Lecture 8: Types and Type Rules

Polyvios Pratikakis

Computer Science Department, University of Crete

Type Systems and Static Analysis

Based on slides by Jeff Foster, UMD
The need for types

- Consider the lambda calculus terms:
 - false = \(\lambda x. \lambda y. x \)
 - 0 = \(\lambda x. \lambda y. x \) (Scott encoding)

- Everything is encoded using functions
 - One can easily misuse combinators
 - false 0, or if 0 then . . . , etc...
 - It’s no better than assembly language!
A *type system* is some mechanism for distinguishing good programs from bad

- Good programs are *well typed*
- Bad programs are ill typed or not typeable

Examples:

- $0 + 1$ is well typed
- $\text{false} + 0$ is ill typed: booleans cannot be added to numbers
- $1 + (\text{if true then } 0 \text{ else false})$ is ill typed: cannot add a boolean to an integer

This time: types for simple arithmetic (Lecture 4)
A definition

“A type system is a tractable syntactic method for proving the absence of certain program behaviors by classifying phrases according to the kinds of values they compute.”

– Benjamin Pierce, Types and Programming Languages
Recall simple arithmetic

\[
\begin{align*}
 t & ::= \text{true} \quad v ::= \text{true} \\
 & \mid \text{false} \quad & \mid \text{false} \\
 & \mid 0 \quad & \mid n v \\
 & \mid \text{succ } t \quad & \mid \text{succ } n v \\
 & \mid \text{pred } t \\
 & \mid \text{iszero } t \\
 & \mid \text{if } t \text{ then } t \text{ else } t
\end{align*}
\]
Semantics

\[
\begin{align*}
\text{iszero } 0 & \rightarrow \text{true} \\
\text{iszero } t & \rightarrow \text{iszero } t' \\
\text{succ } t & \rightarrow \text{succ } t' \\
\text{pred } 0 & \rightarrow 0 \\
\text{pred } t & \rightarrow \text{pred } t' \\
\text{iszero (succ } v) & \rightarrow \text{false} \\
\text{pred (succ } v) & \rightarrow v \\
\end{align*}
\]

\[
\begin{align*}
\text{if true then } t_1 \text{ else } t_2 & \rightarrow t_1 \\
\text{if false then } t_1 \text{ else } t_2 & \rightarrow t_2 \\
\text{if } t \text{ then } t_1 \text{ else } t_2 & \rightarrow \text{if } t' \text{ then } t_1 \text{ else } t_2 \\
\end{align*}
\]
Types: approximation of result

- Classify terms into types:
 - A term t has type T: its result will be a boolean/natural
 - Written $t : T$ (sometimes $t \in T$)
 - Computed \textit{statically}: without running the program
 - Statical typing is \textit{conservative}: might reject good programs

- For this language we need two types, $T ::= \text{Bool} | \text{Nat}$

- Examples:
 - if true then 0 else succ 0 : \textit{Nat}, always produces a number
 - iszero (succ (pred 0)) : \textit{Bool}, always produces a boolean
 - But: if true then false else succ 0 does not have a static type
The typing relation

- Define a relation “::” to assign types to terms
- Mathematically, “::” is a partial binary relation between the set \mathcal{E} of all possible programs, and the set \mathcal{T}, (here $\{\text{Bool, Nat}\}$) of all possible types
- Can describe this using sets:
 - *Language:* a set \mathcal{E} of all possible terms
 - *Type language:* a set \mathcal{T} of all possible types
 - *Typing relation:* a partial relation “::” $\subseteq \mathcal{E} \times \mathcal{T}$
 - *Well-formed terms:* a set $\mathcal{WF} \subseteq \mathcal{E}$ of terms that don’t get stuck during evaluation
 - *Well-typed terms:* a set $\mathcal{WT} \subseteq \mathcal{E}$ of terms that have a type
The typing relation (cont’d)

- When $\mathcal{W} \subseteq \mathcal{WF}$, the type system is *sound*
- When $\mathcal{WF} \subseteq \mathcal{W}$, the type system is *complete*
- Usually, we can’t have both: undecidable
- Traditionally, type-systems worry about *soundness*
 - i.e: no accepted program can go wrong
- ...but might reject some correct programs
Back to language definitions

- Inductive: the *smallest* set \mathcal{E} such that
 - $\{\text{true}, \text{false}\} \in \mathcal{E}$
 - If $t_1 \in \mathcal{E}$ then $\{\text{succ } t_1, \text{pred } t_1, \text{iszero } t_1\} \in \mathcal{E}$
 - etc.

- By inference rules, e.g:

 $t \in \mathcal{E}$

 $\text{iszero } t \in \mathcal{E}$

- By construction:
 - $S_0 = \emptyset$
 - $S_{i+1} = \{\text{true, false, 0}\} \cup \text{succ } t, \text{pred } t, \text{iszero } t \mid t \in S_i \cup \ldots$
 - $\mathcal{E} = \bigcup_i S_i$
Same thing for typing relation

- **Inductive:** The *smallest* relation \mathcal{R} such that
 - $0 : \text{Nat}$ holds
 - If $t : \text{Nat}$ holds, then $\text{succ} \; t : \text{Nat}$ also holds
 - etc.

- **By inference rules:**
 $$
 \frac{t : \text{Nat}}{\text{succ} \; t : \text{Nat}}
 $$

- **By construction:**
 - $T_0 = \emptyset$
 - $T_{i+1} = \{0 : \text{Nat}\} \cup \{\text{succ} \; t : \text{Nat} \mid (t : \text{Nat}) \in T_i\} \cup \ldots$
 - $\mathcal{T} = \bigcup_i T_i$
Type system

\[[T-True] \quad \text{true} : Bool \]

\[[T-False] \quad \text{false} : Bool \]

\[[T-If] \quad \frac{t_1 : Bool \quad t_2 : T \quad t_3 : T}{\text{if } t_1 \text{ then } t_2 \text{ else } t_3 : T} \]

\[[T-Zero] \quad \frac{}{0 : Nat} \]

\[[T-Succ] \quad \frac{t : Nat}{\text{succ } t : Nat} \]

\[[T-Pred] \quad \frac{t : Nat}{\text{pred } t : Nat} \]

\[[T-IsZero] \quad \frac{t : Nat}{\text{iszero } t : Bool} \]
Inversion lemma

- Typing relation is the *smallest* relation produced by the rules
- And is syntax-driven (deterministic)
- So we can invert it (inversion lemma):
 - The only way to type true is \([T-\text{TRUE}]\), with type \(\text{Bool}\)
 - The only way to type false is \([T-\text{FALSE}]\), with type \(\text{Bool}\)
 - If there is a typing if \(t_1\) then \(t_2\) else \(t_3 : T\) then the only way to create it is \([T-\text{IF}]\), where \(t_1 : \text{Bool}\), \(t_2 : T\) and \(t_3 : T\)
 - etc, for the other syntactic forms

- Proof follows from the definition of typing
- Makes inference rules go backwards:
 - Given the conclusion, the premises must have been true (there is no other way to reach that conclusion)

- Practically, it describes the algorithm to construct a typing
In OCaml

- Grammar (Lec. 4):
  ```
  type term =
    | True
    | False
    | If of term * term * term
    | Zero
    | Succ of term
    | Pred of term
    | IsZero of term
  ```

- Type language:
  ```
  type typ = TNat | TBool
  ```
Type checking

\[
\text{let rec typecheck : term -> typ = function}
\]

\[
\begin{aligned}
\text{True | False} & \mapsto \text{TBool} \\
\text{If(t1, t2, t3) when typecheck t1 = TBool} & \mapsto \\
\text{let typ2 = typecheck t2 in} \\
\text{let typ3 = typecheck t3 in} \\
\text{if (typ2 = typ3) then typ2} \\
\text{else failwith "type error"} \\
\text{Zero} & \mapsto \text{TNat} \\
\text{Succ t | Pred t when (typecheck t) = TNat} & \mapsto \text{TNat} \\
\text{IsZero t when (typecheck t) = TNat} & \mapsto \text{TBool} \\
_ & \mapsto \text{failwith "type error"}
\end{aligned}
\]
Progress theorem

- If \(t : T \) then either \(t \) is a value, or there exists \(t' \) such that \(t \rightarrow t' \)
- Proof by induction on \(t \)
 - Base cases (simple values): true, false, 0, trivially true
 - Inductive cases: assume sub-terms are either values or can step
 - Case succ \(t \): if \(t \) is a value then succ \(t \) is a value, otherwise \(t \rightarrow t' \), therefore succ \(t \rightarrow \) succ \(t' \) using the fourth semantic rule
 - Case pred \(t \): from inversion, we know \(t : Nat \). If \(t \) is a value it cannot be true or false. So, we can always take a step from pred 0 or pred (succ \(v \)). If \(t \) is not a value, \(t \) takes a step, and pred \(t \rightarrow \) pred \(t' \)
 - ...similarly for the other cases
Preservation theorem

- If $t : T$ and $t \rightarrow t'$ then $t' : T$
- Proof by induction on $t \rightarrow t'$ (each semantic rule)
 - First rule (base case) $\text{iszero } 0 \rightarrow \text{true}$: From inversion lemma on $\text{iszero } 0 : T$, we get that its type must be $Bool$, which is also the type of true from $[T-\text{TRUE}]$
 - Second rule (inductive case) $\text{iszero } t \rightarrow \text{iszero } t'$: From inversion lemma on $\text{iszero } t : T$ we get $T = Bool$ and also $t : Nat$. From induction hypothesis we have $t \rightarrow t'$. Apply inductively on $t : Nat$ and $t \rightarrow t'$, to get $t' : Nat$. Then $\text{iszero } t' : Bool$ follows from $[T-\text{ISZERO}]$
 - Similarly for other base and inductive cases
Soundness

- So far:
 - Progress: If \(t : T \), then either \(t \) is a value, or there exists \(t' \) such that \(t \rightarrow t' \)
 - Preservation: If \(t : T \) and \(t \rightarrow t' \) then \(t' : T \)

- Putting these together, we get *soundness*
 - *If \(t : T \) then either there exists a value \(v \) such that \(t \rightarrow^* v \) or \(t \) doesn’t terminate*

- What does this mean?
 - “Well-typed programs don’t go wrong”
 - Evaluation never gets stuck

- This language will always terminate
 - Proof by induction on term size (defined in Lec. 4)
 - If \(t \rightarrow t' \) then \(\text{size}(t') < \text{size}(t) \)
Next time

- The same, only for λ-calculus
 - The function type
 - What happens with variables?
 - What happens with substitution?