \(\phi \rightarrow \bot \)
 - \(\phi \leftrightarrow \phi' \) means \((\phi \rightarrow \phi') \land (\phi' \rightarrow \phi) \)
Semantics of classical logic

- Interpretation \(m : \mathcal{P} \rightarrow \{\text{true}, \text{false}\} \)

\[
\begin{align*}
J\rho K^m & = m(\rho) \\
J \bot K^m & = \text{false} \\
J\phi \land \phi' K^m & = J\phi K^m \overline{\land} J\phi' K^m \\
J\phi \lor \phi' K^m & = J\phi K^m \lor J\phi' K^m \\
J\phi \rightarrow \phi' K^m & = \overline{\Rightarrow} J\phi K^m \lor J\phi' K^m
\end{align*}
\]

- Where \(\overline{\land}, \overline{\lor}, \overline{\Rightarrow} \) are the standard boolean operations on \(\{\text{true}, \text{false}\} \)
Terminology

- A formula ϕ is valid if $J\phi K^m = \text{true}$ for all m
- A formula ϕ is unsatisfiable if $J\phi K^m = \text{false}$ for all m
- Law of excluded middle:
- Formula $\phi \lor \neg \phi$ is valid for any ϕ
- A proof system attempts to determine the validity of a formula
Proof theory for classical logic

- Proves judgements of the form $\Gamma \vdash \phi$:
 - For any interpretation, under assumption Γ, ϕ is true

- Syntactic deduction rules that produce “proof trees” of $\Gamma \vdash \phi$:
 - *Natural deduction*

- Problem: classical proofs only address truth value, not constructive

- Example: “There are two irrational numbers x and y, such that x^y is rational”
 - Proof does not include much information
Intuitionistic logic

- Get rid of the law of excluded middle
- Notion of “truth” is not the same
 - A proposition is true, if we can construct a proof
 - Cannot assume predefined truth values without constructed proofs (no “either true or false”)
- Judgements are not expression of “truth”, they are constructions
 - $\vdash \phi$ means “there is a proof for ϕ”
 - $\vdash \phi \rightarrow \bot$ means “there is a refutation for ϕ”, not “there is no proof”
 - $\vdash (\phi \rightarrow \bot) \rightarrow \bot$ only means the absense of a refutation for ϕ, does not imply ϕ as in classical logic
Proofs in intuitionistic logic

\[\Gamma, \phi \vdash \phi\]

\[\begin{align*}
\Gamma \vdash \phi & \quad \Gamma \vdash \psi \\
\hline
\Gamma \vdash \phi \land \psi
\end{align*}\]

\[\begin{align*}
\Gamma \vdash \phi & \\
\hline
\Gamma \vdash \phi \lor \psi
\end{align*}\]

\[\begin{align*}
\Gamma, \phi \vdash \psi \\
\hline
\Gamma \vdash \phi \rightarrow \psi
\end{align*}\]

\[\begin{align*}
\Gamma \vdash \phi \land \psi & \\
\hline
\Gamma \vdash \phi
\end{align*}\]

\[\begin{align*}
\Gamma, \psi \vdash \rho \\
\hline
\Gamma, \phi \land \psi \vdash \rho
\end{align*}\]

\[\begin{align*}
\Gamma \vdash \phi \lor \psi \\
\hline
\Gamma \vdash \rho
\end{align*}\]

\[\begin{align*}
\Gamma \vdash \psi & \\
\hline
\Gamma \vdash \phi
\end{align*}\]

Does that resemble anything?
Curry-Howard correspondence

- We can mechanically translate formulas ϕ into type τ for every ϕ and the reverse
 - E.g. replace \land with \times, \lor with \pm, ...

- If $\Gamma \vdash e : \tau$ in simply-typed lambda calculus, and τ translates to ϕ, then $\text{range}(\Gamma) \vdash \phi$ in intuitionistic logic

- If $\Gamma \vdash \phi$ in intuitionistic logic, and ϕ translates to τ, then there exists e and Γ' such that $\text{range}(\Gamma') = \Gamma$ and $\Gamma' \vdash e : \tau$

- Proof by induction on the derivation $\Gamma \vdash \phi$
 - Can be simplified by fixing the logic and type languages to match
Consequences

- Lambda terms encode proof trees
- Evaluation of lambda terms is proof simplification
- Automated proving by trying to construct a lambda term with the wanted type
- Verifying a proof is typechecking
 - Increased trust in complicated proofs when machine-verifiable
- Proof-carrying code
- Certifying compilers