Lecture 5: The Untyped λ-Calculus
Syntax and basic examples

Polyvios Pratikakis

Computer Science Department, University of Crete

Type Systems and Static Analysis
Motivation

- Common programming languages are complex
 - ANSI C99: 538 pages
 - ANSI C++: 714 pages
 - Java 2.0: 505 pages

- Not ideal for teaching and understanding principles of languages and program analysis

- Ideal: a “core language” with
 - Essential features enough to express all computation
 - No redundancy: encode extra features as “syntactic sugar”
Lambda Calculus

- Core language for sequential programming
- Can express all computation
 - Still extremely simple and minimal
 - Can encode many extensions as syntactic sugar
- Easy to extend with additional features
- Simple to understand
 - Whole definition in one slide
- ...and fits in a can!
 - http://alum.wpi.edu/~tfraser/Software/Arduino/lambdacan.html
History

- Invented in the 1930s by Alonzo Church (1903-1995)
- Princeton Mathematician
- Lectures on λ-calculus published in 1941
- Also known for
 - Church’s Thesis:
 - “Every effectively calculable (decidable) function can be expressed by recursive functions”
 - i.e. can be computed by λ-calculus
 - Church’s Theorem:
 - The first order logic is undecidable
Syntax

- Simple syntax:

\[e ::= \begin{array}{l}
 x \quad \text{Variables} \\
 \lambda x. e \quad \text{Function definition} \\
 e \; e \quad \text{Function application}
\end{array} \]

- Functions are the only language construct
 - The argument is a function
 - The result is a function
 - Functions of functions are higher-order
Semantics

- To evaluate the term \((\lambda x. e_1) \ e_2\)
 - Replace every \(x\) in \(e_1\) with \(e_2\)
 - Written as \(e_1[e_2/x]\), pronounced “\(e_1\) with \(e_2\) for \(x\)”
 - Also written \(e_1[x \mapsto e_2]\)
 - Evaluate the resulting term
 - Return the result

- Formally called “\(\beta\)-reduction”
 - \((\lambda x. e_1) \ e_2 \rightarrow_\beta e_1[e_2/x]\)
 - A term that can be \(\beta\)-reduced is a “redex”
 - We omit \(\beta\) when obvious
Convenient assumptions

- **Syntactic sugar for declarations**
 - let $x = e_1$ in e_2 really means $(\lambda x. e_2) e_1$

- **Scope of λ extends as far to the right as possible**
 - $\lambda x. \lambda y. x \ y$ is $\lambda x. (\lambda y. (x \ y))$

- **Function application is left-associative**
 - $x \ y \ z$ means $(x \ y) \ z$
Scoping and parameter passing

- β-reduction is not yet well-defined:
 - $(\lambda x.e_1)\ e_2 \rightarrow e_1[e_2/x]
 - There might be many x defined in e_1

- Example
 - Consider the program

    ```
    let x = a in
    let y = \lambda z.x in
    let x = b in
    y x
    ```
 - Which x is bound to a, and which to b?
Static (Lexical) Scope

- Variable refers to closest definition
- We can rename variables to avoid confusion:
 \[
 \begin{align*}
 &\text{let } x = a \text{ in} \\
 &\text{let } y = \lambda z. x \text{ in} \\
 &\text{let } w = b \text{ in} \\
 &y \, w
 \end{align*}
 \]
- Renaming variables without changing the program meaning is called “\(\alpha\)-conversion”
Free/bound variables

- The set of free variables of a term is

\[
\begin{align*}
FV(x) &= x \\
FV(\lambda x.e) &= FV(e) \setminus \{x\} \\
FV(e_1 e_2) &= FV(e_1) \cup FV(e_2)
\end{align*}
\]

- A term \(e \) is closed if \(FV(e) = \emptyset \)

- A variable that is not free is bound
\(\alpha\)-conversion

- Terms are equivalent up to renaming of bound variables
 - \(\lambda x. e = \lambda y. e[y/x]\) if \(y \notin \text{FV}(e)\)
 - Used to avoid having duplicate variables, capturing during substitution
 - This is called \(\alpha\)-conversion, used implicitly
Substitution

- **Formal definition**

\[
\begin{align*}
 x[e/x] &= e \\
 y[e/x] &= y \\
 (e_1 e_2)[e/x] &= (e_1[e/x] e_2[e/x]) \\
 (\lambda y.e_1)[e/x] &= \lambda y.(e_1[e/x])
\end{align*}
\]

when \(x \neq y \)

- **Example**

 - \((\lambda x.y \ x) \ x =_\alpha (\lambda w.y \ w) \ x \rightarrow_\beta y \ x\)
 - We omit writing \(\alpha \)-conversion
Functions with many arguments

- We can’t yet write functions with many arguments
 - For example, two arguments: \(\lambda(x, y).e \)
- Solution: take the arguments, one at a time (like we do in OCaml)
 - \(\lambda x.\lambda y.e \)
 - A function that takes \(x \) and returns another function that takes \(y \) and returns \(e \)
 - \((\lambda x.\lambda y.e) \ a \ b \rightarrow (\lambda y.e[a/x]) \ b \rightarrow e[a/x][b/y] \)
 - This is called Currying
 - Can represent any number of arguments
Representing booleans

- true = \lambda x.\lambda y.x
- false = \lambda x.\lambda y.y
- if a then b else c = a \ b \ c
- For example:
 - if true then b else c → (\lambda x.\lambda y.x) b c → (\lambda y.b) c → b
 - if false then b else c → (\lambda x.\lambda y.y) b c → (\lambda y.y) c → c
Combinators

- Any closed term is also called a *combinator*
 - true and false are combinators

- Other popular combinators:
 - $I = \lambda x.x$
 - $K = \lambda x.\lambda y.x$
 - $S = \lambda x.\lambda y.\lambda z.x\ z\ (y\ z)$
 - We can define calculi in terms of combinators
 - The SKI-calculus
 - SKI-calculus is also Turing-complete
Encoding pairs

- \((a, b) = \lambda x. \text{if } x \text{ then } a \text{ else } b\)
- \(\text{fst} = \lambda p. p \text{ true}\)
- \(\text{snd} = \lambda p. p \text{ false}\)

Then

- \(\text{fst } (a, b) \rightarrow \ldots \rightarrow a\)
- \(\text{snd } (a, b) \rightarrow \ldots \rightarrow b\)
Natural numbers (Church)

- $0 = \lambda s.\lambda z.z$
- $1 = \lambda s.\lambda z.s \, z$
- $2 = \lambda s.\lambda z.s \, (s \, z)$
- i.e. \(n = \lambda s.\lambda z.\langle \text{apply } s \ n \ \text{times to } z \rangle \)
- $\text{succ} = \lambda n.\lambda s.\lambda z.s \, (n \ s \ z)$
- $\text{iszero} = \lambda n.\lambda n.(\lambda s.\text{false}) \ \text{true}$
Natural numbers (Scott)

- \(0 = \lambda x.\lambda y.x\)
- \(1 = \lambda x.\lambda y.y\ 0\)
- \(2 = \lambda x.\lambda y.y\ 1\)
- i.e. \(n = \lambda x.\lambda y.y\ (n - 1)\)
- \(\text{succ} = \lambda z.\lambda x.\lambda y.y\ z\)
- \(\text{pred} = \lambda z.z\ 0\ (\lambda x.x)\)
- \(\text{iszero} = \lambda z.z\ \text{true}\ (\lambda x.\text{false})\)
Nondeterministic semantics

\[
\begin{align*}
\frac{(\lambda x. e_1) \ e_2 \rightarrow e_1[e_2/x]}{e \rightarrow e'}
\quad &
\frac{(\lambda x. e) \rightarrow (\lambda x. e')}{e \rightarrow e'}
\frac{e_1 \rightarrow e'_1}{e_1 \ e_2 \rightarrow e'_1 \ e_2}
\quad &
\frac{e_2 \rightarrow e'_2}{e_1 \ e_2 \rightarrow e_1 \ e'_2}
\end{align*}
\]

Question: why are these rules non-deterministic?
Example

- We can apply reduction anywhere in the term
 - $(\lambda x.(\lambda y.y) \ x \ ((\lambda z.w) \ x)) \rightarrow \lambda x.(x \ ((\lambda z.w) \ x)) \rightarrow \lambda x.x \ w$
 - $(\lambda x.(\lambda y.y) \ x \ ((\lambda z.w) \ x)) \rightarrow \lambda x.(\lambda y.y) \ x \ w \rightarrow \lambda x.x \ w$

- Does the order of evaluation matter?
The Church-Rosser Theorem

- **Lemma (The Diamond Property):**
 - If \(a \rightarrow b \) and \(a \rightarrow c \), then there exists \(d \) such that \(b \rightarrow^* d \) and \(c \rightarrow^* d \)

- **Church-Rosser theorem:**
 - If \(a \rightarrow^* b \) and \(a \rightarrow^* c \), then there exists \(d \) such that \(b \rightarrow^* d \) and \(c \rightarrow^* d \)
 - Proof by diamond property

- **Church-Rosser also called confluence**
Normal form

- A term is in \textit{normal form} if it cannot be reduced
 - Examples: $\lambda x.x$, $\lambda x.\lambda y.z$

- By the Church-Rosser theorem, every term reduces to at most one normal form
 - Only for pure lambda calculus with non-deterministic evaluation

- Notice that for function application, the argument need not be in normal form
\(\beta \)-equivalence

- Let \(\equiv_\beta \) be the reflexive, symmetric, transitive closure of \(\to \)
 - E.g., \((\lambda x.x) \ y \to y \leftarrow (\lambda z. \lambda w. z) \ y \ y\) so all three are \(\beta \)-equivalent
- If \(a \equiv_\beta b \), then there exists \(c \) such that \(a \to^* c \) and \(b \to^* c \)
 - Follows from Church-Rosser theorem
- In particular, if \(a \equiv_\beta b \) and both are normal forms, then they are equal
Not every term has a normal form

- Consider
 - $\Delta = \lambda x. x \ x$
 - Then $\Delta \Delta \rightarrow \Delta \Delta \rightarrow \cdots$

- In general, *self application* leads to loops
- ...which is good if we want recursion
Fixpoint combinator

- Also called a paradoxical combinator
 - $Y = \lambda f.(\lambda x.f (x x)) (\lambda x.f (x x))$
 - There are many versions of this combinator

- Then, $Y F =_\beta F (Y F)$
 - $Y F = (\lambda f.(\lambda x.f (x x)) (\lambda x.f (x x))) F$
 - $\rightarrow (\lambda x.F (x x)) (\lambda x.F (x x))$
 - $\rightarrow F ((\lambda x.F (x x)) (\lambda x.F (x x)))$
 - $\leftarrow F (Y F)$
Example

- \(fact(n) = \text{if } (n = 0) \text{ then } 1 \text{ else } n \times fact(n - 1) \)
- Let \(G = \lambda f. \lambda n. \text{if } (n = 0) \text{ then } 1 \text{ else } n \times f(n - 1) \)
- \(Y \ G \ 1 =_\beta G (Y \ G) \ 1 \)
 - \(=_\beta (\lambda f. \lambda n. \text{if } (n = 0) \text{ then } 1 \text{ else } n \times f(n - 1)) (Y \ G) \ 1 \)
 - \(=_\beta \text{if } (1 = 0) \text{ then } 1 \text{ else } 1 \times ((Y \ G) \ 0) \)
 - \(=_\beta 1 \times ((Y \ G) \ 0) \)
 - \(=_\beta 1 \times (G (Y \ G) \ 0) \)
 - \(=_\beta 1 \times (\lambda f. \lambda n. \text{if } (n = 0) \text{ then } 1 \text{ else } n \times f(n - 1) (Y \ G) \ 0) \)
 - \(=_\beta 1 \times (\text{if } (0 = 0) \text{ then } 1 \text{ else } 0 \times ((Y \ G) \ 0)) \)
 - \(=_\beta 1 \times 1 = 1 \)
In other words

- The Y combinator “unrolls” or “unfolds” its argument an infinite number of times
 - $YG = G(YG) = G(G(YG)) = G(G(G(YG))) = \ldots$
 - G needs to have a “base case” to ensure termination

- But, only works because we follow call-by-name
 - Different combinator(s) for call-by-value
 - $Z = \lambda f.(\lambda x.f(\lambda y.x x y))(\lambda x.f(\lambda y.x x y))$
 - Why is this a fixed-point combinator? How does its difference from Y work for call-by-value?
Why encodings

- It's fun!
- Shows that the language is expressive
- In practice, we add constructs as language primitives
 - More efficient
 - Much easier to analyze the program, avoid mistakes
 - Our encodings of 0 and true are the same, we may want to avoid mixing them, for clarity
Lazy and eager evaluation

- Our non-deterministic reduction rule is fine for theory, but awkward to implement
- Two deterministic strategies:
 - **Lazy**: Given \((\lambda x.e_1)\) \(e_2\), do not evaluate \(e_2\) if \(e_1\) does not need \(x\) anywhere
 - Also called left-most, call-by-name, call-by-need, applicative, normal-order evaluation (with slightly different meanings)
 - **Eager**: Given \((\lambda x.e_1)\) \(e_2\), always evaluate \(e_2\) to a normal form, before applying the function
 - Also called call-by-value
Lazy operational semantics

\[
(\lambda x.e_1) \rightarrow^l (\lambda x.e_1) \\
\frac{e_1 \rightarrow^l \lambda x.e \quad e[e_2/x] \rightarrow^l e'}{e_1 e_2 \rightarrow^l e'}
\]

- The rules are deterministic, **big-step**
 - The right-hand side is reduced “all the way”
- The rules do not reduce under \(\lambda \)
- The rules are normalizing:
 - If \(a \) is closed and there is a normal form \(b \) such that \(a \rightarrow^* b \), then \(a \rightarrow^l d \) for some \(d \)
Eager (big-step) semantics

\[
\begin{align*}
(\lambda x. e_1) \rightarrow^e (\lambda x. e_1) \\
\frac{e_1 \rightarrow^e \lambda x. e \quad e_2 \rightarrow^e e' \quad e[e'/x] \rightarrow^e e''}{e_1 e_2 \rightarrow^e e''}
\end{align*}
\]

- This big-step semantics is also deterministic and does not reduce under λ
- But is not normalizing!
 - Example: let $x = \Delta \Delta$ in $(\lambda y.y)$
Eager Fixpoint

- The Y combinator works for lazy semantics
 - $Y = \lambda f. (\lambda x.f (x x)) (\lambda x.f (x x))$

- The Z combinator does the same for eager (call-by-value) semantics
 - $Z = \lambda f. (\lambda x.f (\lambda y.x x y)) (\lambda x.f (\lambda y.x x y))$
 - Why doesn’t the Y combinator work for call-by-value?
 - Why does Z do the same thing for call-by-value?
Lazy vs eager in practice

- **Lazy evaluation** (call by name, call by need)
 - Has some nice theoretical properties
 - Terminates more often
 - Lets you play some tricks with “infinite” objects
 - Main example: Haskell

- **Eager evaluation** (call by value)
 - Is generally easier to implement efficiently
 - Blends more easily with side-effects
 - Main examples: Most languages (C, Java, ML, …)
Functional programming

- The \(\lambda \) calculus is a prototypical functional programming language
 - Higher-order functions (lots!)
 - No side-effects
- In practice, many functional programming languages are not “pure”: they permit side-effects
 - But you’re supposed to avoid them...
Functional programming today

- Two main camps
 - Haskell – Pure, lazy functional language; no side-effects
 - ML (SML, OCaml) – Call-by-value, with side-effects

- Old, still around: Lisp, Scheme
 - Disadvantage/feature: no static typing
Influence of functional programming

- Functional ideas move to other languages
 - Garbage collection was designed for Lisp; now most new languages use GC
 - Generics in C++/Java come from ML polymorphism, or Haskell type classes
 - Higher-order functions and closures (used in Ruby, exist in C#, proposed to be in Java soon) are everywhere in functional languages
 - Many object-oriented abstraction principles come from ML’s module system
 - ...

Pratikakis (CSD)