Lecture 6: The Untyped Lambda Calculus
Semantics and Implementation

Polyvios Pratikakis

Computer Science Department, University of Crete

Type Systems and Static Analysis
Last class

- **Lambda calculus, cf.1930s**
 - Simple, core language: everything is a function
 - Can express all computation
 - Can encode complex language features as syntactic sugar
 - Simple semantics, one instruction: function application
Defined in one slide

- **Syntax:**

 \[e ::= x \quad \text{Variables} \]
 \[\mid \lambda x. e \quad \text{Function definition} \]
 \[\mid e \ e \quad \text{Function application} \]

- **Nondeterministic small-step semantics:**

 \[
 (\lambda x. e_1) \ e_2 \rightarrow e_1[x \mapsto e_2]
 \]

 \[
 e \rightarrow e'
 \]

 \[
 (\lambda x. e) \rightarrow (\lambda x. e')
 \]

 \[
 e_1 \rightarrow e'_1
 \]

 \[
 e_1 \ e_2 \rightarrow e'_1 \ e_2
 \]

 \[
 e_2 \rightarrow e'_2
 \]

 \[
 e_1 \ e_2 \rightarrow e_1 \ e'_2
 \]
Fun with encodings

- Church integers: \(\lambda s.\lambda z.\langle\text{apply } s \text{ on } z \text{ for } n \text{ times}\rangle \)
- Booleans: true = \(\lambda t.\lambda f.t \) and false = \(\lambda t.\lambda f.f \)
- Pairs: \((a, b) = \lambda p.p \ a \ b \)
- In general, encode data as a function that takes an action, and applies it on the data
- How about lists?
 - \([] = \lambda f.\lambda n.n \)
 - \(a :: b = \lambda a.\lambda b.\lambda f.\lambda n.f \ a \ (b \ f \ n) \)
- Examples:
 - Predecessor function
 - Addition and subtraction
 - Check a list for empty
 - Head and tail function for lists
Example: Predecessor function for ints

- We want pred 0 to evaluate to 0, pred 1 to 0, pred 2 to 1, etc.
- Remove one application of s from the chain \(s(s(s\ldots(s\ z)) \)
- Unfortunately not very easy for Church integers
- Solution: rebuild the given number up to the previous number
 - Similar to encoding of integers: base, inductive case
 - Use pairs of predecessor, number: \((\text{pred } n, n)\)
 - Base case, or “zero”—start with pred 0, which is 0:
 - \(\ast \quad \text{zz} = (0, 0) \)
 - Inductive case, or “successor”—construct the next pair \((n, \text{succ } n)\) from the previous \((\text{pred } n, n)\)
 - \(\ast \quad \text{ss} = \lambda p. (\text{snd } p, (\text{succ } (\text{snd } p)) \)
 - pred \(m \) is the first item of the \(m \)-th pair
 - \(\ast \quad \text{pred} = \lambda m. (\text{fst } (m \ \text{ss} \ \text{zz})) \)
Example: plus and minus

- Plus: given two numbers \(m \) and \(n \), construct a number \(m + n \)
 - Replace zero in \(m \) with \(n \): \(\text{plus} = \lambda m.\lambda n.\lambda s.\lambda z. n \ (m \ s \ z) \)

- Minus is a bit more complex
- \(m - n \): apply \(\text{pred} \) on \(m \), \(n \) times
 - But, \(n \) takes a function \(s \) and a \(z \) and applies \(s \) on \(z \) for \(n \) times
 - Just call it with \(s = \text{pred} \), and \(z = m \): \(\text{minus} = \lambda m.\lambda n. n \ \text{pred} \ m \)
 - Will apply \(\text{pred} \) on \(m \) for \(n \) times: \(m - n \)
Terminology reminder

- **Combinator**, or **closed term**: a term with no free variables
- **Normal form**: a term that cannot be reduced further
 - Normal form of a term is unique
 - Does not always exist, a term may run forever
 - Is not always reached, depending on evaluation order
- A **redex** is a subterm that can be reduced: \((\lambda x.e) \ e'\)
- Equivalent terms **up to \(\alpha\)-conversion**: they can be made equal by renaming bound variables
- Substitution \(e[e'/x]\) or \(e[x \mapsto e']\): replace all occurrences of \(x\) in \(e\) by \(e'\).
 - **Capture-avoiding**: \(e'\) does not have free variables that become bound because of substitution
 - Always possible, using \(\alpha\)-conversion to rename variables
Evaluation strategies

- Full β-reduction: nondeterministic semantics
- Normal order: always reduce leftmost, outermost redex
- Call-by-name (lazy): no reductions under λ, only at the top-level
 - Call-by-need (used in haskell): remember term substitutions and replace all copies of an evaluated term in the AST with the value
 - Instead of AST: abstract syntax graph
- Call-by-value (eager): reduce only outermost redexes where the argument is a value
Lazy semantics

- Small-step:

\[
\begin{align*}
(\lambda x. e_1) e_2 & \rightarrow e_1[x \mapsto e_2] \\
 e_1 \rightarrow e_1'
\end{align*}
\]

\[
\begin{align*}
 e_1 e_2 & \rightarrow e_1' e_2
\end{align*}
\]

- Big-step:

\[
\begin{align*}
(\lambda x. e) & \downarrow (\lambda x. e) \\
 e_1 \downarrow (\lambda x. e) e[x \mapsto e_2] & \downarrow e'
\end{align*}
\]

\[
\begin{align*}
 e_1 e_2 & \downarrow e'
\end{align*}
\]
Eager semantics

- Define values as:
 \[v ::= \lambda x.e \]

- Small-step:
 \[
 \frac{e_1 \rightarrow e'_1}{e_1 \ e_2 \rightarrow e'_1 \ e_2}
 \]

- Big-step:
 \[
 \frac{e_1 \downarrow (\lambda x.e) \quad e_2 \downarrow v_2 \quad e[x \mapsto v_2] \downarrow v}{(\lambda x.e) \downarrow (\lambda x.e)}
 \]

 \[
 \frac{e_1 \ e_2 \downarrow v}{\frac{(\lambda x.e) \ v \rightarrow e[x \mapsto v]}{v_2}}
 \]
In code

- All so far is syntax driven: look at the syntax, decide which rule to apply
- The same for all helper function definitions: \(FV(e) \), \(subst(e, x, e') \), etc.
- OCaml datatypes and pattern matching helps with that
- The abstract syntax tree:

```ocaml
type exp =
  | Var of string
  | Fun of string * exp
  | App of exp * exp
```

\[
e ::= \begin{align*}
 x & \text{ Variables} \\
 \lambda x.e & \text{ Function definition} \\
 e e & \text{ Function application}
\end{align*}
\]