Lecture 12: Memory and References

Polyvios Pratikakis

Computer Science Department, University of Crete

Type Systems and Static Analysis
So far

- Pure lambda calculus
- Simply typed lambda calculus
- Additional types: sums, products, lists, tuples, variants, etc.

Pure language features:
 - The machine state is a program expression
 - The semantics rewrite the program expression/machine state
 - Program evaluation reduces the program expression to a result

- Pure features form the backbone of most languages
Impure features

- **Impure** languages
 - The machine state is not just the program expression
 - Program evaluation does not just produce a result,
 - ...it also changes the machine state

- Most languages also include impure features
 - Mutable state: memory locations, arrays, mutable record fields, etc.
 - I/O: network, display, etc.
 - Exceptions, signals, interrupts
 - Inter-process communication
 - ...

- Computation has “side-effects”: *computational effects*
Memory effects

- Support for *assignment*, a way to alter memory contents
- Variable names remain immutable
 - In C, a variable name can mean two things
 - At the left side of an assignment: a memory location
 - At the right side of an assignment: the contents of a memory location
 - Keep variables immutable: a variable name always means the same
 - Use explicit syntax to read from or write to a memory location
Memory operations

- Memory allocation (and initialization):
 \[
 \text{let } r = \text{ref } 5
 \]

- Memory dereference (read)
 \[
 !r
 \]

- Memory assignment (write)
 \[
 r := 42
 \]
Aliasing

- A reference points to a memory location
- We can copy the reference:

\[
\text{let } s = r
\]

- That does not copy the memory location
 - Both \(s \) and \(r \) point to the same original location
 - If we assign \(s := 2 \)
 - Then \(!r \) will also be 2
 - We say references \(s \) and \(r \) are aliases for the same memory location

- Is the program \((r := 1; r := !s) \) equivalent to the program \((r := !s) \)?
Shared state

- A reference is like a communication channel
-Implicitly sends something from one part of the program to another, e.g.:

 \[
 \begin{align*}
 \text{let } c &= \text{ref } 0 \\
 \text{let } \text{incc } &= \lambda x : \text{Unit}. \ (c := \text{succ } (!c); !c) \\
 \text{let } \text{decc } &= \lambda x : \text{Unit}. \ (c := \text{pred } (!c); !c)
 \end{align*}
 \]

- Create sequential numbers from anywhere in the program by calling \text{incc}()
- The function \text{incc} is \textit{stateful}: we don’t need to give it the previous value, \text{incc} remembers it (and so is \text{decc})
- Reference \(c \) works like an implicit argument to \text{incc} and \text{decc}, contains the last thing stored
Shared state (cont’d)

• We can pack it all in a record

 let counter =
 let c = ref 0 in
 \{
 incr = \lambda x : Unit. (c := succ (!c); !c),
 decr = \lambda x : Unit. (c := pred (!c); !c)
 \}

• We can now use \texttt{counter.incr()} and \texttt{counter.decr()}

• This is a simple \textit{object}
References, formally

- **Syntax**

 $$e ::= \ldots | \text{ref } e | \text{!} e | e := e$$

 $$T ::= \ldots | \text{Ref } T$$

- **Typing**

 \[
 \frac{\Gamma \vdash e : T}{\Gamma \vdash \text{ref } e : \text{Ref } T} \quad \text{[T-Ref]}
 \]

 \[
 \frac{\Gamma \vdash e : \text{Ref } T}{\Gamma \vdash \text{!} e : T} \quad \text{[T-Deref]}
 \]

 \[
 \frac{\Gamma \vdash e_1 : \text{Ref } T \quad \Gamma \vdash e_2 : T}{\Gamma \vdash e_1 := e_2 : \text{Unit}} \quad \text{[T-Assign]}
 \]
What is the result of ref 2 at run time?
 - Allocates a new memory location,
 - initializes it with 2, and
 - returns a pointer to that location
 - But what is the value of the pointer?

We add another type of value (and expression) that only occurs at run-time:

\[v, e ::= \ldots \mid l \]

- A pointer, or location, \(l \) is an element of an abstract set of all possible locations \(\mathcal{L} \)
- We represent memory as a partial function from locations \(l \) to values
Extend operational semantics with memory
The machine state is not just an expression \(e \) like in pure calculus
New machine state is \(\langle M \mid e \rangle \)
\(M \) represents memory: a map from locations \(l \) to values (also called store)
Operational semantics define transitions between the new machine states:
 ▶ Small-step: \(\langle M \mid e \rangle \rightarrow \langle M' \mid e' \rangle \)
 ▶ Big-step: \(\langle M \mid e \rangle \downarrow \langle M' \mid v \rangle \)
Semantics

- We need to extend all existing semantic rules with memory

\[
\langle M \mid (\lambda x : T.e) \nu \rangle \rightarrow \langle M \mid e[\nu/x] \rangle
\]

\[
\langle M \mid e_1 \rangle \rightarrow \langle M' \mid e'_1 \rangle
\]

\[
\langle M \mid e_1 \ e_2 \rangle \rightarrow \langle M' \mid e'_1 \ e_2 \rangle
\]

\[
\langle M \mid e \rangle \rightarrow \langle M' \mid e' \rangle
\]

\[
\langle M \mid \nu \ e \rangle \rightarrow \langle M' \mid \nu \ e' \rangle
\]
Semantics (cont’d)

- **Allocation**

\[
\begin{align*}
\langle M \mid e \rangle & \rightarrow \langle M' \mid e' \rangle \\
\langle M \mid \text{ref } e \rangle & \rightarrow \langle M' \mid \text{ref } e' \rangle \\
\text{s.t. } l \notin \text{dom}(M) & \rightarrow \langle M \mid \text{ref } v \rangle \rightarrow \langle (M, l \mapsto v) \mid l \rangle
\end{align*}
\]

- **Dereference**

\[
\begin{align*}
\langle M \mid e \rangle & \rightarrow \langle M' \mid e' \rangle \\
\langle M \mid \!\!e \rangle & \rightarrow \langle M' \mid \!\!e' \rangle \\
M(l) = v & \rightarrow \langle M \mid \!\!l \rangle \rightarrow \langle M \mid v \rangle
\end{align*}
\]
Semantics (cont’d)

- **Assignment**

\[
\begin{align*}
\langle M \mid e_1 \rangle & \rightarrow \langle M' \mid e'_1 \rangle \\
\langle M \mid e_1 := e_2 \rangle & \rightarrow \langle M' \mid e'_1 := e_2 \rangle \\
\langle M \mid e \rangle & \rightarrow \langle M' \mid e' \rangle \\
\langle M \mid v := e \rangle & \rightarrow \langle M' \mid v := e' \rangle \\
\langle M \mid l := v \rangle & \rightarrow \langle M[l \mapsto v] \mid () \rangle
\end{align*}
\]
Store typing

- To prove type soundness, we need (as before) progress and preservation.
- But, the run-time language includes locations l.
- What is the type of a location?
 - It depends on the value it points to in the store (incorrect):
 \[
 \Gamma \vdash M(l) : T \\
 \Gamma \vdash l : \text{Ref } T
 \]

- The store becomes part of the typing relation: $\Gamma; M \vdash e : T$
- Typing locations (not yet correctly):
 \[
 \Gamma; M \vdash M(l) : T \\
 \Gamma; M \vdash l : \text{Ref } T
 \]
Store typing (cont’d)

- What happens when the store has a cycle?
 - Typing doesn’t terminate: bad!

- Instead, use store typing Σ, a map from locations to types

- Now, typing relation depends on Σ: $\Gamma; \Sigma \vdash e : T$

- Typing locations (correctly):

 \[
 \frac{\Sigma(l) = T}{\Gamma; \Sigma \vdash l : \text{Ref } T}
 \]

- The other rules are simple to extend: just pass Σ up recursively

- To type original program, use empty Σ: no pointers allowed in the original program text
Typing, finally

\[
\begin{align*}
\text{[T-ABS]} & \quad \Gamma, x : T; \Sigma \vdash e : T' \\
& \quad \Gamma; \Sigma \vdash (\lambda x : T.e) : T \rightarrow T'
\end{align*}
\]

\[
\begin{align*}
\text{[T-VAR]} & \quad x : T \in \Gamma \\
& \quad \Gamma; \Sigma \vdash x : T
\end{align*}
\]

\[
\begin{align*}
\text{[T-APP]} & \quad \Gamma; \Sigma \vdash e_1 : T \rightarrow T' \\
& \quad \Gamma; \Sigma \vdash e_2 : T \\
& \quad \Gamma; \Sigma \vdash e_1 \; e_2 : T'
\end{align*}
\]

\[
\begin{align*}
\text{[T-UNIT]} & \quad \Gamma; \Sigma \vdash () : Unit
\end{align*}
\]

\[
\begin{align*}
\text{[T-REF]} & \quad \Gamma; \Sigma \vdash e : T \\
& \quad \Gamma; \Sigma \vdash \text{ref} \; e : \text{Ref} \; T
\end{align*}
\]

\[
\begin{align*}
\text{[T-DEREF]} & \quad \Gamma; \Sigma \vdash e : \text{Ref} \; T \\
& \quad \Gamma; \Sigma \vdash !e : T
\end{align*}
\]

\[
\begin{align*}
\text{[T-ASSIGN]} & \quad \Gamma; \Sigma \vdash e_1 : \text{Ref} \; T \\
& \quad \Gamma; \Sigma \vdash e_2 : T \\
& \quad \Gamma; \Sigma \vdash e_1 := e_2 : \text{Unit}
\end{align*}
\]

\[
\begin{align*}
\text{[T-LOC]} & \quad \Sigma(l) = T \\
& \quad \Gamma; \Sigma \vdash l : \text{Ref} \; T
\end{align*}
\]

\[
\ldots
\]
To state and prove soundness (progress and preservation) we need to link M and Σ:

- A store M is *well-typed* in context Γ under store typing Σ, written $\Gamma; \Sigma \vdash M$, if
 - $\text{dom}(M) = \text{dom}(\Sigma)$ and
 - $\Gamma; \Sigma \vdash M(l) : \Sigma(l)$ for all $l \in \text{dom}(M)$
Preservation theorem

- If a well-typed program takes a step, it is still well-typed: If
 - $\Gamma; \Sigma \vdash e : T$,
 - $\Gamma; \Sigma \vdash M$ and
 - $\langle M \mid e \rangle \rightarrow \langle M' \mid e' \rangle$

 then, for some $\Sigma' \supseteq \Sigma$,
 - $\Gamma; \Sigma' \vdash e' : T$ and
 - $\Gamma; \Sigma' \vdash M'$

- We prove as before by induction on the evaluation derivation.
- But first, we need a few auxiliary lemmas
Preservation theorem (cont’d)

• Prove the substitution lemma:
 If $\Gamma, x : T; \Sigma \vdash e : T'$ and $\Gamma; \Sigma \vdash \nu : T$ then $\Gamma; \Sigma \vdash e[\nu/x] : T'$.

• Prove we can update values in the store (keeping the same type):
 If $\Gamma; \Sigma \vdash M, \Sigma(l) = T$ and $\Gamma; \Sigma \vdash \nu : T$, then $\Gamma; \Sigma \vdash M[l \mapsto \nu]$.

• Prove weakening for stores, we can always add stuff to the store:
 If $\Gamma; \Sigma \vdash e : T$ and $\Sigma' \supseteq \Sigma$, then $\Gamma; \Sigma' \vdash e : T$.
Progress theorem

- A closed, well-typed program is either a value, or it can take a step: If $\emptyset, \Sigma \vdash e : T$, then either e is a value, or for any store M for which $\emptyset; \Sigma \vdash M$, there are some e' and M' such that $\langle M \mid e \rangle \rightarrow \langle M' \mid e' \rangle$.
- Proof as before, by induction on typing derivations
- Need to extend the canonical forms lemma with the cases for Unit and Ref T