
NGSPICE User Manual
Describes ngspice-rework-17

Draft Version 0.2

Many Authors

Copyright 1996 The Regents of the University of California.
Permission to use, copy, modify, and distribute this software and its docu-
mentation for educational, research and non-profit purposes, without fee, and
without a written agreement is hereby granted, provided that the above copy-
right notice, this paragraph and the following three paragraphs appear in all
copies.
This software program and documentation are copyrighted by The Regents of
the University of California. The software program and documentation are
supplied "as is", without any accompanying services from The Regents. The
Regents does not warrant that the operation of the program will be uninter-
rupted or error-free. The end-user understands that the program was developed
for research purposes and is advised not to rely exclusively on the program for
any reason.
IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE
TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING
OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION,
EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE. THE UNIVERSITY
OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
THE SOFTWARE PROVIDED HEREUNDER IS ON AN "AS IS" BASIS,
AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO
PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS,
OR MODIFICATIONS.

i

Table of Contents

1 Preface. 1

2 Acknowledgements . 3

3 Release Notes . 5
3.1 Reporting a bug . 11

4 Introduction . 13

5 NGSPICE Compilation 15
5.1 Extracting the archive . 15
5.2 Configuring NGSPICE . 15
5.3 Compiling NGSPICE . 17
5.4 Supported systems . 17
5.5 Platform specific issues . 18

6 Supported Analyses . 19
6.1 Types of Analysis . 19

6.1.1 DC Analysis . 19
6.1.2 AC Small-Signal Analysis . 19
6.1.3 Transient Analysis . 19
6.1.4 Pole-Zero Analysis . 19
6.1.5 Small-Signal Distortion Analysis . 20
6.1.6 Sensitivity Analysis . 20
6.1.7 Noise Analysis . 20

6.2 Analysis at Different Temperatures . 21
6.3 Convergence . 22

7 Circuit Description . 23
7.1 General Structure and Conventions . 23
7.2 Basics: Title Line, Comment Lines and .END Line 24

7.2.1 Title Line . 24
7.2.2 .END Line . 24
7.2.3 Comments . 24

7.3 Device Models . 24
7.4 Subcircuits . 26

7.4.1 .SUBCKT Line . 26
7.4.2 ENDS Line . 26
7.4.3 Subcircuit Calls . 27

7.5 INCLUDE . 27

ii NGSPICE User Manual

8 Circuit Elements and Models 29
8.1 General options and information . 29

8.1.1 Simulating more devices in parallel . 29
8.1.2 Technology scaling . 29
8.1.3 Model binning . 29

8.2 Elementary Devices . 30
8.2.1 Resistors . 30
8.2.2 Semiconductor Resistors . 31
8.2.3 Semiconductor Resistor Model (R) . 31
8.2.4 Capacitors . 32
8.2.5 Semiconductor Capacitors . 33
8.2.6 Semiconductor Capacitor Model (C) . 33
8.2.7 Inductors . 35
8.2.8 Inductor model . 35
8.2.9 Coupled (Mutual) Inductors . 36
8.2.10 Switches . 37
8.2.11 Switch Model (SW/CSW) . 37

8.3 Voltage and Current Sources . 38
8.3.1 Independent Sources . 38

8.3.1.1 Pulse . 39
8.3.1.2 Sinusoidal . 39
8.3.1.3 Exponential. 39
8.3.1.4 Piece-Wise Linear . 40
8.3.1.5 Single-Frequency FM . 40

8.3.2 Linear Dependent Sources . 41
8.3.2.1 Linear Voltage-Controlled Current Sources 41
8.3.2.2 Linear Voltage-Controlled Voltage Sources 41
8.3.2.3 Linear Current-Controlled Current Sources 41
8.3.2.4 Linear Current-Controlled Voltage Sources 41

8.3.3 Non-linear Dependent Sources . 42
8.4 Transmission Lines . 43

8.4.1 Lossless Transmission Lines . 43
8.4.2 Lossy Transmission Lines . 43
8.4.3 Lossy Transmission Line Model (LTRA) 44
8.4.4 Uniform Distributed RC Lines (Lossy) 45
8.4.5 Uniform Distributed RC Model (URC) 46

8.5 Transistors and Diodes . 46
8.5.1 Junction Diodes . 47
8.5.2 Diode Model (D) . 47
8.5.3 Diode Equations . 48
8.5.4 Bipolar Junction Transistors (BJTs) . 52
8.5.5 BJT Models (NPN/PNP) . 52
8.5.6 Junction Field-Effect Transistors (JFETs) 55
8.5.7 JFET Models (NJF/PJF) . 55
8.5.8 MOSFETs . 56
8.5.9 MOSFET Models (NMOS/PMOS) . 57
8.5.10 MESFETs . 61
8.5.11 MESFET Models (NMF/PMF) . 61

iii

9 Analyses and Output Control. 63
9.1 Simulator Variables (.OPTIONS) . 63
9.2 Initial Conditions . 65

9.2.1 .NODESET: Specify Initial Node Voltage Guesses 65
9.2.2 .IC: Set Initial Conditions . 66

9.3 Analyses . 66
9.3.1 .AC: Small-Signal AC Analysis . 66
9.3.2 .DC: DC Transfer Function . 67
9.3.3 .DISTO: Distortion Analysis . 67
9.3.4 .NOISE: Noise Analysis . 69
9.3.5 .OP: Operating Point Analysis . 69
9.3.6 .PZ: Pole-Zero Analysis . 69
9.3.7 .SENS: DC or Small-Signal AC Sensitivity Analysis 70
9.3.8 .TF: Transfer Function Analysis . 70
9.3.9 .TRAN: Transient Analysis . 71

9.4 Batch Output . 71
9.4.1 .SAVE Lines . 71
9.4.2 .PRINT Lines . 71
9.4.3 .PLOT Lines . 72
9.4.4 .FOUR: Fourier Analysis of Transient Analysis Output . . . 73

10 Interactive Interpreter 75
10.1 Expressions, Functions, and Constants . 76
10.2 Command Interpretation. 79
10.3 Commands . 80

10.3.1 Ac*: Perform an AC, small-signal frequency response
analysis . 80

10.3.2 Alias: Create an alias for a command 80
10.3.3 Alter*: Change a device or model parameter 80
10.3.4 Asciiplot: Plot values using old-style character plots 80
10.3.5 Aspice: Asynchronous ngspice run . 80
10.3.6 Bug: Mail a bug report . 81
10.3.7 Cd: Change directory . 81
10.3.8 Destroy: Delete a data set . 81
10.3.9 Dc*: Perform a DC-sweep analysis . 81
10.3.10 Define: Define a function . 81
10.3.11 Delete*: Remove a trace or breakpoint 81
10.3.12 Diff: Compare vectors . 82
10.3.13 Display: List known vectors and types 82
10.3.14 Echo: Print text . 82
10.3.15 Edit*: Edit the current circuit . 82
10.3.16 Fourier: Perform a fourier transform 82
10.3.17 Hardcopy: Save a plot to a file for printing 83
10.3.18 Help: Print summaries of Ngspice commands 83
10.3.19 History: Review previous commands 83
10.3.20 Iplot*: Incremental plot . 83
10.3.21 Jobs: List active asynchronous ngspice runs. 83
10.3.22 Let: Assign a value to a vector . 83

iv NGSPICE User Manual

10.3.23 Linearize*: Interpolate to a linear scale 84
10.3.24 Listing*: Print a listing of the current circuit 84
10.3.25 Load: Load rawfile data . 84
10.3.26 Op*: Perform an operating point analysis 84
10.3.27 Plot: Plot values on the display . 84
10.3.28 Print: Print values . 85
10.3.29 Quit: Leave Ngspice or Nutmeg . 85
10.3.30 Rehash: Reset internal hash tables . 85
10.3.31 Reset*: Reset an analysis . 85
10.3.32 Reshape: Alter the dimensionality or dimensions of 86
10.3.33 Resume*: Continue a simulation after a stop 86
10.3.34 Rspice: Remote ngspice submission 86
10.3.35 Run*: Run analysis from the input file 86
10.3.36 Rusage: Resource usage . 87
10.3.37 Save*: Save a set of outputs . 87
10.3.38 Sens*: Run a sensitivity analysis . 87
10.3.39 Set: Set the value of a variable . 88
10.3.40 Setcirc*: Change the current circuit 88
10.3.41 Setplot: Switch the current set of vectors 88
10.3.42 Settype: Set the type of a vector . 88
10.3.43 Shell: Call the command interpreter. 88
10.3.44 Shift: Alter a list variable . 89
10.3.45 Show*: List device state . 89
10.3.46 Showmod*: List model parameter values 89
10.3.47 Source: Read a Ngspice input file . 89
10.3.48 Status*: Display breakpoint information 90
10.3.49 Step*: Run a fixed number of timepoints 90
10.3.50 Stop*: Set a breakpoint . 90
10.3.51 Sysinfo: Print system information . 90
10.3.52 Tf*: Run a Transfer Function analysis 91
10.3.53 Trace*: Trace nodes . 91
10.3.54 Tran*: Perform a transient analysis 91
10.3.55 Transpose: Swap the elements in a multi-dimensional data

set . 91
10.3.56 Unalias: Retract an alias . 92
10.3.57 Undefine: Retract a definition . 92
10.3.58 Unset: Clear a variable . 92
10.3.59 Version: Print the version of ngspice 92
10.3.60 Where: Identify troublesome node or device 93
10.3.61 Write: Write data to a file . 93
10.3.62 Xgraph: use the xgraph(1) program for plotting. 93

10.4 Control Structures . 93
10.4.1 While - End . 93
10.4.2 Repeat - End . 94
10.4.3 Dowhile - End . 94
10.4.4 Foreach - End . 94
10.4.5 If - Then - Else . 94
10.4.6 Label . 95

v

10.4.7 Goto. 95
10.4.8 Continue . 95
10.4.9 Break . 95

10.5 Variables . 95
10.6 MISCELLANEOUS . 100
10.7 Bugs . 101

11 Bibliography . 103

12 Example Circuits . 105
12.1 Differential Pair . 105
12.2 MOSFET Characterization . 105
12.3 RTL Inverter . 105
12.4 Four-Bit Binary Adder . 106
12.5 Transmission-Line Inverter . 107

13 Model and Device Parameters 109
13.1 URC: Uniform R.C. line . 109
13.2 ASRC: Arbitrary Source . 110
13.3 BJT: Bipolar Junction Transistor . 110
13.4 BSIM1: Berkeley Short Channel IGFET Model 114
13.5 BSIM2: Berkeley Short Channel IGFET Model 117
13.6 Capacitor: Fixed capacitor . 122
13.7 CCCS: Current controlled current source 123
13.8 CCVS: Linear current controlled current source 123
13.9 CSwitch: Current controlled ideal switch 124
13.10 Diode: Junction Diode model . 125
13.11 Inductor: Inductors . 126
13.12 mutual: Mutual inductors . 127
13.13 Isource: Independent current source . 127
13.14 JFET: Junction Field effect transistor . 128
13.15 LTRA: Lossy transmission line . 130
13.16 MES: GaAs MESFET model . 131
13.17 Mos1: Level 1 MOSfet model with Meyer capacitance model

. 133
13.18 Mos2: Level 2 MOSfet model with Meyer capacitance model

. 137
13.19 Mos3: Level 3 MOSfet model with Meyer capacitance model

. 140
13.20 Mos6: Level 6 MOSfet model with Meyer capacitance model

. 144
13.21 Resistor: Simple linear resistor . 148
13.22 Switch: Ideal voltage controlled switch . 149
13.23 Tranline: Lossless transmission line . 150
13.24 VCCS: Voltage controlled current source 151
13.25 VCVS: Voltage controlled voltage source 151
13.26 Vsource: Independent voltage source . 152

vi NGSPICE User Manual

14 NGSPICE enhancements over Spice3 155
14.1 Device models code . 155

14.1.1 Resistor Model . 155
14.1.2 Capacitor Model . 155
14.1.3 Diode (D) model fixes . 156
14.1.4 Level 1 MOS model . 156
14.1.5 Level 2 MOS Model. 159
14.1.6 Level 3 Mos Model . 165
14.1.7 switch model . 181
14.1.8 current switch model . 181
14.1.9 boh . 181
14.1.10 PN diode voltage limiting . 181
14.1.11 FET voltage limiting. 181
14.1.12 Meyer model improvement . 182

15 The BSIM3 Model Integration 183
15.1 BSIM3 Revisions . 183
15.2 The integration process . 183
15.3 The multirevision code . 184
15.4 Device Multiplicity . 186

15.4.1 Adding the "m" parameter . 187
15.5 BSIM3 TNOM patch . 190
15.6 References for BSIM3 model . 190

16 EKV Model . 193

Chapter 1: Preface 1

1 Preface

The NGSPICE user’s manual is based on the text file included in the Spice3f source package.
The original text has been converted to TEXInfo format by Emmanuel Rouat and Arno W.
Peters.

The original text has been modified and extended to reflect the changes between plain
Spice3f5 and NGSPICE. Some of the "changes" comes from the HTML documentation
Charles D.H. Williams has written and published on his web site.

This manual covers the double role of being an introductory text for the novice user who
wants to learn how to use spice (and thus NGSPICE), and a reference text for the expert
who wants to identify the differences between the original spice3f code (sometimes referred
as the Berkeley’s Spice) and the NGSPICE code.

Since NGSPICE is an Open Source software, one chapter describing program compilation
and compilation options have been added to the original text. Since its birth, spice3f had
many compilation switches that enabled/disabled some features considered experimental
or troublesome. In a "perfect world", most of these switches would be implemented as
runtime options, thus allowing users to activate/deactivate the features they want without
recompiling the source. Anyway time is never sufficient to implement all the features and,
in the end, this is not a "perfect world".

Trying to keep a record of the "long" history of this piece of software, an entire chapter
has been dedicated to the description of the patches publicly made available in the past
years through USENET newsgroups.

As always, errors, omissions and unreadable phrases are only my fault.
Paolo Nenzi

Roma, March 24th 2001
Indeed. At the end of the day, this is engineering, and one learns to live

within the limitations of the tools.

Kevin Aylward , Warden of the Kings Ale

mailto:p.nenzi@ieee.org
mailto:kevin@anasoft.co.uk

2 NGSPICE User Manual

Chapter 2: Acknowledgements 3

2 Acknowledgements

Spice was originally written at The University of California at Berkeley (USA). Since then,
there have been many people working on the software, most of them releasing patches to
the original code through the Internet.

The following people have contributed in some way:

Vera Albrecht <albrecht@danalyse.de>,
Cecil Aswell <aswell@netcom.com>,
Steven Borley <steven.borley@virgin.net>,
Stuart Brorson <sdb@cloud9.net>,
Giles C. Billingsley,
Mansun Chan,
Wayne A. Christopher,
Al Davis <aldavis@ieee.org>,
Glao S. Dezai <dezai@hotbot.com>,
Jon Engelbert <jon@beigebag.com>,
Daniele Foci <d.foci@ieee.ing.uniroma1.it>,
Noah Friedman <friedman@prep.ai.mit.edu>,
Alan Gillespie <Alan.Gillespie@analog.com>,
David A. Gates,
JianHui Huang,
Jeffrey M. Hsu,
S. Hwang,
Chris Inbody <cinbody@cowtown.net>,
Gordon M. Jacobs,
Min-Chie Jeng,
Stefan Jones <stefan.jones@multigig.com>,
Beorn Johnson <beorn@eecs.berkeley.edu>,
Kenneth H. Keller,
Mathew Lew,
Robert Lindsell <robertl@research.canon.com.au>,
Weidong Liu,
Kartikeya Mayaram,
Richard D. McRoberts <rdm@csn.net>,
Manfred Metzger <ManfredMetzger@gmx.de>,
Paolo Nenzi <pnenzi@ieee.org>,
Gary W. Ng,
Wolfgang Muees,
Hong June Park,
Arno Peters <A.W.Peters@ieee.org>,
Serban-Mihai Popescu <serbanp@ix.netcom.com>,
Georg Post <georg.post@wanadoo.fr>,
Thomas L. Quarles,
Emmanuel Rouat <emmanuel.rouat@wanadoo.fr>,
Jean-Marc Routure <routoure@greyc.ismra.fr>,
Jaijeet S. Roychowdhury,

4 NGSPICE User Manual

Takayasu Sakurai,
AMAKAWA Shuhei <sa264@cam.ac.uk>,
Kanwar Jit Singh,
Hitoshi Tanaka <HDA01055@nifty.com>,
Steve Tell <tell@cs.unc.edu>,
Andrew Tuckey <Tuckey@ieee.org>,
Charles D.H. Williams <C.D.H.Williams@exeter.ac.uk>,
Holger Vogt <holger.vogt@uni-duisburg.de>,
Dietmar Warning <warning@danalyse.de>,
Michael Widlok <widlok@uci.agh.edu.pl>,
Antony Wilson <wilsona@earthlink.net>,
and many others...

If someone helped in the development and has not been inserted in this list then this
omission was unintentional. If you feel you should be on this list then please write to
<ngspice-devel@lists.sourceforge.net>. Do not be shy, we would like to make a list as com-
plete as possible.

Chapter 3: Release Notes 5

3 Release Notes

NGSPICE rework-14 release (released on December 10th, 2001):
This release fixes most of the bugs that appeared in rework-13.

Some leaks in the frontend have been closed.

GNU Autoconf interface cleaned (better support for getopt).

Better error reporting (thanks to Charles Williams "CDHW").

Added mesa tests (macspice3f4).

Added support for ekv model (not source code).

The Rawfile format changed again removing "Probe" compatibility code.

NGSPICE rework-13 release (released on November 5th, 2000):
This is a major release in terms of fixes and enhancements.

A garbage collector support has been added. If the configuration
script detects that you have installed GC (Bohem-Weiser conservative
garbage collector), it will use it.

Some memory leaks have been fixed too.

Enhancements to the code comes from Alan’s (Gillespie) contribute
code, a description of improvements follows (extracted form
Alan’s mail):

* Output File Format Changes -

Rawfile format changed to PSPICE Probe format (Usable with Demo
version of Microsim’s Probe). (NOTE: Do not rely on this, we may
revert to the old format in the next release).

Text mode .OP results even though "rawfile" written.

Internal device nodes are not saved to "rawfile" (reduces file
size). Optionally, these internal nodes can be replaced by device
currents and saved.

* DC Convergence Enhancements -

"Source-Stepping" algorithm modified with a "Dynamic" step size.
After each successful step, the node voltages are saved, the
source-factor is increased by the step-factor, and the step-factor

6 NGSPICE User Manual

is increased (for the next step). If the step fails, i.e. the
circuit does not converge, the source-factor is set to the value
from the previous successful step, the previously stored node
voltages are restored, the step-factor is reduced, the source factor
is increased by this smaller step-factor, and convergence is
attempted again.

Same thing done for "Gmin-stepping" algorithm.

"Gshunt" option added. This sets the "diagGmin" variable used
in the gmin-stepping algorithm to a non-zero value for the final
solution. (Normally this is set to zero for the final solution).
This helps for circuits with floating nodes (and for some others too).

The Gmin implementation across the substrate diodes of MOS1, MOS2,
MOS3, MOS6 and BSIM3 devices, and across BJT base-emitter and
base-collector diodes, was incorrect. Correcting this dramatically
improved DC convergence. (I think this also effects BSIM1 and 2 but
I haven’t fixed them yet!).

The gm, gmb and gds calculations in the MOS3 model were all wrong.
The device equations were fixed, leading to much improved convergence.

The Vcrit value used for diode voltage limiting was calculated without
taking into account the device area (and in some cases without using
the temperature corrected saturation current). This could cause floating
point overflows, especially in device models designed to be scaled by a
small area, e.g. 2u by 2u diodes (area=4e-12). This is now fixed for
Diode, BJT, MOS1, MOS2, and MOS3 models.

The diode voltage limiting was modified to add negative voltage
limiting. Negative diode voltages are now limited to 3*Vdp-10, where
Vdp is the voltage from the previous iteration. If Vdp is positive,
then the voltage is limited to -10V. This prevents some more floating
point overflows. (Actually, I’m still playing with the best values for
this).

The Spice3 "fix" for the MOS3 gds discontinuity between the linear and
saturated regions only works if the VMAX parameter is non-zero. A
"tweak" has been added for the VMAX=0 case.

* Transient Convergence Enhancements -

Temperature correction of various diode capacitances was implemented
slightly incorrectly, leading to capacitance discontinuities in
simulations at temperatures other than nominal. This affected the
Diode and MOS3 models.

Chapter 3: Release Notes 7

A mistake in the implementation of the MOS3 source-bulk capacitance
model resulted in a charge storage discontinuity. This has been fixed.

The level 2 MOSFET model seems to calculate Von and Vth values for the
threshold and subthreshold values respectively, but then uses Vbin to
calculate the Vdsat voltage used to find the drain current. However, a
jump statement uses Von to decide that the device is in the "cutoff"
region, which means that when this jump allows the drain current to be
calculated, Vdsat can already be well above zero. This leads to a
discontinuity of drain current with respect to gate voltage. The code
is now modified to use Vbin for the jump decision. It looks like the
code should actually use Vth as the threshold voltage, but since
PSPICE and HSPICE both follow the original Berkeley code, this was
left alone.

* New Model Parameters -

A PSPICE/HSPICE-like "M" device parameter (i.e. M devices in parallel)
was added to the MOS1,2,3 and BSIM3 mosfet models.

* Input Read-in and Checking -

Numbers beginning with a "+" sign got the input routine confused.
Fixed now.

Attempts to nodeset (or .IC) non-existent nodes are flagged with
a warning.

PWL statements on Voltage or Current sources are now checked for
"non-increasing" time-points at the start of the simulation.
Previously each time-point was checked as it was reached during
the simulation, which could be very annoying if you made a mistake
which caused the simulation to fail after hours of run-time.

A check which was performed at the end of each sub-circuit
expansion was moved to the top level. This check makes sure that
all sub-circuits have been defined, but in its original position,
it meant that if a sub-circuit included ANY .MODEL statements at all,
then ALL the models called in that sub-circuit must also be defined
within that sub-circuit. Now SPICE behaves as expected, i.e. a
subcircuit may define its own models, but may also use models defined
at any level above.

* Miscellaneous Fixes/Enhancements -

MOS devices reported only half of the Meyer capacitances, and did

8 NGSPICE User Manual

not include overlap capacitances, when reporting to the .OP printout,
or when storing device capacitances to the "rawfile".

The ideal switch devices had no time-step control to stop their
controlling voltages/currents overshooting the switching thresholds.
The time-step control has been modified to use the last two time
points to estimate if the next one will move the controlling
voltage/current past a switching threshold. If this looks likely,
then the time-step is reduced.

The "rawfile" writing routines have been modified to print the
"reference value" to the console during the simulation. This lets
the user see exactly how far and how fast the simulation is proceeding.

.OP printout tidied up a lot to make the printout clearer.

Analysis order changed to fix a "feature" where, if you ask for a
.OP and a .TRAN in the same simulation, the node voltages printed out
correspond to the .OP, but the device data was from the last timepoint
of the .TRAN.

NGSPICE rework-12 release (released on August 26th, 2000):

Arno did a great work this summer!
This release consists of his work. The pole-zero analysis has been
corrected. The error was introduced in an attempt to eliminate compiler
warnings.

The source has been reworked and info file have been updated.
As you may see, a new dir called "spicelib" has been created, another
step toward the separation of the simulator from the frontend.

NGSPICE rework-11 release (released on May 28th, 2000):

The code has been cleaned, the resistance code for ac parameter
has been modified to conform to Spice3 parameter parsing.

A new step function has been introduced (u2).

Updated documentation to reflect changes.

NGSPICE rework-10 release (released on April 5th, 2000):

All devices are compiled as shared libraries (ld.so).

There is an initial support for the BSIM4 model. This release
is to be considered as baseline for the project.

There are still some harmless bugs in the resistor code.

Chapter 3: Release Notes 9

Release notes for older NGSPICE release are not available. For historical purpose only
the following release notes, pertaining to the original Spice3 code have been included into
this manual. They have been copied from "SPICE 3 Version 3f5 User’s Manual":

Spice3f is the six major release of Spice3. This release incorporates new features not
available in Spice 3c or 3d, as well as several performance improvements. All of the feature
described here are believed to be fully functional. The development of SPICE is ongoing at
Berkeley, and therefore not all of the intended capabilities have been implemented in full
yet.
Bugs in 3f2 fixed in 3f3:

Ascii (printer) plots in spice3f2 did not print bode plots vs log of the
frequency by default, as in spice2.

You had to explicitly request the x-axis to be log; either "plot
vdb(2) xlog" (best) or "plot vdb(2) vs log10(frequency)" will
do. Now, simply "plot vdb(2)" will work.

The on-line documentation has been brought up to date by converting this
manual into a format readable on-line.

Significant problems with AC sensitivities in 3f2 only have been fixed.

Multiple analyses and plots in spice2 emulation mode under 3f2 and
earlier generated misleading error messages. This no longer happens
in 3f3.

New features and bug fixes incorporated in spice3f (the current release of Spice3):
Sensitivity analysis
Added a parameter for fitting JFET models (parameter "B").

Fixed a discontinuity problem in MOS level 3 (related to the
"kappa" parameter). Working "alter" command.

Improved "show" and "showmod" commands for operating points
summary tables (like Spice2).

Working "trace" command.

Interactive "set" variable values now the same as
".options" settings.

Improved plotting, including implicitly transforming data for smith
plots.

Added function "deriv()" (derivative) to the front-end.

Corrected an error affecting the specified initial conditions for
some circuits.

10 NGSPICE User Manual

Miscellaneous bug fixes in the front-end.

New feature and bugs fixes incorporated in Spice3e (the previous release of
Spice3):

Lossy Transmission lines.

Proper calculation of sheet resistance in the MOS models.

A new command ("where") to aid in debugging troublesome
circuits.

Smith-chart plots working (see the "plot" command).

Arbitrary sources in subcircuits handled correctly.

Arbitrary source reciprocal calculations and DC biasing fixed.

Minor bug-fixes to the Pole-Zero analysis.

Miscellaneous bug fixes in the front end.

Some common problems remaining in Spice3f (note that this list is not complete):
Models defined within subcircuits are not always handled correctly.
If you have trouble, move the model definition outside of ".subckt"
and ".ends" lines.

Batch run data is not compacted if a "rawspice" data file is generated,
resulting in excessively large output files for some difficult inputs.

Sufficient detail is sometimes not preserved in transient analysis.
Providing a small value for the "TMAX" parameter (the fourth
argument) in the transient run command will solve this problem.

Convergence problems can sometimes be worked around by relaxing the
transient "TMAX" parameter.

The substrate node of the bipolar transistor (BJT) is modelled
incorrectly (this may actually be due to inherent numerical problems
with the model). Do not use substrate node; use a semiconductor
capacitor to model substrate effects.

Charge is not conserved in MOS devices based on the Meyer model.

Transient simulation of strictly resistive circuits (typical for
first runs or tests) allow a time step the is too large (e.g. a
sinusoidal source driving a resistor). There is no integration
error to restrict the time step. Use the "TMAX" parameter or

Chapter 3: Release Notes 11

include reactive elements.

Deep nesting of subcircuits may exceed internal static buffers.

The PZ analysis can not be interrupted; the sensitivity analysis
can not be continued (the interactive "resume" command) once
interrupted.

There are many other small bugs, particularly in the front end.

3.1 Reporting a bug

Berkeley does not provide support anymore for Spice3, if you need some kind of help you
can

12 NGSPICE User Manual

Chapter 4: Introduction 13

4 Introduction

NGSPICE is a general-purpose circuit simulation program for nonlinear dc, nonlinear tran-
sient, and linear ac analyses. Circuits may contain resistors, capacitors, inductors, mutual
inductors, independent voltage and current sources, four types of dependent sources, lossless
and lossy transmission lines (two separate implementations), switches, uniform distributed
RC lines, and the five most common semiconductor devices: diodes, BJTs, JFETs, MES-
FETs, and MOSFETs.

NGSPICE is a continuation of Spice3f5, the last Berkeley’s release of Spice3 simulator
family. NGSPICE is being developed to include new features to existing Spice3f5 and to fix
its bugs. Improving a circuit simulator is a very hard task and, while some improvements
have been ported, most of the job has been done on bug fixing and code refactoring.

NGSPICE has built-in models for the semiconductor devices, and the user need specify
only the pertinent model parameter values.

There are two models for BJT both based on the integral-charge model of Gummel and
Poon; however, if the Gummel-Poon parameters are not specified, the model reduces to
the simpler Ebers-Moll model. In either case and in either models, charge storage effects,
ohmic resistances, and a current-dependent output conductance may be included. The
second BJT model BJT2 adds dc current computation in the substrate diode but is not
fully implemented as of ngspice-rework-15. The semiconductor diode model can be used
for either junction diodes or Schottky barrier diodes. There are two models for JFET: the
first (JFET) is based on the model of Shichman and Hodges, the second (JFET2) is based
on the Parker-Skellern model. All the original six MOSFET models are implemented:
MOS1 is described by a square-law I-V characteristic, MOS2 [1] is an analytical model,
while MOS3 [1] is a semi-empirical model; MOS6 [2] is a simple analytic model accurate
in the shortchannel region; MOS4 [3, 4] and MOS5 [5] are the BSIM (Berkeley Short-
channel IGFET Model) and BSIM2. MOS2, MOS3, and MOS4 include second-order effects
such as channel-length modulation, subthreshold conduction, scattering-limited velocity
saturation, small-size effects, and charge controlled capacitances. Other MOS model have
been implemented, like the new BSIM3 and BSIM4 models, the SOI models from the
BSIMSOI family and the STAG one. There is partial support for a couple of HFET models
and one model for MESA devices.

Since the rework-15 release, NGSPICE includes CIDER, a mixed-level circuit and de-
vice simulator that provides a direct link between technology parameters and circuit per-
formance.

A mixed-level circuit and device simulator can provide greater simulation accuracy than
a stand-alone circuit or device simulator by numerically modelling the critical devices in a
circuit. Compact models can be used for noncritical devices.

CIDER couples Spice (version3) to an internal C-based device simulator, DSIM. Spice3
provides circuit analyses, compact models for semiconductor devices, and an interactive user
interface. DSIM provides accurate, one- and two-dimensional numerical device models based
on the solution of Poisson’s equation, and the electron and hole current-continuity equations.
DSIM incorporates many of the same basic physical models found in the Stanford two-
dimensional device simulator PISCES. Input to CIDER consists of a SPICE-like description
of the circuit and its compact models, and PISCES-like descriptions of the structures of

14 NGSPICE User Manual

numerically modeled devices. As a result, CIDER should seem familiar to designers already
accustomed to these two tools.

CIDER is based on the mixed-level circuit and device simulator CODECS, and is a
replacement for this program. The basic algorithms of the two programs are the same.
Some of the differences between CIDER and CODECS are described below. The CIDER
input format has greater flexibility and allows increased access to physical model parameters.
New physical models have been added to allow simulation of state-of-the-art devices. These
include transverse field mobility degradation important in scaled-down MOSFETs and a
polysilicon model for poly-emitter bipolar transistors. Temperature dependence has been
included over the range from -50C to 150C. The numerical models can be used to simulate all
the basic types of semiconductor devices: resistors, MOS capacitors, diodes, BJTs, JFETs
and MOSFETs. BJTs and JFETs can be modelled with or without a substrate contact.
Support has been added for the management of device internal states. Post-processing of
device states can be performed using the NUTMEG user interface of Spice3. Previously
computed states can be loaded into the program to provide accurate initial guesses for
subsequent analyses. Finally, numerous small bugs have been discovered and fixed, and the
program has been ported to a wider variety of computing platforms.

Chapter 5: NGSPICE Compilation 15

5 NGSPICE Compilation

NGSPICE is an Open Source project (and software), this means that its source code is
available to the end user. Well, to be honest, the source code is the only thing available to
the user. This chapter briefly describes how to deal with this rather complex package.

5.1 Extracting the archive

NGSPICE is released as "gzipped tarball". The source tree is archived with the tar com-
mand and the result compressed with gzip. Since the development of the NGSPICE is
carried on UNIX (mainly), all the files have the "line feed" character as newline character
and this may cause problems when working in non UNIX environments (like DOS). If you
are going to extract NGSPICE on system that use different newline character, you will have
to convert the files with some utility.

To extract the NGSPICE archive you need the tar archiver and gzip compression utility:
pnenzi@janus:~$ gzip -d ngspice-rework-15.tar.gz
pnenzi@janus:~$ tar -xvf ngspice-rework-15.tar

Once extracted, you have to enter the source tree (just cd into the top level directory).

5.2 Configuring NGSPICE

Now that you have extracted all the files, you need to give values to compile time variables
and set the correct paths for libraries and include file. If you have compiled other programs
released in source form, you have probably already faced the GNU Autoconf system. If you
already know what Autoconf is and how it works, you can safely skip the next paragraph.

GNU Autoconf is a package that automates the task of configuring source code pack-
ages. Configuring a source code package means assigning desired values to compile-time
variables, something known as "customization", and look at functions, libraries available
on the host system to produce the makefiles needed for compilation. As said, this is a
very brief introduction to the Autoconf package, if you want to know more, look at its
documentation.

NGSPICE uses GNU Autoconf configuration tool. To configure the package type:
./configure --help on the command prompt. The list of available options will be shown.
The list comprises "standard" options (the one every Autoconf package has) and options
specific to the NGSPICE package. This chapter deals with the latter only, sending back the
reader to the GNU Autoconf documentation for the former.

The options specific to NGSPICE are:
• --enable-numaparam: Preliminary support for parameters expansion in netlists.

Numparam is a library that attach itself to a single point in NGSPICE code and
comes with its own documentation. Before using this library you should look at
library’s documentation in ‘src/frontend/numaparam’ directory.

• --enable-ftedebug: This switch enables the code for debugging the NGSPICE fron-
tend. Developers who wish to mess with the frontend should enable it (and set to TRUE
the "debug" option). The casual user has no gain in enabling this option.

• --enable-ansi: This switch forces -ansi option of the for compilation. This is inter-
esting only to developers cleaning the NGSPICE code. Nore real use for the user.

16 NGSPICE User Manual

• --enable-debug: Add -g option for compilation. This options is enabled by default
and should not be disabled since debugging tools relies on it.

• --enable-checkergcc: When enabled, NGSPICE will use the Checker package.
Checker tracks down memory errors at runtime. Again, this is useless for users.

• --enable-gc: When enabled, NGSPICE will use the Boehm-Weiser Conservative
Garbage Collector. The garbage collector library is not provided with NGSPICE, you
must download and install it separately. Most distributions provide a binary package
of this library.

• --enable-nosqrt: When enabled, the faster code using SQRT in charge/capacitance
calculations of bulk diodes, when the grading coefficients have a vaule of .5, is switched
off. I think there is no need to enable it.

• --enable-nobypass: When enabled the bypass code is not compiled in. Once enabled
NGSPICE does not contain the code to bypass recalculations of slowly changing vari-
ables. It is advisable to leave this disabled since the bypass code does is used only if
the "bypass" option is set to TRUE at runtime.

• --enable-capbypass: When enabled the calculation of cbd/cbs in the mosfets is by-
passed ifvbs/vbd voltages were unchanged. Better do not enable it if you are not sure
of its implications.

• --enable-capzerobypass: When enabled all the calculations cbd/cbs calculations if
Czero is zero. It is safe to enable this feature.

• --enable-nodelimiting: Enable some experimental code that was intended to do
Newton damping by nodes, rather than by branches as is currently done. The flag just
turns off the branch limiting code in a couple of mosfets. Obviously, do not enable this
if you are not working with the limiting code.

• --enable-predictor: When this feature is enabled, NGSPICE (like the orignal
Spice3f) uses a predictor-corrector method for the numerical integration package.
This feature has never been tested too much, so enabling it is NOT considered safe.

• --enable-newtrunc: When enabled, some unfinished (?) code to do truncation error
timestep control on node voltages (rather than on charge in the devices) is activated.
Casual users should not enable it.

• --enable-sense2: Use spice2 sensitivity analysis.
• --enable-sensdebug: Enables debug switch for sensitivity code.
• --enable-intnoise: If enabed, noise analysis produces an additional plot: the inte-

grated noise. Users should always enable this.
• --enable-smoketest: Enables some very restrictive compilation flags. Useful only in

development phase and, if enabled, probably NGSPICE does not compile.
• --enable-experimental: It is possible that some untested code is included in stable

releases. If you want to experiment with new untested features, enable this option.
• --enable-ekv: EKV is a device model not released in source code form. If you have

obtained the source code, you have to enable this to have it compiled into NGSPICE.
• --with-readline: This option enables GNU Readline on NGSPICE. Since NGSPICE

license is incompatible with GPL (which covers Readline library), the code is not
included compiled into NGSPICE by default.

Chapter 5: NGSPICE Compilation 17

Caveat Emptor: NGSPICE, like its father Spice3f5 cannot be considered a "black
box", it is a complex numerical software whose stability and correctness depends on many
parameters. Be sure to understand well what you enable/disable otherwise your simulations
may converge to a wrong value or do not converge at all.

Once chosen the options to enable/disable, you will have to issue the configure com-
mand followed by the options you choose, like:

configure --enable-intnoise --enable-nobypass --enable-capzerobypass

If all goes well, all makefiles will be generated and the package is ready to be compiled.

5.3 Compiling NGSPICE

The reference platform for NGSPICE is a Linux system with glibc2 ang gcc (2.95 o newer)
running on the i386 architecture. If you have such a system you can pretty sure that
NGSPICE will compile correctly.

Once configured, to compile NGSPICE cd into the top level directory (if you moved
from it after configuration) and issue the make. If you have a multi-processor machine, you
can add ‘-j3’ to speed up compilation.

NGSPICE compilation takes several minutes on an average machine, enough to let you
have a lunch. Once NGSPICE has been compiled, you have to install it issuing the command
make install. NGSPICE will be installed under ‘/usr/local/’.

5.4 Supported systems

NGSPICE development is carried on Linux on the i386 processor architecture. Compiling
it under different UNIX systems should require only trivial changes, since most of the issues
will be resolved by Autoconf. Compiling under non UNIX OSes may require major changes,
since Autoconf and other UNIX tools may not be available on those environments.

In the past, NGSPICE have been ported to some OSes, the table below shows the port
I am aware of:

NetBSD

Dan McMahill has ported NGSPICE (starting from rework-13) on NetBSD
systems. Dan maintains a NetBSD package for NGSPICE available at
ftp://ftp.netbsd.org/pub/NetBSD/packages/pkgsrc/cad/ng-spice/README.html .

Solaris 7

Scott Griffith has compiled ngspice rework-12 on Solaris 7 with gcc (verion 2.95.1). Some
changes to the source code were needed:

Notes on compilation on SUN Solaris (extracted from Scott’s email): Solaris
lacks some of the functions needed by ngspice. You have to copy them from
other GNU tools. (Scott defines the following changes "some of the usual
workarounds")
• Copy ‘getopt.c’, ‘getopt1.c’ and ‘asprintf.c’ from other GNU tools

into the misc directory of the ngspice tree and modify the Makefiles ac-
cordingly.

• Change ‘src/maths/cmaths/test_cx_ph.c’ to #include <defines.h>,
because that gave me a compiler error on DBL_EPSILON.

mailto:mcmahill@mtl.mit.edu
ftp://ftp.netbsd.org/pub/NetBSD/packages/pkgsrc/cad/ng-spice/README.html
mailto:skod@ises-llc.com

18 NGSPICE User Manual

Windows

Holger Vogt has ported NGSPICE (from rework-14 release) to the Windows Operating
System. His port relies only on DLLs coming with Windows.

As of Rework-16 the Windows port is integrated as part of ngspice. It can be build
under Cygwin or MinGW.

The situation of NGSPICE ports is evolving continually, the one above are the only I
(Paolo Nenzi) am aware of. I know that there is a intent to port NGSPICE to FreeBSD
but do not know its status.

This section will be updated in the future.

5.5 Platform specific issues

NGSPICE heavily relies on the floating point representation. On the i386 architecture, the
floating point implementation can cause problems to numerical software like NGSPICE.
Intel i386 and later processors have 80-bit wide floating point registers in their FPU. This
width is referred ad extended double precision and all the calculation are done, internally,
at that precision. Externally, the result can be used as is or rounded to double precision
as defined in the IEEE754 standard for floating point, so there are two modes of operation
and the choice is left to the operating system. FreeBSD developers decided that the FPU
had to provide results conforming to IEEE745, while Linux ones decided to take advantage
of the extended precision.

This different choice lead to slightly different results when running the same simulation
on different operating systems. Catastrophic discrepancies arise on badly written software.

mailto:holger.vogt@uni-duisburg.de
http://www.cygwin.com/
http://www.mingw.org/

Chapter 6: Supported Analyses 19

6 Supported Analyses

This chapter introduces the analyses available in NGSPICE.

6.1 Types of Analysis

6.1.1 DC Analysis

The dc analysis portion of NGSPICE determines the dc operating point of the circuit
with inductors shorted and capacitors opened. The dc analysis options are specified on the
.DC, .TF, and .OP control lines.A dc analysis is automatically performed prior to a transient
analysis to determine the transient initial conditions, and prior to an ac small-signal analysis
to determine the linearized, small-signal models for nonlinear devices. If requested, the dc
small-signal value of a transfer function (ratio of output variable to input source), input
resistance, and output resistance is also computed as a part of the dc solution. The dc
analysis can also be used to generate dc transfer curves: a specified independent voltage,
current source, resistor or temperature is stepped over a user-specified range and the dc
output variables are stored for each sequential source value.

Temperature (TEMP) and resistance sweeps have been introduced in NGSPICE, they were
not available in the original code of Spice3f5.

6.1.2 AC Small-Signal Analysis

The ac small-signal portion of NGSPICE computes the ac output variables as a function of
frequency. The program first computes the dc operating point of the circuit and determines
linearized, small-signal models for all of the nonlinear devices in the circuit. The resultant
linear circuit is then analyzed over a user-specified range of frequencies. The desired output
of an ac small-signal analysis is usually a transfer function (voltage gain, transimpedance,
etc). If the circuit has only one ac input, it is convenient to set that input to unity and zero
phase, so that output variables have the same value as the transfer function of the output
variable with respect to the input.

6.1.3 Transient Analysis

The transient analysis portion of NGSPICE computes the transient output variables as a
function of time over a user-specified time interval. The initial conditions are automatically
determined by a dc analysis. All sources which are not time dependent (for example, power
supplies) are set to their dc value. The transient time interval is specified on a .TRAN control
line.

6.1.4 Pole-Zero Analysis

The pole-zero analysis portion of NGSPICE computes the poles and/or zeros in the small-
signal ac transfer function. The program first computes the dc operating point and then
determines the linearized, small-signal models for all the nonlinear devices in the circuit.
This circuit is then used to find the poles and zeros of the transfer function.

Two types of transfer functions are allowed: one of the form (output voltage)/(input
voltage) and the other of the form (output voltage)/(input current). These two types of
transfer functions cover all the cases and one can find the poles/zeros of functions like

20 NGSPICE User Manual

input/output impedance and voltage gain. The input and output ports are specified as two
pairs of nodes.

The pole-zero analysis works with resistors, capacitors, inductors, linear-controlled
sources, independent sources, BJTs, MOSFETs, JFETs and diodes. Transmission lines are
not supported.

The method used in the analysis is a sub-optimal numerical search. For large circuits
it may take a considerable time or fail to find all poles and zeros. For some circuits, the
method becomes "lost" and finds an excessive number of poles or zeros.

6.1.5 Small-Signal Distortion Analysis

The distortion analysis portion of NGSPICE computes steady-state harmonic and inter-
modulation products for small input signal magnitudes. If signals of a single frequency are
specified as the input to the circuit, the complex values of the second and third harmonics
are determined at every point in the circuit. If there are signals of two frequencies input
to the circuit, the analysis finds out the complex values of the circuit variables at the sum
and difference of the input frequencies, and at the difference of the smaller frequency from
the second harmonic of the larger frequency.

Distortion analysis is supported for the following nonlinear devices: diodes (DIO), BJT,
JFET, MOSFETs (levels 1, 2, 3, 4/BSIM1, 5/BSIM2, and 6) and MESFETS. All linear
devices are automatically supported by distortion analysis. If there are switches present in
the circuit, the analysis continues to be accurate provided the switches do not change state
under the small excitations used for distortion calculations.

6.1.6 Sensitivity Analysis

NGSPICE will calculate either the DC operating-point sensitivity or the AC small-signal
sensitivity of an output variable with respect to all circuit variables, including model pa-
rameters. NGSPICE calculates the difference in an output variable (either a node voltage
or a branch current) by perturbing each parameter of each device independently. Since the
method is a numerical approximation, the results may demonstrate second order affects in
highly sensitive parameters, or may fail to show very low but non-zero sensitivity. Further,
since each variable is perturb by a small fraction of its value, zero-valued parameters are
not analyized (this has the benefit of reducing what is usually a very large amount of data).

6.1.7 Noise Analysis

The noise analysis portion of NGSPICE does analysis device-generated noise for the given
circuit. When provided with an input source and an output port, the analysis calculates the
noise contributions of each device (and each noise generator within the device) to the output
port voltage. It also calculates the input noise to the circuit, equivalent to the output noise
referred to the specified input source. This is done for every frequency point in a specified
range - the calculated value of the noise corresponds to the spectral density of the circuit
variable viewed as a stationary gaussian stochastic process.

After calculating the spectral densities, noise analysis integrates these values over the
specified frequency range to arrive at the total noise voltage/current (over this frequency
range). This calculated value corresponds to the variance of the circuit variable viewed as
a stationary gaussian process.

Chapter 6: Supported Analyses 21

6.2 Analysis at Different Temperatures

Temperature, in NGSPICE, is a property associated to the entire circuit, rather an analysis
option. Circuit temperature has a default (nominal) value of 27oC (300.15 K) that can
be changed using the ‘TNOM’ option in an .OPTION control line. All analyses are, thus,
performed at circuit temperature, and if you want to simulate circuit behaviour at different
temperatures you should prepare a netlist for each temperature.

All input data for NGSPICE is assumed to have been measured at the circuit nominal
temperature. This value can further be overridden for any device which models temperature
effects by specifying the ‘TNOM’ parameter on the .model itself.

Individual instances may further override the circuit temperature through the specifica-
tion of ‘TEMP’ and ‘DTEMP’ parameters on the instance. The two options are not independent
even if you can specify both on the instance line, the ‘TEMP’ option overrides ‘DTEMP’. The
algorithm to compute instance temperature is described below:

IF TEMP is specified THEN
instance_temperature = TEMP

ELSE IF
instance_temperature = circuit_temperature + DTEMP

END IF

Temperature dependent support is provided for all devices except voltage and current
sources (either independent and controlled) and BSIM models. BSIM MOSFETs have an
alternate temperature dependency scheme which adjusts all of the model parameters before
input to NGSPICE. For details of the BSIM temperature adjustment, see [6] and [7].

Temperature appears explicitly in the exponential terms of the BJT and diode model
equations. In addition, saturation currents have a built-in temperature dependence. The
temperature dependence of the saturation current in the BJT models is determined by:

IS(T1) = IS(T0)
∣∣∣∣T1

T0

∣∣∣∣XTI

exp
∣∣∣∣ Egq(T1T0)
k(T1 − T0)

∣∣∣∣
where ‘k’ is Boltzmann’s constant, ‘q’ is the electronic charge, ‘E’ is the energy gap

which is a model parameter, ‘G’ and ‘XTI’ is the saturation current temperature exponent
(also a model parameter, and usually equal to 3).

The temperature dependence of forward and reverse beta is according to the formula:

B(T1) = B(T0)
∣∣∣∣T1

T0

∣∣∣∣XTB

where ‘T0’ and ‘T1’ are in degrees Kelvin, and ‘XTB’ is a user-supplied model parameter.
Temperature effects on beta are carried out by appropriate adjustment to the values of ‘BF ’,
‘ISE’, ‘BR’, and ‘ISC’ (spice model parameters ‘BF’, ‘ISE’, ‘BR’, and ‘ISC’, respectively).

Temperature dependence of the saturation current in the junction diode model is deter-
mined by:

22 NGSPICE User Manual

IS(T1) = IS(T0)
∣∣∣∣T1

T0

∣∣∣∣XT I
N

exp
∣∣∣∣ Egq(T1T0)
Nk(T1 − T0)

∣∣∣∣
where ‘N ’ is the emission coefficient, which is a model parameter, and the other symbols

have the same meaning as above. Note that for Schottky barrier diodes, the value of the
saturation current temperature exponent, ‘XTI’, is usually 2.

Temperature appears explicitly in the value of junction potential, “U’’ (in NGSPICE
‘PHI’), for all the device models. The temperature dependence is determined by:

U(T) =
kT

q
loge

∣∣∣∣NaNd

NiT 2

∣∣∣∣
where ‘k’ is Boltzmann’s constant, ‘q’ is the electronic charge, ‘Na’ is the acceptor im-

purity density, ‘Nd’ is the donor impurity density, ‘Ni’ is the intrinsic carrier concentration,
and ‘Eg’ is the energy gap.

Temperature appears explicitly in the value of surface mobility, ‘M0’ (or U0), for the
MOSFET model. The temperature dependence is determined by:

M0(T) =
M0(T0)∣∣∣ T

T0

∣∣∣1.5

The effects of temperature on resistors, capacitor and inductors is modeled by the for-
mula:

R(T) = R(T0)(1 + TC1(T − T0) + TC2(T − T0)2)

where ‘T ’ is the circuit temperature, ‘T0’ is the nominal temperature, and ‘TC1’ and
‘TC2’ are the first and second order temperature coefficients.

6.3 Convergence

Both dc and transient solutions are obtained by an iterative process which is terminated
when both of the following conditions hold:
1.

The nonlinear branch currents converge to within a tolerance of 0.1% or 1 picoamp
(1.0e-12 Amp), whichever is larger.

2.
The node voltages converge to within a tolerance of 0.1% or 1 microvolt (1.0e-6 Volt),
whichever is larger.

Although the algorithm used in NGSPICE has been found to be very reliable, in some
cases it fails to converge to a solution. When this failure occurs, the program terminates
the job.

Failure to converge in dc analysis is usually due to an error in specifying circuit connec-
tions, element values, or model parameter values. Regenerative switching circuits or circuits
with positive feedback probably will not converge in the dc analysis unless the OFF option
is used for some of the devices in the feedback path, or the .NODESET control line is used to
force the circuit to converge to the desired state.

Chapter 7: Circuit Description 23

7 Circuit Description

7.1 General Structure and Conventions

The circuit to be analyzed is described to ngspice by a set of element lines, which define
the circuit topology and element values, and a set of control lines, which define the model
parameters and the run controls. The first line in the input file must be the title, and the
last line must be ".END". The order of the remaining lines is arbitrary (except, of course,
that continuation lines must immediately follow the line being continued).

Each element in the circuit is specified by an element line that contains the element
name, the circuit nodes to which the element is connected, and the values of the parameters
that determine the electrical characteristics of the element. The first letter of the element
name specifies the element type. The format for the NGSPICE element types is given in
what follows. The strings XXXXXXX, YYYYYYY, and ZZZZZZZ denote arbitrary alphanumeric
strings. For example, a resistor name must begin with the letter R and can contain one or
more characters. Hence, R, R1, RSE, ROUT, and R3AC2ZY are valid resistor names. Details of
each type of device are supplied in a following section.

Fields on a line are separated by one or more blanks, a comma, an equal (‘=’) sign, or
a left or right parenthesis; extra spaces are ignored. A line may be continued by entering
a ‘+’ (plus) in column 1 of the following line; NGSPICE continues reading beginning with
column 2.

A name field must begin with a letter (A through Z) and cannot contain any delimiters.
A number field may be an integer field (12, -44), a floating point field (3.14159), either an

integer or floating point number followed by an integer exponent (1e-14, 2.65e3), or either
an integer or a floating point number followed by one of the following scale factors:

T = 1012

G = 109

Meg = 106

K = 103

mil = 25.4−6

m = 10−3

u = 10−6

n = 10−9

p = 10−12

f = 10−15

Letters immediately following a number that are not scale factors are ignored, and letters
immediately following a scale factor are ignored. Hence, 10, 10V, 10Volts, and 10Hz all
represent the same number, and M, MA, MSec, and MMhos all represent the same scale
factor. Note that 1000, 1000.0, 1000Hz, 1e3, 1.0e3, 1kHz, and 1k all represent the same
number.

Nodes names may be arbitrary character strings. The datum (ground) node must be
named ‘0’ (zero). Note the difference in NGSPICE where the nodes are treated as character

24 NGSPICE User Manual

strings and not evaluated as numbers, thus ‘0’ and ‘00’ are distinct nodes in NGSPICE but
not in SPICE2.

NGSPICE needs that the following topological constraints are satisfied:
• The circuit cannot contain a loop of voltage sources and/or inductors and cannot

contain a cut-set of current sources and/or capacitors.
• Each node in the circuit must have a dc path to ground.
• Every node must have at least two connections except for transmission line nodes (to

permit unterminated transmission lines) and MOSFET substrate nodes (which have
two internal connections anyway).

7.2 Basics: Title Line, Comment Lines and .END Line

7.2.1 Title Line

Examples:
POWER AMPLIFIER CIRCUIT
TEST OF CAM CELL

The title line must be the first in the input file. Its contents are printed verbatim as the
heading for each section of output.

7.2.2 .END Line

Examples:
.END

The "End" line must always be the last in the input file. Note that the period is an
integral part of the name.

7.2.3 Comments

General Form:
* <any comment>

Examples:
* RF=1K Gain should be 100
* Check open-loop gain and phase margin

The asterisk in the first column indicates that this line is a comment line. Comment
lines may be placed anywhere in the circuit description. Note that NGSPICE also considers
any line with leading white space to be a comment.

7.3 Device Models

General form:
.MODEL MNAME TYPE(PNAME1=PVAL1 PNAME2=PVAL2 ...)

Examples:
.MODEL MOD1 NPN (BF=50 IS=1E-13 VBF=50)

Most simple circuit elements typically require only a few parameter values. However,
some devices (semiconductor devices in particular) that are included in NGSPICE require

Chapter 7: Circuit Description 25

many parameter values. Often, many devices in a circuit are defined by the same set of
device model parameters. For these reasons, a set of device model parameters is defined on
a separate .MODEL line and assigned a unique model name. The device element lines in
NGSPICE then refer to the model name.

For these more complex device types, each device element line contains the device name,
the nodes to which the device is connected, and the device model name. In addition, other
optional parameters may be specified for some devices: geometric factors and an initial
condition (see the following section on Transistors and Diodes for more details).

MNAME in the above is the model name, and type is one of the following fifteen types:

R

Semiconductor resistor model

C

Semiconductor capacitor model

L

Inductor model

SW

Voltage controlled switch

CSW

Current controlled switch

URC

Uniform distributed RC model

LTRA

Lossy transmission line model

D

Diode model

NPN

NPN BJT model

PNP

PNP BJT model

NJF

N-channel JFET model

PJF

P-channel JFET model

NMOS

N-channel MOSFET model

PMOS

P-channel MOSFET model

26 NGSPICE User Manual

NMF

N-channel MESFET model

PMF

P-channel MESFET model

Parameter values are defined by appending the parameter name followed by an equal
sign and the parameter value. Model parameters that are not given a value are assigned
the default values given below for each model type. Models, model parameters, and default
values are listed in the next section along with the description of device element lines.

7.4 Subcircuits

A subcircuit that consists of NGSPICE elements can be defined and referenced in a fashion
similar to device models. The subcircuit is defined in the input file by a grouping of element
lines; the program then automatically inserts the group of elements wherever the subcircuit
is referenced. There is no limit on the size or complexity of subcircuits, and subcircuits
may contain other subcircuits. An example of subcircuit usage is given in Appendix A.

7.4.1 .SUBCKT Line

General form:

.SUBCKT subnam N1 <N2 N3 ...>

Examples:

.SUBCKT OPAMP 1 2 3 4

A circuit definition is begun with a .SUBCKT line. SUBNAM is the subcircuit name,
and N1, N2, ... are the external nodes, which cannot be zero. The group of element
lines which immediately follow the .SUBCKT line define the subcircuit. The last line in a
subcircuit definition is the .ENDS line (see below). Control lines may not appear within a
subcircuit definition; however, subcircuit definitions may contain anything else, including
other subcircuit definitions, device models, and subcircuit calls (see below). Note that any
device models or subcircuit definitions included as part of a subcircuit definition are strictly
local (i.e., such models and definitions are not known outside the subcircuit definition). Also,
any element nodes not included on the .SUBCKT line are strictly local, with the exception
of 0 (ground) which is always global.

7.4.2 ENDS Line

General form:

.ENDS <SUBNAM>

Examples:

.ENDS OPAMP

The "Ends" line must be the last one for any subcircuit definition. The subcircuit
name, if included, indicates which subcircuit definition is being terminated; if omitted, all
subcircuits being defined are terminated. The name is needed only when nested subcircuit
definitions are being made.

Chapter 7: Circuit Description 27

7.4.3 Subcircuit Calls

General form:
XYYYYYYY N1 <N2 N3 ...> SUBNAM

Examples:
X1 2 4 17 3 1 MULTI

Subcircuits are used in NGSPICE by specifying pseudo-elements beginning with the
letter X, followed by the circuit nodes to be used in expanding the subcircuit.

7.5 INCLUDE

General form:
.INCLUDE filename

Examples:
.INCLUDE /users/spice/common/wattmeter.cir

Frequently, portions of circuit descriptions will be reused in several input files, partic-
ularly with common models and subcircuits. In any ngspice input file, the ".include" line
may be used to copy some other file as if that second file appeared in place of the ".include"
line in the original file. There is no restriction on the file name imposed by ngspice beyond
those imposed by the local operating system.

28 NGSPICE User Manual

Chapter 8: Circuit Elements and Models 29

8 Circuit Elements and Models

Data fields that are enclosed in less-than and greater-than signs (’< >’) are optional. All
indicated punctuation (parentheses, equal signs, etc.) is optional but indicate the presence
of any delimiter. Further, future implementations may require the punctuation as stated.
A consistent style adhering to the punctuation shown here makes the input easier to un-
derstand. With respect to branch voltages and currents, NGSPICE uniformly uses the
associated reference convention (current flows in the direction of voltage drop).

8.1 General options and information

8.1.1 Simulating more devices in parallel

If you need to simulate more devices of the same kind in parallel, you can use the ‘m’ (often
called parallel multiplier) option which is available for all instances except transmission lines
and sources (both independent and controlled).

The parallel multiplier is implemented by multiplying by the value of ‘m’ the element’s
matrix stamp, thus it cannot be used to accurately simulate larger devices in integrated
circuits.

The netlist below show how to correctly use the parallel multiplier:

Multiple devices

d1 2 0 mydiode m=10

d01 1 0 mydiode
d02 1 0 mydiode
d03 1 0 mydiode
d04 1 0 mydiode
d05 1 0 mydiode
d06 1 0 mydiode
d07 1 0 mydiode
d08 1 0 mydiode
d09 1 0 mydiode
d10 1 0 mydiode

...

The d1 instance connected between nodes 2 and 0 is equivalent to the parallel d01-d10
connected between 1 and 0.

8.1.2 Technology scaling

Still to be implemented and written.

8.1.3 Model binning

Still to be implemented and written.

30 NGSPICE User Manual

8.2 Elementary Devices

8.2.1 Resistors

General form:
RXXXXXXX n+ n- value <ac=val> <m=val> <scale=val> <temp=val>
+ <dtemp=val> <noisy=0|1>

Examples:
R1 1 2 100
RC1 12 17 1K
R2 5 7 1K ac=2K
RL 1 4 2K m=2

Ngspice has a fairly complex model for resistors. It can simulate both discrete and
semiconductor resistors. Semiconductor resistors in ngspice means: resistors described by
geometrical parameters. So, do not expect detailed modelling of semiconductor effects.

‘n+’ and ‘n-’ are the two element nodes, ‘value’ is the resistance (in ohms) and may be
positive or negative but not zero.

Hint: If you need to simulate very small resistors (0.001 Ohm or less), you should use
CCVS (transresistance), it is less efficient but improves overall numerical accuracy. Think
about that a small resistance is a large conductance.

Ngspice can assign a resistor instance a different value for AC analysis, specified using
the ‘ac’ keyword. This value must not be zero as described above. The AC resistance is
used in AC analysis only (not Pole-Zero nor noise). If you do not specify the ‘ac’ parameter,
it is defaulted to ‘value’.

If you want to simulate temperature dependence of a resistor, you need to specify its
temperature coefficients, using a .model line, like in the example below:

RE1 1 2 700 std dtemp=5

.MODEL std tc1=0.001

Instance temperature is useful even if resistance does not varies with it, since the thermal
noise generated by a resistor depends on its absolute temperature.

Resistors in ngspice generates two different noises: thermal and flicker. While thermal
noise is always generated in the resistor, to add a flicker noise source you have to add a
.model card defining the flicker noise parameters. It is possible to simulate resistors that
do not generate any kind of noise using the ‘noisy’ keyword and assigning zero to it, as in
the following example:

Rmd 134 57 1.5k noisy=0

Ngspice calculates the nominal resistance as described below:

Rnom =
VALUE ∗ scale

m

Racnom =
ac ∗ scale

m

If you are interested in temperature effects or noise equations, read the following section
on semiconductor resistors.

Chapter 8: Circuit Elements and Models 31

8.2.2 Semiconductor Resistors

General form:

RXXXXXXX n+ n- <value> <mname> <l=length> <w=width> <temp=val>
+ <dtemp=val> m=<val> <ac=val> <scale=val> <noisy = 0|1>

Examples:

RLOAD 2 10 10K
RMOD 3 7 RMODEL L=10u W=1u

This is the more general form of the resistor presented before (see Section 8.2.1 [Re-
sistors], page 30) and allows the modelling of temperature effects and for the calculation
of the actual resistance value from strictly geometric information and the specifications of
the process. If ‘value’ is specified, it overrides the geometric information and defines the
resistance. If ‘mname’ is specified, then the resistance may be calculated from the process
information in the model ‘mname’ and the given ‘length’ and ‘width’. If ‘value’ is not
specified, then ‘mname’ and ‘length’ must be specified. If ‘width’ is not specified, then it is
taken from the default width given in the model.

The (optional) ‘temp’ value is the temperature at which this device is to operate, and
overrides the temperature specification on the .option control line and the value specified
in ‘dtemp’.

8.2.3 Semiconductor Resistor Model (R)

The resistor model consists of process-related device data that allow the resistance to be
calculated from geometric information and to be corrected for temperature. The parameters
available are:

name parameter units default example
TC1 first order temperature coeff. ohm/oC 0.0
TC2 second order temperature coeff. ohm/oC2 0.0
RSH sheet resistance ohm/[] - 50
DEFW default width meters 1e-6 2e-6
NARROW narrowing due to side etching meters 0.0 1e-7
SHORT shortening due to side etching meters 0.0 1e-7
TNOM parameter measurement temperature oC 27 50
KF flicker noise coefficient - 0.0 1e-25
AF flicker noise exponent - 0.0 1.0

The sheet resistance is used with the narrowing parameter and ‘l’ and ‘w’ from the
resistor device to determine the nominal resistance by the formula:

Rnom = rsh
l − SHORT

w −NARROW

‘DEFW’ is used to supply a default value for ‘w’ if one is not specified for the device. If
either ‘rsh’ or ‘l’ is not specified, then the standard default resistance value of 1k Ohm is
used. ‘TNOM’ is used to override the circuit-wide value given on the .options control line
where the parameters of this model have been measured at a different temperature.

After the nominal resistance is calculated, it is adjusted for temperature by the formula:

32 NGSPICE User Manual

R(T) = R(TNOM)
(
1 + TC1(T − TNOM) + TC2(T − TNOM)2

)
where R(TNOM) = Rnom|Racnom.

In the above formula, ‘T ’ represents the instance temperature, which can be explicitly
using the ‘temp’ keyword or os calculated using the circuit temperature and ‘dtemp’, if
present.

If both ‘temp’ and ‘dtemp’ are specified, the latter is ignored.

Ngspice improves spice’s resistors noise model, adding flicker noise (1/f) to it and the
‘noisy’ keyword to simulate noiseless resistors. The thermal noise in resistors is modelled
according to the equation:

ī2R =
4kT

R
∆f

where "k" is the Boltzmann’s constant, and "T" the instance temperature.

Flicker noise model is:

¯i2Rfn =
KFIAF

R

f
∆f

A small list of sheet resistances (in Ohm/[]) for conductors is shown below. The table
represents typical values for MOS processes in the 0.5 - 1 um range. The table is taken
from: N. Weste, K. Eshraghian - Principles of CMOS VLSI Design 2nd Edition, Addison
Wesley.

Material Min. Typical Max.
Intermetal (metal1 - metal2) 0.005 0.007 0.1
Top-metal (metal 3) 0.003 0.004 0.05
Polysilicon 15 20 30
Silicide 2 3 6
Diffusion(n+,p+) 10 25 100
Silicided diffusion 2 4 10
n-well 1000 2000 5000

8.2.4 Capacitors

General form:

CXXXXXXX n+ n- <value> <mname> <m=val> <scale=val> <temp=val>
+ <dtemp=val> <ic=init_condition>

Examples:

CBYP 13 0 1UF
COSC 17 23 10U IC=3V

Ngspice provides a detailed model for capacitors. Capacitors in the netlist can be spec-
ified giving their capacitance or their geometrical and physical characteristics. Following
the original spice3 "convention", capacitors specified by their geometrical or physical char-
acteristics are called "semiconductor capacitors" and are described in the next section.

Chapter 8: Circuit Elements and Models 33

In this first form ‘n+’ and ‘n-’ are the positive and negative element nodes, respectively
and ‘value’ is the capacitance in Farads.

Capacitance can be specified in the instance line as in the examples above or in a .model
line, as in the example below:

C1 15 5 cstd
C2 2 7 cstd

.model cstd C cap=3n

Both capacitors have a capacitance of 3nF.
If you want to simulate temperature dependence of a capacitor, you need to specify its

temperature coefficients, using a .model line, like in the example below:
CEB 1 2 1u cap1 dtemp=5

.MODEL cap1 C tc1=0.001

The (optional) initial condition is the initial (timezero) value of capacitor voltage (in
Volts). Note that the initial conditions (if any) apply ’only’ if the ‘uic’ option is specified
on the .tran control line.

Ngspice calculates the nominal capacitance as described below:

Cnom = value ∗ scale ∗ m

8.2.5 Semiconductor Capacitors

General form:
CXXXXXXX n+ n- <value> <mname> <l=length> <w=width> <m=val>
+ <scale=val> <temp=val> <dtemp=val> <ic=init_condition>

Examples:
CLOAD 2 10 10P
CMOD 3 7 CMODEL L=10u W=1u

This is the more general form of the Capacitor presented in section (see Section 8.2.4
[Capacitors], page 32), and allows for the calculation of the actual capacitance value from
strictly geometric information and the specifications of the process. If ‘value’ is specified,
it defines the capacitance and both process and geometrical information are discarded. If
‘value’ is not specified, the capacitance is calculated from information contained model
‘mname’ and the given length and width (‘l’, ‘w’ keywords, respectively). It is possible to
specify ‘mname’ only, without geometrical dimensions and set the capacitance in the .model
line (see Section 8.2.4 [Capacitors], page 32).

8.2.6 Semiconductor Capacitor Model (C)

The capacitor model contains process information that may be used to compute the capac-
itance from strictly geometric information.
name parameter units default example
CAP model capacitance F 0.0 1e-6
CJ junction bottom capacitance F/meters2- 5e-5
CJSW junction sidewall capacitance F/meters- 2e-11

34 NGSPICE User Manual

DEFW default device width meters 1e-6 2e-6
DEFL default device length meters 0.0 1e-6
NARROW narrowing due to side etching meters 0.0 1e-7
SHORT shorting due to side etching meters 0.0 1e-7
TC1 first order temperature coeff. F/oC 0.0 0.001
TC2 second order temperature coeff. F/oC2 0.0 0.0001
TNOM parameter measurement temperature oC 27 50
DI relative dielectric constant F/m 0.0 1
THICK insulator thickness meters 0.0 1e-9

The capacitor has a capacitance computed as:
If ‘value’ is specified on the instance line then

Cnom = value ∗ scale ∗ m

If model capacitance is specified then

Cnom = CAP ∗ scale ∗m

If neither ‘value’ nor ‘CAP’ are specified, then geometrical and physical parameters are
take into account:

C0 = CJ(l − SHORT)(w −NARROW) + 2CJSW(l − SHORT + w −NARROW)

‘CJ’ can be explicitly given on the .model line or calculated by physical parameters.
When ‘CJ’ is not given, is calculated as:

If ‘THICK’ is not zero:
if DI is specified:

CJ =
DI ∗ ε0

THICK
otherwise:

CJ =
εSiO2

THICK
with:

ε0 = 8.854214871e− 12
F

m

εSiO2 = 3.4531479969e− 11
F

m

Cnom = C0 ∗ scale ∗ m

After the nominal capacitance is calculated, it is adjusted for temperature by the formula:

C(T) = C(TNOM)
(
1 + TC1(T − TNOM) + TC2(T − TNOM)2

)
where C(TNOM) = Cnom.

In the above formula, ‘T ’ represents the instance temperature, which can be explicitly
using the ‘temp’ keyword or os calculated using the circuit temperature and ‘dtemp’, if
present.

Chapter 8: Circuit Elements and Models 35

8.2.7 Inductors

General form:
LYYYYYYY n+ n- <value> <mname> <nt=val> <m=val> <scale=val> <temp=val>
+ <dtemp=val> <ic=init_condition>

Examples:
LLINK 42 69 1UH
LSHUNT 23 51 10U IC=15.7MA

The inductor device implemented into ngspice has many enhancements over the original
one. ‘n+’ and ‘n-’ are the positive and negative element nodes, respectively. ‘value’ is the
inductance in Henries.

Inductance can be specified in the instance line as in the examples above or in a .model
line, as in the example below:

L1 15 5 indmod1
L2 2 7 indmod1

.model indmod1 L ind=3n

Both inductors have an inductance of 3nH.
The ‘nt’ is used in conjunction with a .model line, and is used to specify the number of

turns of the inductor.
If you want to simulate temperature dependence of an inductor, you need to specify its

temperature coefficients, using a .model line, like in the example below:
Lload 1 2 1u ind1 dtemp=5

.MODEL ind1 L tc1=0.001

The (optional) initial condition is the initial (timezero) value of inductor current (in
Amps) that flows from ‘n+’, through the inductor, to ‘n-’. Note that the initial conditions
(if any) apply only if the ‘UIC’ option is specified on the .tran analysis line.

Ngspice calculates the nominal inductance as described below:

Lnom =
value ∗ scale

m

8.2.8 Inductor model

The inductor model contains physical and geometrical information that may be used to
compute the inductance of some common topologies like solenoids and toroids, wound in
air or other material with constant magnetic permeability.
name parameter units default example
IND model inductance H 0.0 1e-3
CSECT Cross section meters2 0.0 1e-3
LENGTH Length meters 0.0 1e-2
TC1 first order temperature coeff. F/oC 0.0 0.001
TC2 second order temperature coeff. F/oC2 0.0 0.0001
TNOM parameter measurement

temperature

oC 27 50

36 NGSPICE User Manual

NT number of turns - 0.0 10
MU relative magnetic permeability H/meters 0.0 -

The inductor has an inductance computed as:
If ‘value’ is specified on the instance line then

Lnom =
value ∗ scale

m

If model inductance is specified then

Lnom =
IND ∗ scale

m

If neither ‘value’ nor ‘IND’ are specified, then geometrical and physical parameters are
take into account. In the following formulas ‘NT’ refers to both instance and model parameter
(instance parameter overrides model parameter):

If ‘LENGTH’ is not zero:
if MU is specified:

Lnom =
MU ∗ µ0 ∗NT2 ∗ CSECT

LENGTH

otherwise:

Lnom =
µ0 ∗ NT2 ∗ CSECT

LENGTH

with:
µ0 = 1.25663706143592e− 6

H

m

After the nominal inductance is calculated, it is adjusted for temperature by the formula:

L(T) = L(TNOM)
(
1 + TC1(T − TNOM) + TC2(T − TNOM)2

)
where L(TNOM) = Lnom.

In the above formula, ‘T ’ represents the instance temperature, which can be explicitly
using the ‘temp’ keyword or calculated using the circuit temperature and ‘dtemp’, if present.

8.2.9 Coupled (Mutual) Inductors

General form:
KXXXXXXX LYYYYYYY LZZZZZZZ value

Examples:
K43 LAA LBB 0.999
KXFRMR L1 L2 0.87

LYYYYYYY and LZZZZZZZ are the names of the two coupled inductors, and ‘value’
is the coefficient of coupling, K, which must be greater than 0 and less than or equal to 1.
Using the ’dot’ convention, place a ’dot’ on the first node of each inductor.

Chapter 8: Circuit Elements and Models 37

8.2.10 Switches

General form:
SXXXXXXX N+ N- NC+ NC- MODEL <ON><OFF>
WYYYYYYY N+ N- VNAM MODEL <ON><OFF>

Examples:
s1 1 2 3 4 switch1 ON
s2 5 6 3 0 sm2 off
Switch1 1 2 10 0 smodel1
w1 1 2 vclock switchmod1
W2 3 0 vramp sm1 ON
wreset 5 6 vclck lossyswitch OFF

Nodes 1 and 2 are the nodes between which the switch terminals are connected. The
model name is mandatory while the initial conditions are optional. For the voltage controlled
switch, nodes 3 and 4 are the positive and negative controlling nodes respectively. For
the current controlled switch, the controlling current is that through the specified voltage
source. The direction of positive controlling current flow is from the positive node, through
the source, to the negative node.

8.2.11 Switch Model (SW/CSW)

The switch model allows an almost ideal switch to be described in NGSPICE. The switch
is not quite ideal, in that the resistance can not change from 0 to infinity, but must always
have a finite positive value. By proper selection of the on and off resistances, they can
be effectively zero and infinity in comparison to other circuit elements. The parameters
available are:
name parameter units default switch
VT threshold voltage Volts 0.0 S
IT threshold current Amps 0.0 W
VH hysteresis voltage Volts 0.0 S
IH hysteresis current Amps 0.0 W
RON on resistance Z 1.0 both
ROFF off resistance Z 1/GMIN*both

*(See the .OPTIONS control line for a description of GMIN, its default value results in
an off-resistance of 1.0e+12 ohms.)

The use of an ideal element that is highly nonlinear such as a switch can cause large
discontinuities to occur in the circuit node voltages. A rapid change such as that associated
with a switch changing state can cause numerical roundoff or tolerance problems leading to
erroneous results or timestep difficulties. The user of switches can improve the situation by
taking the following steps:

First, it is wise to set ideal switch impedances just high or low enough to be negligible
with respect to other circuit elements. Using switch impedances that are close to "ideal"
in all cases aggravates the problem of discontinuities mentioned above. Of course, when
modelling real devices such as MOSFETS, the on resistance should be adjusted to a realistic
level depending on the size of the device being modelled.

If a wide range of ON to OFF resistance must be used in the switches (ROFF/RON
>1e+12), then the tolerance on errors allowed during transient analysis should be decreased

38 NGSPICE User Manual

by using the .OPTIONS control line and specifying TRTOL to be less than the default value
of 7.0. When switches are placed around capacitors, then the option CHGTOL should also
be reduced. Suggested values for these two options are 1.0 and 1e-16 respectively. These
changes inform NGSPICE to be more careful around the switch points so that no errors are
made due to the rapid change in the circuit.

8.3 Voltage and Current Sources

8.3.1 Independent Sources

General form:
VXXXXXXX N+ N- <<DC> DC/TRAN VALUE> <AC <ACMAG <ACPHASE>>>
+ <DISTOF1 <F1MAG <F1PHASE>>> <DISTOF2 <F2MAG <F2PHASE>>>
IYYYYYYY N+ N- <<DC> DC/TRAN VALUE> <AC <ACMAG <ACPHASE>>>
+ <DISTOF1 <F1MAG <F1PHASE>>> <DISTOF2 <F2MAG <F2PHASE>>>

Examples:
VCC 10 0 DC 6
VIN 13 2 0.001 AC 1 SIN(0 1 1MEG)
ISRC 23 21 AC 0.333 45.0 SFFM(0 1 10K 5 1K)
VMEAS 12 9
VCARRIER 1 0 DISTOF1 0.1 -90.0
VMODULATOR 2 0 DISTOF2 0.01
IIN1 1 5 AC 1 DISTOF1 DISTOF2 0.001

N+ and N- are the positive and negative nodes, respectively. Note that voltage sources
need not be grounded. Positive current is assumed to flow from the positive node, through
the source, to the negative node. A current source of positive value forces current to flow
out of the N+ node, through the source, and into the N- node. Voltage sources, in addition
to being used for circuit excitation, are the ’ammeters’ for NGSPICE, that is, zero valued
voltage sources may be inserted into the circuit for the purpose of measuring current. They
of course have no effect on circuit operation since they represent short-circuits.

DC/TRAN is the dc and transient analysis value of the source. If the source value is
zero both for dc and transient analyses, this value may be omitted. If the source value is
time-invariant (e.g., a power supply), then the value may optionally be preceded by the
letters DC.

ACMAG is the ac magnitude and ACPHASE is the ac phase. The source is set to this
value in the ac analysis. If ACMAG is omitted following the keyword AC, a value of unity
is assumed. If ACPHASE is omitted, a value of zero is assumed. If the source is not an ac
small-signal input, the keyword AC and the ac values are omitted.

DISTOF1 and DISTOF2 are the keywords that specify that the independent source
has distortion inputs at the frequencies F1 and F2 respectively (see the description of the
.DISTO control line). The keywords may be followed by an optional magnitude and phase.
The default values of the magnitude and phase are 1.0 and 0.0 respectively.

Any independent source can be assigned a time-dependent value for transient analysis.
If a source is assigned a time-dependent value, the time-zero value is used for dc analysis.
There are five independent source functions: pulse, exponential, sinusoidal, piece-wise linear,
and single-frequency FM. If parameters other than source values are omitted or set to zero,

Chapter 8: Circuit Elements and Models 39

the default values shown are assumed. (TSTEP is the printing increment and TSTOP is
the final time (see the .TRAN control line for explanation)).

8.3.1.1 Pulse

General form:
PULSE(V1 V2 TD TR TF PW PER)

Examples:
VIN 3 0 PULSE(-1 1 2NS 2NS 2NS 50NS 100NS)

parameter default value units
V1 (initial value) Volts or Amps
V2 (pulsed value) Volts or Amps
TD (delay time) 0.0 seconds
TR (rise time) TSTEP seconds
TF (fall time) TSTEP seconds
PW (pulse width) TSTOP seconds
PER(period) TSTOP seconds

A single pulse so specified is described by the following table:
time value
0 V1
TD V1
TD+TR V2
TD+TR+PW V2
TD+TR+PW+TF V1
TSTOP V1

Intermediate points are determined by linear interpolation.

8.3.1.2 Sinusoidal

General form:
SIN(VO VA FREQ TD THETA)

Examples:
VIN 3 0 SIN(0 1 100MEG 1NS 1E10)

parameters default value units
VO (offset) Volts or Amps
VA (amplitude) Volts or Amps
FREQ (frequency) 1/TSTOP Hz
TD (delay) 0.0 seconds
THETA (damping factor) 0.0 1/seconds

The shape of the waveform is described by the following table:

V (t) =
{

V 0, if 0 ≤ t < TD
V 0 + V Ae(t−TD)THETAsin(2JFREQ(t + TD)), if TD < t ≤ TSTOP

8.3.1.3 Exponential

General Form:

40 NGSPICE User Manual

EXP(V1 V2 TD1 TAU1 TD2 TAU2)

Examples:
VIN 3 0 EXP(-4 -1 2NS 30NS 60NS 40NS)

parameter default value units

V1 (initial value) Volts or Amps
V2 (pulsed value) Volts or Amps
TD1 (rise delay time) 0.0 seconds
TAU1 (rise time constant) TSTEP seconds
TD2 (fall delay time) TD1+TSTEP seconds
TAU2 (fall time constant) TSTEP seconds

The shape of the waveform is described by the following table:
Let V 21 = V 2− V 1, V 12 = V 1 − V 2:

V (t) =

V 1, if 0 ≤ t < TD1
V 1 + V 21

(
1 − e

(t−T D1)
T AU1

)
, if TD1 ≤ t < TD2

V 1 + V 21
(
1 − e

(t−T D1)
T AU1

)
+ V 12

(
1 − e

(t−T D2)
T AU2

)
, if TD2 ≤ t ≤ TSTOP

8.3.1.4 Piece-Wise Linear

General Form:
PWL(T1 V1 <T2 V2 T3 V3 T4 V4 ...>)

Examples:
VCLOCK 7 5 PWL(0 -7 10NS -7 11NS -3 17NS -3 18NS -7 50NS -7)

Each pair of values (Ti, Vi) specifies that the value of the source is Vi (in Volts or Amps)
at time=Ti. The value of the source at intermediate values of time is determined by using
linear interpolation on the input values.

8.3.1.5 Single-Frequency FM

General Form:
SFFM(VO VA FC MDI FS)

Examples:
V1 12 0 SFFM(0 1M 20K 5 1K)

parameter default value units
--
VO (offset) Volts or Amps
VA (amplitude) Volts or Amps
FC (carrier frequency) 1/TSTOP Hz
MDI (modulation index)
FS (signal frequency) 1/TSTOP Hz

The shape of the waveform is described by the following equation:

V (t) = VO + VA sin |2JFCt + MDI sin(2JFSt)|

Chapter 8: Circuit Elements and Models 41

8.3.2 Linear Dependent Sources

NGSPICE allows circuits to contain linear dependent sources characterized by any of the
four equations

i = gv v = ev i = fi v = hi

where g, e, f, and h are constants representing transconductance, voltage gain, current
gain, and transresistance, respectively.

8.3.2.1 Linear Voltage-Controlled Current Sources

General form:

GXXXXXXX N+ N- NC+ NC- VALUE

Examples:

G1 2 0 5 0 0.1MMHO

N+ and N- are the positive and negative nodes, respectively. Current flow is from the
positive node, through the source, to the negative node. NC+ and NCare the positive and
negative controlling nodes, respectively. VALUE is the transconductance (in mhos).

8.3.2.2 Linear Voltage-Controlled Voltage Sources

General form:

EXXXXXXX N+ N- NC+ NC- VALUE

Examples:

E1 2 3 14 1 2.0

N+ is the positive node, and N- is the negative node. NC+ and NC- are the positive and
negative controlling nodes, respectively. VALUE is the voltage gain.

8.3.2.3 Linear Current-Controlled Current Sources

General form:

FXXXXXXX N+ N- VNAM VALUE

Examples:

F1 13 5 VSENS 5

N+ and N- are the positive and negative nodes, respectively. Current flow is from the
positive node, through the source, to the negative node. VNAM is the name of a voltage
source through which the controlling current flows. The direction of positive controlling
current flow is from the positive node, through the source, to the negative node of VNAM.
VALUE is the current gain.

8.3.2.4 Linear Current-Controlled Voltage Sources

General form:

HXXXXXXX N+ N- VNAM VALUE

Examples:

42 NGSPICE User Manual

HX 5 17 VZ 0.5K

N+ and N- are the positive and negative nodes, respectively. VNAM is the name of
a voltage source through which the controlling current flows. The direction of positive
controlling current flow is from the positive node, through the source, to the negative node
of VNAM. VALUE is the transresistance (in ohms).

8.3.3 Non-linear Dependent Sources

General form:
BXXXXXXX N+ N- <I=EXPR> <V=EXPR>

Examples:
B1 0 1 I=cos(v(1))+sin(v(2))
B1 0 1 V=ln(cos(log(v(1,2)^2)))-v(3)^4+v(2)^v(1)
B1 3 4 I=17
B1 3 4 V=exp(pi^i(vdd))

N+ is the positive node, and N- is the negative node. The values of the V and I parameters
determine the voltages and currents across and through the device, respectively. If I is given
then the device is a current source, and if V is given the device is a voltage source. One
and only one of these parameters must be given.

The small-signal AC behaviour of the nonlinear source is a linear dependent source (or
sources) with a proportionality constant equal to the derivative (or derivatives) of the source
at the DC operating point.

The expressions given for V and I may be any function of voltages and currents through
voltage sources in the system. The following functions of real variables are defined:
abs asinh cosh sin
acos atan exp sinh
acosh atanh ln sqrt
asin cos log tan

The function "u" is the unit step function, with a value of one for arguments greater
than zero and a value of zero for arguments less than zero. The function "uramp" is the
integral of the unit step: for an input x, the value is zero if x is less than zero, or if x is
greater than zero the value is x. The function "u2" returns a value of zero for arguments
less than zero, one for arguments greater than one and assumes the value of the argument
between these limits .These three functions are useful in sythesizing piece-wise non-linear
functions, though convergence may be adversely affected.

Note: "u2" function has been introduced in rework-11.
The following standard operators are defined:

+ - * / { } unary -

If the argument of log, ln, or sqrt becomes less than zero, the absolute value of the
argument is used. If a divisor becomes zero or the argument of log or ln becomes zero, an
error will result. Other problems may occur when the argument for a function in a partial
derivative enters a region where that function is undefined.

To get time into the expression you can integrate the current from a constant current
source with a capacitor and use the resulting voltage (don’t forget to set the initial voltage
across the capacitor). Non-linear resistors, capacitors, and inductors may be synthesized

Chapter 8: Circuit Elements and Models 43

with the nonlinear dependent source. Non-linear resistors are obvious. Nonlinear capacitors
and inductors are implemented with their linear counterparts by a change of variables
implemented with the nonlinear dependent source. The following subcircuit will implement
a nonlinear capacitor:

.Subckt nlcap pos neg
* Bx: calculate f(input voltage)
Bx 1 0 v = f(v(pos,neg))
* Cx: linear capacitance
Cx 2 0 1
* Vx: Ammeter to measure current into the capacitor
Vx 2 1 DC 0Volts
* Drive the current through Cx back into the circuit
Fx pos neg Vx 1
.ends

Non-linear inductors are similar.

8.4 Transmission Lines

8.4.1 Lossless Transmission Lines

General form:
TXXXXXXX N1 N2 N3 N4 Z0=VALUE <TD=VALUE> <F=FREQ <NL=NRMLEN>>
+ <IC=V1, I1, V2, I2>

Examples:
T1 1 0 2 0 Z0=50 TD=10NS

N1 and N2 are the nodes at port 1; N3 and N4 are the nodes at port 2. Z0 is the
characteristic impedance. The length of the line may be expressed in either of two forms.
The transmission delay, TD, may be specified directly (as TD=10ns, for example). Alter-
natively, a frequency F may be given, together with NL, the normalized electrical length
of the transmission line with respect to the wavelength in the line at the frequency F. If a
frequency is specified but NL is omitted, 0.25 is assumed (that is, the frequency is assumed
to be the quarter-wave frequency). Note that although both forms for expressing the line
length are indicated as optional, one of the two must be specified.

Note that this element models only one propagating mode. If all four nodes are dis-
tinct in the actual circuit, then two modes may be excited. To simulate such a situation,
two transmission-line elements are required. (see the example in Appendix A for further
clarification.)

The (optional) initial condition specification consists of the voltage and current at each
of the transmission line ports. Note that the initial conditions (if any) apply ’only’ if the
UIC option is specified on the .TRAN control line.

Note that a lossy transmission line (see below) with zero loss may be more accurate than
than the lossless transmission line due to implementation details.

8.4.2 Lossy Transmission Lines

General form:

44 NGSPICE User Manual

OXXXXXXX N1 N2 N3 N4 MNAME

Examples:
O23 1 0 2 0 LOSSYMOD
OCONNECT 10 5 20 5 INTERCONNECT

This is a two-port convolution model for singleconductor lossy transmission lines. N1
and N2 are the nodes at port 1; N3 and N4 are the nodes at port 2. Note that a lossy
transmission line with zero loss may be more accurate than than the lossless transmission
line due to implementation details.

8.4.3 Lossy Transmission Line Model (LTRA)

The uniform RLC/RC/LC/RG transmission line model (referred to as the LTRA model
henceforth) models a uniform constant-parameter distributed transmission line. The RC
and LC cases may also be modelled using the URC and TRA models; however, the newer
LTRA model is usually faster and more accurate than the others. The operation of the
LTRA model is based on the convolution of the transmission line’s impulse responses with
its inputs (see [8]).

The LTRA model takes a number of parameters, some of which must be given and some
of which are optional.
name parameter units/type default example
name parameter units/type default example
R resistance/length Z/unit 0.0 0.2
L inductance/length henrys/unit 0.0 9.13e-

9
G conductance/length mhos/unit 0.0 0.0
C capacitance/length farads/unit 0.0 3.65e-

12
LEN length of line no default 1.0
REL breakpoint control arbitrary unit 1 0.5
ABS breakpoint control 1 5
NOSTEPLIMITdon’t limit timestep to less than

line delay
flag not

set
set

NOCONTROL don’t do complex timestep control flag not
set

set

LININTERP use linear interpolation flag not
set

set

MIXEDINTERPuse linear when quadratic seems
bad

not set set

COMPACTRELspecial reltol for history
compaction

flag RELTOL1.0e-3

COMPACTABSspecial abstol for history
compaction

ABSTOL 1.0e-9

TRUNCNR use Newton-Raphson method for
timestep control

flag not
set

set

TRUNCDONTCUTdon’t limit timestep to keep
impulse-response errors low

flag not
set

set

Chapter 8: Circuit Elements and Models 45

The following types of lines have been implemented so far: RLC (uniform transmission
line with series loss only), RC (uniform RC line), LC (lossless transmission line), and RG
(distributed series resistance and parallel conductance only). Any other combination will
yield erroneous results and should not be tried. The length LEN of the line must be specified.

NOSTEPLIMIT is a flag that will remove the default restriction of limiting time-steps to
less than the line delay in the RLC case. NOCONTROL is a flag that prevents the default
limiting of the time-step based on convolution error criteria in the RLC and RC cases. This
speeds up simulation but may in some cases reduce the accuracy of results. LININTERP
is a flag that, when specified, will use linear interpolation instead of the default quadratic
interpolation for calculating delayed signals. MIXEDINTERP is a flag that, when specified,
uses a metric for judging whether quadratic interpolation is not applicable and if so uses
linear interpolation; otherwise it uses the default quadratic interpolation. TRUNCDONT-
CUT is a flag that removes the default cutting of the time-step to limit errors in the actual
calculation of impulse-response related quantities. COMPACTREL and COMPACTABS
are quantities that control the compaction of the past history of values stored for convolu-
tion. Larger values of these lower accuracy but usually increase simulation speed. These
are to be used with the TRYTOCOMPACT option, described in the .OPTIONS section.
TRUNCNR is a flag that turns on the use of Newton-Raphson iterations to determine an
appropriate timestep in the timestep control routines. The default is a trial and error pro-
cedure by cutting the previous timestep in half. REL and ABS are quantities that control
the setting of breakpoints.

The option most worth experimenting with for increasing the speed of simulation is REL.
The default value of 1 is usually safe from the point of view of accuracy but occasionally
increases computation time. A value greater than 2 eliminates all breakpoints and may
be worth trying depending on the nature of the rest of the circuit, keeping in mind that
it might not be safe from the viewpoint of accuracy. Breakpoints may usually be entirely
eliminated if it is expected the circuit will not display sharp discontinuities. Values between
0 and 1 are usually not required but may be used for setting many breakpoints.

COMPACTREL may also be experimented with when the option TRYTOCOMPACT
is specified in a .OPTIONS card. The legal range is between 0 and 1. Larger values usually
decrease the accuracy of the simulation but in some cases improve speed. If TRYTOCOM-
PACT is not specified on a .OPTIONS card, history compaction is not attempted and
accuracy is high. NOCONTROL, TRUNCDONTCUT and NOSTEPLIMIT also tend to
increase speed at the expense of accuracy.

8.4.4 Uniform Distributed RC Lines (Lossy)

General form:

UXXXXXXX N1 N2 N3 MNAME L=LEN <N=LUMPS>

Examples:

U1 1 2 0 URCMOD L=50U
URC2 1 12 2 UMODL l=1MIL N=6

N1 and N2 are the two element nodes the RC line connects, while N3 is the node to
which the capacitances are connected. MNAME is the model name, LEN is the length of
the RC line in meters. LUMPS, if specified, is the number of lumped segments to use in

46 NGSPICE User Manual

modelling the RC line (see the model description for the action taken if this parameter is
omitted).

8.4.5 Uniform Distributed RC Model (URC)

The URC model is derived from a model proposed by L. Gertzberrg in 1974. The model is
accomplished by a subcircuit type expansion of the URC line into a network of lumped RC
segments with internally generated nodes. The RC segments are in a geometric progression,
increasing toward the middle of the URC line, with K as a proportionality constant. The
number of lumped segments used, if not specified for the URC line device, is determined by
the following formula:

N =
log

∣∣∣∣Fmax
R
L

C
L
2JL2

∣∣∣ (K−1)

K

∣∣∣2∣∣∣∣
log K

The URC line is made up strictly of resistor and capacitor segments unless the ISPERL
parameter is given a nonzero value, in which case the capacitors are replaced with reverse
biased diodes with a zero-bias junction capacitance equivalent to the capacitance replaced,
and with a saturation current of ISPERL amps per meter of transmission line and an
optional series resistance equivalent to RSPERL ohms per meter.

name parameter units default example
K Propagation Constant - 2.0 1.2
FMAX Maximum Frequency of interest Hz 1.0G 6.5Meg
RPERL Resistance per unit length Z/m 1000 10
CPERL Capacitance per unit length F/m 1.0e-15 1pF
ISPERL Saturation Current per unit length A/m 0 -
RSPERL Diode Resistance per unit length Z/m 0 -

8.5 Transistors and Diodes

The area factor used on the diode, BJT, JFET, and MESFET devices determines the
number of equivalent parallel devices of a specified model. The affected parameters are
marked with an asterisk under the heading ’area’ in the model descriptions below. Several
geometric factors associated with the channel and the drain and source diffusions can be
specified on the MOSFET device line.

Two different forms of initial conditions may be specified for some devices. The first form
is included to improve the dc convergence for circuits that contain more than one stable
state. If a device is specified OFF, the dc operating point is determined with the terminal
voltages for that device set to zero. After convergence is obtained, the program continues
to iterate to obtain the exact value for the terminal voltages. If a circuit has more than one
dc stable state, the OFF option can be used to force the solution to correspond to a desired
state. If a device is specified OFF when in reality the device is conducting, the program
still obtains the correct solution (assuming the solutions converge) but more iterations are
required since the program must independently converge to two separate solutions. The
.NODESET control line serves a similar purpose as the OFF option. The .NODESET
option is easier to apply and is the preferred means to aid convergence.

Chapter 8: Circuit Elements and Models 47

The second form of initial conditions are specified for use with the transient analysis.
These are true ’initial conditions’ as opposed to the convergence aids above. See the de-
scription of the .IC control line and the .TRAN control line for a detailed explanation of
initial conditions.

8.5.1 Junction Diodes

General form:
DXXXXXXX n+ n- mname <area=val> <m=val> <pj=val> <off> <ic=vd> <temp=val>
+ <dtemp=val>

Examples:
DBRIDGE 2 10 DIODE1
DCLMP 3 7 DMOD 3.0 IC=0.2

The pn junction (diode) implemented in NGSPICE expands the original spice’s imple-
mentation. Perimetral effects and high injection level have been introduced into the original
model and temperature dependence of some parameters has been added.

‘n+’ and ‘n-’ are the positive and negative nodes, respectively. ‘mname’ is the model name,
‘area’ is the area factor, ‘pj’ is the perimeter factor, and ‘off’ indicates an (optional)starting
condition on the device for dc analysis. If the area factor is omitted, a value of 1.0 is assumed.
The (optional) initial condition specification using ‘ic’ is intended for use with the ‘uic’
option on the .tran control line, when a transient analysis is desired starting from other
than the quiescent operating point. You should supply the inital voltage across the diode
there. The (optional) ‘temp’ value is the temperature at which this device is to operate, and
overrides the temperature specification on the .option control line. As always, instance
temperature can be specified as an offset to the circuit temperature with the ‘dtemp’ option.

8.5.2 Diode Model (D)

The dc characteristics of the diode are determined by the parameters ‘IS’ and ‘N’. An
ohmic resistance, ‘RS’, is included. Charge storage effects are modelled by a transit time,
‘TT’, and a nonlinear depletion layer capacitance which is determined by the parameters
‘CJO’, ‘VJ’, and ‘M’. The temperature dependence of the saturation current is defined by the
parameters ‘EG’, the energy and ‘XTI’, the saturation current temperature exponent. The
nominal temperature at which these parameters were measured is ‘TNOM’, which defaults
to the circuit-wide value specified on the .options control line. Reverse breakdown is
modelled by an exponential increase in the reverse diode current and is determined by the
parameters ‘BV’ and ‘IBV’ (both of which are positive numbers).

Junction DC parameters

name parameter units default example scale
factor

BV reverse breakdown voltage V infinite 40.0
IBV current at breakdown voltage A 1.0e-3 1.0e-4
IK (IKF) forward knee current A 1.0e-3 1.0e-6
IK reverse knee current A 1.0e-3 1.0e-6
IS (JS) saturation current A 1.0e-14 1.0e-16 area
JSW Sidewall saturation current A 1.0e-14 1.0e-15 perim.
N emission coefficient - 1 1.5

48 NGSPICE User Manual

RS ohmic resistance Ohm 0 100 1/area
Junction capacitance parameters

name parameter units default example scale
factor

CJO
(CJ0)

zero-bias junction bottowall
capacitance

F 0.0 2pF area

CJP
(CJSW)

zero-bias junction sidewall
capacitance

F 0.0 .1pF perim.

FC coefficient for forward-bias de-
pletion bottomwall capacitance
formula

- 0.5 -

FCS coefficient for forward-bias deple-
tion sidewall capacitance formula

- 0.5 -

M (MJ) Area junction grading coefficient - 0.5 0.5
MJSW Periphery junction grading

coefficient
- 0.33 0.5

VJ junction potential V 1 0.6
PHP Periphery junction potential V 1 0.6
TT transit-time sec 0 0.1ns

Temperature effects

name parameter units default example scale
factor

EG activation energy eV 1.11 1.11 Si
0.69 Sbd
0.67 Ge

TM1 1st order tempco for MJ 1/oC 0.0 -
TM2 2nd order tempco for MJ 1/oC2 0.0 -
TNOM parameter measurement

temperature
C 27 50

TRS 1st order tempco for RS 1/oC 0.0 -
TRS2 2nd order tempco for RS 1/oC2 0.0 -
TTT1 1st order tempco for TT 1/oC 0.0 -
TTT2 2nd order tempco for TT 1/oC2 0.0 -
XTI saturation-current temp. exp - 3.0 3.0 pn

2.0 Sbd
Noise modeling

name parameter units default example scale
factor

KF flicker noise coefficient - 0
AF flicker noise exponent - 1

8.5.3 Diode Equations

The junction diode is the the basic semiconductor device and the simplest one modeled in
NGSPICE, but it’s model is quite complex, even if not all the physical phenomena affecting
a pn junction are modelled. The diode is modeled in three different regions:

Chapter 8: Circuit Elements and Models 49

• Forward bias: the anode is more positive than the cathode, the diode is "on" and can
conduct large currents. To avoid convergence problems and unrealistic high current, it
is better to specify a series resistance to limit current with ‘RS’ model parameter.

• Reverse bias: the cathode is more positive than the anode and the diode is "off". A
reverse bias diode conducts a small leakage current.

• Breakdown: the breakdown region is modelled only if the ‘BV’ model parameter is given.
When a diode enters breakdown the current increase exponentially (remember to limit
it). ‘BV’ is a positive value.

Parameters Scaling

Model parameters are scaled using the unitless parameters ‘AREA’ and ‘PJ’ and the mul-
tiplier ‘M’ as depicted below:

AREAeff = AREA ·M

PJeff = PJ ·M

ISeff = IS ·AREAeff + JSW ∗ PJeff

IBVeff = IBV ·AREAeff

IKeff = IK ·AREAeff

IKReff = IKR ·AREAeff

CJeff = CJ0 ·AREAeff

CJPeff = CJP · PJeff

Diode DC, Transient and AC model equations

ID =

ISeff (e

qVD
NkT − 1) + VD ∗ GMIN, if VD ≥ −3NkT

q

−ISeff [1 + (3NkT
qVDe

)3] + VD ∗GMIN, if −BVeff < VD < −3NkT
q

−ISeff (e
−q(BVeff +VD)

NkT) + VD ∗GMIN, if VD ≤ −BVeff

The breakdown region must be described with more depth since the breakdown is not
modelled in physically. As written before, the breakdown modelling is based on two model
parameters: the "nominal breakdown voltage" ‘BV’ and the current at the onset of break-
down ‘IBV’. For the diode model to be consistent, the current value cannot be arbitrary
chosen, since the reverse bias and breakdown regions must match.

When the diode enters breakdown region from reverse bias, the current is calculated
using the formula:

Ibdwn = −ISeff (e
−qBV
NkT − 1)

Note: if you look at the code in ‘diotemp.c’ you will discover that the exponential
relation is replaced with a first order taylor series expansion.

The computed current is necessary to adjust the breakdown voltage making the two
regions match. The algorithm is a little bit convoluted and only a brief description is given
here:

50 NGSPICE User Manual

if IBVeff < Ibdwn then
IBVeff = Ibdwn

BVeff = BV

else
BVeff = BV −NVt ln(

IBVeff

Ibdwn

)

Most real diodes shows a current increase that, at high current levels, does not follow
the exponential relationship given above. This behaviour is due to high level of carriers
injected into the junction. High injection effects (as they are called) are modelled with ‘IK’
and ‘IKR’.

IDeff =

ID

1+

√
ID

IKeff

, if VD ≥ −3NkT
q

ID

1+

√
ID

IKReff

, otherwise.

Diode capacitance is divided into two different terms:
• Depletion capacitance
• Diffusion capacitance

Depletion capacitance is composed by two different contributes, one associated to the
bottom of the junction (bottowall depletion capacitance) and the other to the periphery
(sidewall depletion capacitance).

The basic equations are:

CDiode = Cdiffusion + Cdepletion

Where the depletion capacitance i defined as:

Cdepletion = Cdeplbw
+ Cdeplsw

The diffusion capacitance, due to the injected minority carriers is modeled with the
transit time ‘TT’:

Cdiffusion = TT
∂IDeff

∂VD

The depletion capacitance is more complex to model, since the function used to ap-
proximate it diverges when the diode voltage become greater than the junction built-in
potential. To avoid function divergence, the capacitance function is approximated with
a linear extrapolation for applied voltage greater than a fraction of the junction built-in
potential.

Cdeplbw
=

{
CJeff · (1− VD

VJ
)−MJ, if VD < FC ·VJ

CJeff · 1−FC·(1+MJI)+MJ·VD
VJ

(1−FC)(1+MJ) , otherwise.

Chapter 8: Circuit Elements and Models 51

Cdeplsw
=

{
CJPeff · (1 − VD

PHP
)−MJSW, if VD < FCS · PHP

CJPeff · 1−FCS·(1+MJSW)+MJSW· VD
PHP

(1−FCS)(1+MJSW) , otherwise.

The temperature affects many of the parameters in the equations above, the following
equations show how. One of the most significant parameter that varies with the temperature
for a semiconductor is the band-gap energy:

EGnom = 1.16 − 7.02e−4 · TNOM2

TNOM + 1108.0

EG(T) = 1.16 − 7.02e−4 · T 2

TNOM + 1108.0

The leakeage currents temperature dependence is:

IS(T) = IS · e
logfactor

N

JSW (T) = JSW · e
logfactor

N

where "logfactor" is defined:

logfactor =
EG

Vt(TNOM)
− EG

Vt(T)
+ XTI · ln(

T

TNOM
)

The contact potentials (bottowall an sidewall) temperature dependence is:

V J(T) = VJ · (T

TNOM
)− Vt(T) · [3 · ln(

T

TNOM
) +

EGnom

Vt(TNOM)
− EG(T)

Vt(T)
]

PHP (T) = PHP · (T

TNOM
)− Vt(T) · [3 · ln(

T

TNOM
) +

EGnom

Vt(TNOM)
− EG(T)

Vt(T)
]

The depletion capacitances temperature dependence is:

CJ(T) = CJ · [1 + MJ · (4.0e−4 · (T − TNOM)− V J(T)
VJ

+ 1)]

CJSW (T) = CJSW · [1 + MJSW · (4.0e−4 · (T − TNOM)− PHP (T)
PHP

+ 1)]

The transit time temperature dependence is:

TT (T) = TT · (1 + TTT1 · (T − TNOM) + TTT2 · (T − TNOM)2)

The junction grading coefficient temperature dependence is:

MJ(T) = MJ · (1 + TM1 · (T − TNOM) + TM2 · (T − TNOM)2)

The series resistance temperature dependence is:

RS(T) = RS · (1 + TRS · (T − TNOM) + TRS2 · (T − TNOM)2)

52 NGSPICE User Manual

8.5.4 Bipolar Junction Transistors (BJTs)

General form:
QXXXXXXX nc nb ne <ns> mname <area=val> <areac=val> <areab=val>
+ <m=val> <off> <ic=vbe, vce> <temp=val> <dtemp=val>

Examples:
Q23 10 24 13 QMOD IC=0.6, 5.0
Q50A 11 26 4 20 MOD1

‘nc’, ‘nb’, and ‘ne’ are the collector, base, and emitter nodes, respectively. ‘ns’ is the
(optional) substrate node.If unspecified, ground is used. ‘mname’ is the model name, ‘area’,
‘areab’, ‘areac’ are the area factors, and ‘off’ indicates an (optional) initial condition on
the device for the dc analysis. If the area factor is omitted, a value of 1.0 is assumed.
The (optional) initial condition specification using ‘ic=vbe, vce’ is intended for use with
the ‘uic’ .tran control line, when a transient analysis is desired starting from other than
the quiescent operating point. See the .ic control line description for a better way to set
transient initial conditions. The (optional) ‘temp’ value is the temperature at which this
device is to operate, and overrides the temperature specification on the .option control
line. Using ‘dtemp’ option you can specify instance’s temperature relative to the circuit
temperature.

8.5.5 BJT Models (NPN/PNP)

NGSPICE provides two BJT device models. The ‘level’ specifies the model to be used:
• level=1 : This is the original spice BJT model, and it is the default model if the ‘level’

keyword is not specified on the .model line.
• level=2 : This is a modified version of the original spice BJT that models both vertical

and lateral devices and includes temperature corrections of collector, emitter and base
resistors.

The bipolar junction transistor model in NGSPICE is an adaptation of the integral
charge control model of Gummel and Poon. This modified Gummel-Poon model extends
the original model to include several effects at high bias levels. The model automatically
simplifies to the simpler Ebers-Moll model when certain parameters are not specified. The
parameter names used in the modified Gummel-Poon model have been chosen to be more
easily understood by the program user, and to reflect better both physical and circuit design
thinking.

The dc model is defined by the parameters ‘IS’, ‘BF’, ‘NF’, ‘ISE’, ‘IKF’, amd ‘NE’ which
determine the forward current gain characteristics, ‘IS’, ‘BR’, ‘NR’, ‘ISC’, ‘IKR’, and ‘NC’
which determine the reverse current gain characteristics, and ‘VAF’ and ‘VAR’ which de-
termine the output conductance for forward and reverse regions. Level 2 model includes
substrate saturation current ‘ISS’.

Three ohmic resistances ‘RB’, ‘RC’, and ‘RE’ are included, where ‘RB’ can be high current
dependent. Base charge storage is modelled by forward and reverse transit times, ‘TF’ and
‘TR’, the forward transit time ‘TF’ being bias dependent if desired, and nonlinear depletion
layer capacitances which are determined by ‘CJE’, ‘VJE’, and ‘NJE’ for the B-E junction,
‘CJC’, ‘VJC’, and ‘NJC’ for the B-C junction and ‘CJS’, ‘VJS’, and ‘MJS’ for the C-S (Collector-
Substrate) junction. Level 2 model defines a substrate capacitance that will be connected
to device’s base or collector, to model lateral or vertical devices.

Chapter 8: Circuit Elements and Models 53

The temperature dependence of the saturation currents, ‘IS’ and ‘ISS’ (for level 2 model),
is determined by the energy-gap, ‘EG’, and the saturation current temperature exponent,
‘XTI’. Additionally base current temperature dependence is modelled by the beta temper-
ature exponent ‘XTB’ in the new model. The values specified are assumed to have been
measured at the temperature ‘TNOM’, which can be specified on the .options control line
or overridden by a specification on the .model line.

The BJT parameters used in the modified Gummel-Poon model are listed below. The
parameter names used in earlier versions of SPICE2 are still accepted.

Modified Gummel-Poon BJT Parameters:

name parameter units default example scale
factor

SUBS substrate connection: 1 for verti-
cal geometry, -1 for lateral geom-
etry. (level 2 only)

1 1.0e-15

IS transport saturation current A 1.0e-16 1.0e-15 area
ISS reverse saturation current,

substrate-to-collector for vertical
device or substrate-to-base for
lateral (level 2 only)

A 1.0e-16 1.0e-15 area

BF ideal maximum forward beta - 100 100
NF forward current emission

coefficient
- 1.0 1

VAF forward Early voltage V infinite 200
IKF corner for forward beta current

roll-off
A infinite 0.01 area

ISE B-E leakage saturation current A 0 1.0e-13 area
NE B-E leakage emission coefficient - 1.5 2
BR ideal maximum reverse beta - 1 0.1
NR reverse current emission

coefficient
- 1 1

VAR reverse Early voltage V infinite 200
IKR corner for reverse beta high cur-

rent roll-off
A infinite 0.01 area

ISC B-C leakage saturation current
(area is "areab" for vertical de-
vices and "areac" for lateral)

A 0 1.0e-13 area

NC B-C leakage emission coefficient - 2 1.5
RB zero bias base resistance Z 0 100 area
IRB current where base resistance falls

halfway to its min value
A infinite 0.1 area

RBM minimum base resistance at high
currents

Z RB 10 area

RE emitter resistance Z 0 1 area
RC collector resistance Z 0 10 area

54 NGSPICE User Manual

CJE B-E zero-bias depletion
capacitance

F 0 2pF area

VJE B-E built-in potential V 0.75 0.6
MJE B-E junction exponential factor - 0.33 0.33
TF ideal forward transit time sec 0 0.1ns
XTF coefficient for bias dependence of

TF
- 0

VTF voltage describing VBC depen-
dence of TF

V infinite

ITF high-current parameter for effect
on TF

A 0 - area

PTF excess phase at
freq=1.0/(TF*2PI) Hz

deg 0

CJC B-C zero-bias depletion capaci-
tance (area is "areab" for vertical
devices and "areac" for lateral)

F 0 2pF area

VJC B-C built-in potential V 0.75 0.5
MJC B-C junction exponential factor - 0.33 0.5
XCJC fraction of B-C depletion capaci-

tance connected to internal base
node

- 1

TR ideal reverse transit time sec 0 10ns
CJS zero-bias collector-substrate ca-

pacitance (area is "areac" for
vertical devices and "areab" for
lateral)

F 0 2pF area

VJS substrate junction built-in
potential

V 0.75

MJS substrate junction exponential
factor

- 0 0.5

XTB forward and reverse beta temper-
ature exponent

- 0

EG energy gap for temperature effect
on IS

eV 1.11

XTI temperature exponent for effect
on IS

- 3

KF flicker-noise coefficient - 0
AF flicker-noise exponent - 1
FC coefficient for forward-bias deple-

tion capacitance formula
- 0.5 o

TNOM Parameter measurement
temperature

oC 27 50

TRE1 1st order temperature coefficient
for RE (level 2 only)

1/oC 0.0 1e-3

Chapter 8: Circuit Elements and Models 55

TRE2 2nd order temperature coefficient
for RE (level 2 only)

1/oC2 0.0 1e-5

TRC1 1st order temperature coefficient
for RC (level 2 only)

1/oC 0.0 1e-3

TRC2 2nd order temperature coefficient
for RC (level 2 only)

1/oC2 0.0 1e-5

TRB1 1st order temperature coefficient
for RB (level 2 only)

1/oC 0.0 1e-3

TRB2 2nd order temperature coefficient
for RB (level 2 only)

1/oC2 0.0 1e-5

TRB1 1st order temperature coefficient
for RBM (level 2 only)

1/oC TRB1 1e-3

TRB2 2nd order temperature coefficient
for RBM (level 2 only)

1/oC2 TRB2 1e-5

8.5.6 Junction Field-Effect Transistors (JFETs)

General form:
JXXXXXXX ND NG NS MNAME <AREA> <OFF> <IC=VDS, VGS> <TEMP=T>

Examples:
J1 7 2 3 JM1 OFF

ND, NG, and NS are the drain, gate, and source nodes, respectively. MNAME is the
model name, AREA is the area factor, and OFF indicates an (optional) initial condition
on the device for dc analysis. If the area factor is omitted, a value of 1.0 is assumed. The
(optional) initial condition specification, using IC=VDS, VGS is intended for use with the
UIC option on the .TRAN control line, when a transient analysis is desired starting from
other than the quiescent operating point. See the .IC control line for a better way to set
initial conditions. The (optional) TEMP value is the temperature at which this device is to
operate, and overrides the temperature specification on the .OPTION control line.

8.5.7 JFET Models (NJF/PJF)

The JFET model is derived from the FET model of Shichman and Hodges. The dc char-
acteristics are defined by the parameters VTO and BETA, which determine the variation
of drain current with gate voltage, LAMBDA, which determines the output conductance,
and IS, the saturation current of the two gate junctions. Two ohmic resistances, RD and
RS, are included. Charge storage is modelled by nonlinear depletion layer capacitances for
both gate junctions which vary as the -1/2 power of junction voltage and are defined by the
parameters CGS, CGD, and PB.

Note that in Spice3f and later, a fitting parameter B has been added. For details, see
[9].
name parameter units default example area
VTO threshold voltage (VT 0) V -2.0 -2.0
BETA transconductance parameter (B) A/V2 1.0e-4 1.0e-3 *
LAMBDA channel-length modulation parameter

(L)
1/V 0 1.0e-4

RD drain ohmic resistance Z 0 100 *

56 NGSPICE User Manual

RS source ohmic resistance Z 0 100 *
CGS zero-bias G-S junction capacitance

(Cgs)
F 0 5pF *

CGD zero-bias G-D junction capacitance
(Cgs)

F 0 1pF *

PB gate junction potential V 1 0.6
IS gate junction saturation current (IS) A 1.0e-14 1.0e-14 *
B doping tail parameter - 1 1.1
KF flicker noise coefficient - 0
AF flicker noise exponent - 1
FC coefficient for forward-bias depletion

capacitance formula
- 0.5

TNOM parameter measurement temperature oC 27 50

8.5.8 MOSFETs

General form:

MXXXXXXX ND NG NS NB MNAME <M=VAL> <L=VAL> <W=VAL> <AD=VAL> <AS=VAL>
+ <PD=VAL> <PS=VAL> <NRD=VAL> <NRS=VAL> <OFF>
+ <IC=VDS, VGS, VBS> <TEMP=T>

Examples:

M1 24 2 0 20 TYPE1
M31 2 17 6 10 MODM L=5U W=2U
M1 2 9 3 0 MOD1 L=10U W=5U AD=100P AS=100P PD=40U PS=40U

ND, NG, NS, and NB are the drain, gate, source, and bulk (substrate) nodes, respec-
tively. MNAME is the model name. M is the multiplicity parameter, which simulates m
paralleled devices. All MOS models support the "M" parameter. L and W are the channel
length and width, in meters. AD and AS are the areas of the drain and source diffusions,
in meters2.

Note that the suffix U specifies microns (1e-6 m) and P sq-microns (1e-12 m2). If any of
L, W, AD, or AS are not specified, default values are used. The use of defaults simplifies
input file preparation, as well as the editing required if device geometries are to be changed.
PD and PS are the perimeters of the drain and source junctions, in meters. NRD and NRS
designate the equivalent number of squares of the drain and source diffusions; these values
multiply the sheet resistance RSH specified on the .MODEL control line for an accurate
representation of the parasitic series drain and source resistance of each transistor. PD and
PS default to 0.0 while NRD and NRS to 1.0. OFF indicates an (optional) initial condition
on the device for dc analysis. The (optional) initial condition specification using IC=VDS,
VGS, VBS is intended for use with the UIC option on the .TRAN control line, when a
transient analysis is desired starting from other than the quiescent operating point. See the
.IC control line for a better and more convenient way to specify transient initial conditions.
The (optional) TEMP value is the temperature at which this device is to operate, and
overrides the temperature specification on the .OPTION control line. The temperature
specification is ONLY valid for level 1, 2, 3, and 6 MOSFETs, not for level 4 or 5 (BSIM)
devices.

Chapter 8: Circuit Elements and Models 57

8.5.9 MOSFET Models (NMOS/PMOS)

MOSFET models are the central part of NGSPICE, probably because they are the most
widely used devices in the electronics world. NGSPICE provides all the MOSFETs im-
plemented in the original Spice3f and adds several models developed by Berkeley’s Device
Group and other independent groups. Not all models below are included in the standard
NGSPICE distribution because of copyright restrictions.

NGSPICE provides four MOSFET device models, which differ in the formulation of the
I-V characteristic. The variable LEVEL specifies the model to be used:

LEVEL Model Notes
1 Shichman-Hodges The classical model
2 MOS2 Described in [2]
3 MOS3 A semi-empirical model (see [1])
4 BSIM Described in [3]
5 BSIM2 Described in [5]
6 MOS6 Described in [2]
8 BSIM3 Described in [13]
9 MOS9 n/a
10 B3SOI n/a
14 BSIM4 n/a
17 HiSIM1 n/a
29 B3SOIPD n/a
30 B3SOIFD n/a
31 B3SOIDD n/a
14 BSIM4 n/a
44 EKV n/a
49 BSIM3v1s n/a (Serban Version)
50 BSIM3v1 n/a (Berkeley Version)
51 BSIM3v1a n/a (Alan Version)
52 BSIM3v0 n/a (Berkeley Version)
62 STAG n/a

Level 44 model (EKV) is not available in the standard distribution since it is not released
in source form. To obtain the code please refer to the EKV group home page.

The dc characteristics of the level 1 through level 3 MOSFETs are defined by the device
parameters VTO, KP, LAMBDA, PHI and GAMMA. These parameters are computed by
NGSPICE if process parameters (NSUB, TOX, ...) are given, but users specified values
always override. VTO is positive (negative) for enhancement mode and negative (positive)
for depletion mode N-channel (P-channel) devices. Charge storage is modelled by three
constant capacitors, CGSO, CGDO, and CGBO which represent overlap capacitances, by
the nonlinear thin-oxide capacitance which is distributed among the gate, source, drain,
and bulk regions, and by the nonlinear depletion-layer capacitances for both substrate
junctions divided into bottom and periphery, which vary as the MJ and MJSW power of
junction voltage respectively, and are determined by the parameters CBD, CBS, CJ, CJSW,
MJ, MJSW and PB. Charge storage effects are modelled by the piecewise linear voltages-
dependent capacitance model proposed by Meyer. The thin-oxide charge-storage effects are
treated slightly different for the LEVEL=1 model. These voltage-dependent capacitances

http://legwww.epfl.ch/ekv/

58 NGSPICE User Manual

are included only if TOX is specified in the input description and they are represented using
Meyer’s formulation.

There is some overlap among the parameters describing the junctions, e.g. the reverse
current can be input either as IS (in A) or as JS (in A/m2). Whereas the first is an absolute
value the second is multiplied by AD and AS to give the reverse current of the drain and
source junctions respectively. This methodology has been chosen since there is no sense
in relating always junction characteristics with AD and AS entered on the device line; the
areas can be defaulted. The same idea applies also to the zero-bias junction capacitances
CBD and CBS (in F) on one hand, and CJ (in F/m2) on the other. The parasitic drain
and source series resistance can be expressed as either RD and RS (in ohms) or RSH (in
ohms/sq.), the latter being multiplied by the number of squares NRD and NRS input on
the device line.

A discontinuity in the MOS level 3 model with respect to the KAPPA parameter has
been detected (see [10]). The supplied fix has been implemented in Spice3f2 and later.
Since this fix may affect parameter fitting, the option "BADMOS3" may be set to use the
old implementation (see the section on simulation variables and the ".OPTIONS" line).
NGSPICE level 1, 2, 3 and 6 parameters:

name parameter units default example
LEVEL model index - 1
VTO zero-bias threshold voltage (VT 0) V 0.0 1.0
KP transconductance parameter A/V 2 2.0e-5 3.1e-5
GAMMA bulk threshold parameter V 1/2 0.0 0.37
PHI surface potential (U) V 0.6 0.65
LAMBDA channel-length modulation (MOS1

and MOS2 only) (L)
1/V 0.0 0.02

RD drain ohmic resistance Z 0.0 1.0
RS source ohmic resistance Z 0.0 1.0
CBD zero-bias B-D junction capacitance F 0.0 20fF
CBS zero-bias B-S junction capacitance F 0.0 20fF
IS bulk junction saturation current (IS) A 1.0e-14 1.0e-15
PB bulk junction potential V 0.8 0.87
CGSO gate-source overlap capacitance per

meter channel width
F/m 0.0 4.0e-11

CGDO gate-drain overlap capacitance per me-
ter channel width

F/m 0.0 4.0e-11

CGBO gate-bulk overlap capacitance per me-
ter channel length

F/m 0.0 2.0e-10

RSH drain and source diffusion sheet
resistance

Z/[] 0.0 10.0

CJ zero-bias bulk junction bottom cap.
per sq-meter of junction area

F/m2 0.0 2.0e-4

MJ bulk junction bottom grading coeff. - 0.5 0.5
CJSW zero-bias bulk junction sidewall cap.

per meter of junction perimeter
F/m 0.0 1.0e-9

Chapter 8: Circuit Elements and Models 59

MJSW bulk junction sidewall grading coeff. - 0.50(level1),
0.33(level2,
3)

JS bulk junction saturation current per
sq-meter of junction area

A/m2 1.0e-8

TOX oxide thickness meter 1.0e-7 1.0e-7
NSUB substrate doping 1/cm3 0.0 4.0e15
NSS surface state density 1/cm2 0.0 1.0e10
NFS fast surface state density 1/cm2 0.0 1.0e10
TPG type of gate material: +1 opp. to sub-

strate, -1 same as substrate, 0 Al gate
- 1.0

XJ metallurgical junction depth meter 0.0 1M
LD lateral diffusion meter 0.0 0.8M
UO surface mobility cm2/V s 600 700
UCRIT critical field for mobility degradation

(MOS2 only)
V/cm 1.0e4 1.0e4

UEXP critical field exponent in mobility
degradation (MOS2 only)

- 0.0 0.1

UTRA transverse field coeff. (mobility)
(deleted for MOS2)

- 0.0 0.3

VMAX maximum drift velocity of carriers m/s 0.0 5.0e4
NEFF total channel-charge (fixed and mo-

bile) coefficient (MOS2 only)
- 1.0 5.0

KF flicker noise coefficient - 0.0 1.0e-26
AF flicker noise exponent - 1.0 1.2
FC coefficient for forward-bias depletion

capacitance formula
- 0.5

DELTA width effect on threshold voltage
(MOS2 and MOS3)

- 0.0 1.0

THETA mobility modulation (MOS3 only) 1/V 0.0 0.1
ETA static feedback (MOS3 only) - 0.0 1.0
KAPPA saturation field factor (MOS3 only) - 0.2 0.5
TNOM parameter measurement temperature oC 27 50

The level 3 model available into ngspice takes into account length and width mask
adjustments (xl and xw) and device width narrowing due to diffusion (wd).

The level 4 and level 5 (BSIM1 and BSIM2) parameters are all values obtained from
process characterization, and can be generated automatically. J. Pierret [4] describes a
means of generating a ’process’ file, and the program Proc2Mod provided with NGSPICE
converts this file into a sequence of BSIM1 ".MODEL" lines suitable for inclusion in a
NGSPICE input file. Parameters marked below with an * in the l/w column also have
corresponding parameters with a length and width dependency. For example, VFB is the
basic parameter with units of Volts, and LVFB and WVFB also exist and have units of
Volt-Mmeter The formula

P = P0 +
PL

Leffective

+
PW

Weffective

60 NGSPICE User Manual

is used to evaluate the parameter for the actual device specified with

Leffective = Linput −DL

and

Weffective = Winput −DW

Note that unlike the other models in NGSPICE, the BSIM model is designed for use
with a process characterization system that provides all the parameters, thus there are no
defaults for the parameters, and leaving one out is considered an error. For an example set
of parameters and the format of a process file, see the SPICE2 implementation notes[3].

For more information on BSIM2, see reference [5].

NGSPICE BSIM (level 4) parameters.

name parameter units l/w
VFB flat-band voltage V *
PHI surface inversion potential V *
K1 body effect coefficient V(1/2) *
K2 drain/source depletion charge-sharing

coefficient
- *

ETA zero-bias drain-induced barrier-lowering
coefficient

- *

MUZ zero-bias mobility cm2/V-s
DL shortening of channel Mm
DW narrowing of channel Mm
U0 zero-bias transverse-field mobility degradation

coefficient
V−1 *

U1 zero-bias velocity saturation coefficient Mm/V *
X2MZ sens. of mobility to substrate bias at V ds=0 cm2/V-s *
X2E sens. of drain-induced barrier lowering effect to

substrate bias
V−1 *

X3E sens. of drain-induced barrier lowering effect to
drain bias at V ds=V dd

V−1 *

X2U0 sens. of transverse field mobility degradation
effect to substrate bias

V2 *

X2U1 sens. of velocity saturation effect to substrate
bias

MmV2 *

MUS mobility at zero substrate bias and at
V ds=V dd

cm2/V2-s

X2MS sens. of mobility to substrate bias at
V ds=V dd

cm2/V2-s *

X3MS sens. of mobility to drain bias at V ds=V dd cm2/V2-s *
X3U1 sens. of velocity saturation effect on drain bias

at V ds=V dd
MmV2 *

TOX gate oxide thickness Mm

Chapter 8: Circuit Elements and Models 61

TEMP temperature at which parameters were
measured

C

VDD measurement bias range V
CGDO gate-drain overlap capacitance per meter chan-

nel width
F/m

CGSO gate-source overlap capacitance per meter chan-
nel width

F/m

CGBO gate-bulk overlap capacitance per meter channel
length

F/m

XPART gate-oxide capacitance-charge model flag -
N0 zero-bias subthreshold slope coefficient - *
NB sens. of subthreshold slope to substrate bias - *
ND sens. of subthreshold slope to drain bias - *
RSH drain and source diffusion sheet resistance Z/[]
JS source drain junction current density A/m2

PB built in potential of source drain junction V
MJ Grading coefficient of source drain junction -
BSW built in potential of source, drain junction

sidewall
V

MJSW grading coefficient of source drain junction
sidewall

-

CJ Source drain junction capacitance per unit area F/m2

CJSW source drain junction sidewall capacitance per
unit length

F/m

WDF source drain junction default width m
DELL Source drain junction length reduction m

XPART = 0 selects a 40/60 drain/source charge partition in saturation, while XPART=1
selects a 0/100 drain/source charge partition.

ND, NG, and NS are the drain, gate, and source nodes, respectively. MNAME is the
model name, AREA is the area factor, and OFF indicates an (optional) initial condition
on the device for dc analysis. If the area factor is omitted, a value of 1.0 is assumed. The
(optional) initial condition specification, using IC=VDS, VGS is intended for use with the
UIC option on the .TRAN control line, when a transient analysis is desired starting from
other than the quiescent operating point. See the .IC control line for a better way to set
initial conditions.

8.5.10 MESFETs

General form:
ZXXXXXXX ND NG NS MNAME <AREA> <OFF> <IC=VDS, VGS>

Examples:
Z1 7 2 3 ZM1 OFF

8.5.11 MESFET Models (NMF/PMF)

The MESFET model is derived from the GaAs FET model of Statz et al. as described
in [11]. The dc characteristics are defined by the parameters VTO, B, and BETA, which

62 NGSPICE User Manual

determine the variation of drain current with gate voltage, ALPHA, which determines
saturation voltage, and LAMBDA, which determines the output conductance. The formula
are given by: Id = B(Vgs−VT)2

1+b(Vgs−VT)

∣∣∣1− ∣∣1 −AVds

3

∣∣3∣∣∣ (1 + LVds) for 0 < Vds < 3/A

Id = B(Vgs−VT)2

1+b(Vgs−VT)
(1 + LVds) for Vds > 3/A

Two ohmic resistances, RD and RS, are included. Charge storage is modeled by total
gate charge as a function of gate-drain and gate-source voltages and is defined by the
parameters CGS, CGD, and PB.
name parameter units default example area
VTO pinch-off voltage V -2.0 -2.0
BETA transconductance parameter A/V2 1.0e-4 1.0e-3 *
B doping tail extending parameter 1/V 0.3 0.3 *
ALPHA saturation voltage parameter 1/V 2 2 *
LAMBDA channel-length modulation parameter 1/V 0 1.0e-4
RD drain ohmic resistance Z 0 100 *
RS source ohmic resistance Z 0 100 *
CGS zero-bias G-S junction capacitance F 0 5pF *
CGD zero-bias G-D junction capacitance F 0 1pF *
PB gate junction potential V 1 0.6
KF flicker noise coefficient - 0
AF flicker noise exponent - 1
FC coefficient for forward-bias depletion

capacitance formula
- 0.5

Chapter 9: Analyses and Output Control 63

9 Analyses and Output Control

The following command lines are for specifying analyses or plots within the circuit descrip-
tion file. Parallel commands exist in the interactive command interpreter (detailed in the
following section). Specifying analyses and plots (or tables) in the input file is useful for
batch runs. Batch mode is entered when either the -b option is given or when the default
input source is redirected from a file. In batch mode, the analyses specified by the control
lines in the input file (e.g. ".ac", ".tran", etc.) are immediately executed (unless ".control"
lines exists; see the section on the interactive command interpreter). If the -r rawfile option
is given then all data generated is written to a Ngspice rawfile. The rawfile may be read by
either the interactive mode of Ngspice or by nutmeg; see the previous section for details.
In this case, the .SAVE line (see below) may be used to record the value of internal device
variables (see Appendix B).

If a rawfile is not specified, then output plots (in "line-printer" form) and tables can
be printed according to the .PRINT, .PLOT, and .FOUR control lines, described next.
.PLOT, .PRINT, and .FOUR lines are meant for compatibility with Spice2.

9.1 Simulator Variables (.OPTIONS)

Various parameters of the simulations available in Ngspice can be altered to control the
accuracy, speed, or default values for some devices. These parameters may be changed via
the "set" command (described later in the section on the interactive front-end) or via the
".OPTIONS" line:

General form:
.OPTIONS OPT1 OPT2 ... (or OPT=OPTVAL ...)

Examples:
.OPTIONS RELTOL=.005 TRTOL=8

The options line allows the user to reset program control and user options for specific
simulation purposes. Additional options for Nutmeg may be specified as well and take effect
when Nutmeg reads the input file. Options specified to Nutmeg via the ’set’ command are
also passed on to NGSPICE as if specified on a .OPTIONS line. See the following section on
the interactive command interpreter for the parameters which may be set with a .OPTIONS
line and the format of the ’set’ command. Any combination of the following options may
be included, in any order. ’x’ (below) represents some positive number.

ABSTOL=x

resets the absolute current error tolerance of the program. The default value is
1 picoamp.

BADMOS3

Use the older version of the MOS3 model with the "kappa" discontinuity.

CHGTOL=x

resets the charge tolerance of the program. The default value is 1.0e-14.

DEFAD=x

resets the value for MOS drain diffusion area; the default is 0.0.

64 NGSPICE User Manual

DEFAS=x

resets the value for MOS source diffusion area; the default is 0.0.

DEFL=x

resets the value for MOS channel length; the default is 100.0 micrometer.

DEFW=x

resets the value for MOS channel width; the default is 100.0 micrometer.

GMIN=x

resets the value of GMIN, the minimum conductance allowed by the program.
The default value is 1.0e-12.

ITL1=x

resets the dc iteration limit. The default is 100.

ITL2=x

resets the dc transfer curve iteration limit. The default is 50.

ITL3=x

resets the lower transient analysis iteration limit. the default value is 4. (Note:
not implemented in Ngspice).

ITL4=x

resets the transient analysis timepoint iteration limit. the default is 10.

ITL5=x

resets the transient analysis total iteration limit. the default is 5000. Set
ITL5=0 to omit this test. (Note: not implemented in Ngspice).

KEEPOPINFO
Retain the operating point information when either an AC, Distortion, or Pole-
Zero analysis is run. This is particularly useful if the circuit is large and you
do not want to run a (redundant) ".OP" analysis.

METHOD=name
sets the numerical integration method used by NGSPICE. Possible names are
"Gear" or "trapezoidal" (or just "trap"). The default is trapezoidal.

PIVREL=x

resets the relative ratio between the largest column entry and an
acceptable pivot value. The default value is 1.0e-3. In the numerical
pivoting algorithm the allowed minimum pivot value is determined by
EPSREL=AMAX1(PIVREL*MAXVAL, PIVTOL) where MAXVAL is the
maximum element in the column where a pivot is sought (partial pivoting).

PIVTOL=x

resets the absolute minimum value for a matrix entry to be accepted as a pivot.
The default value is 1.0e-13.

RELTOL=x

resets the relative error tolerance of the program. The default value is 0.001
(0.1%).

Chapter 9: Analyses and Output Control 65

TEMP=x

Resets the operating temperature of the circuit. The default value is 27 deg C
(300 deg K). TEMP can be overridden by a temperature specification on any
temperature dependent instance.

TNOM=x

resets the nominal temperature at which device parameters are measured. The
default value is 27 deg C (300 deg K). TNOM can be overridden by a specifi-
cation on any temperature dependent device model.

TRTOL=x

resets the transient error tolerance. The default value is 7.0. This parame-
ter is an estimate of the factor by which NGSPICE overestimates the actual
truncation error.

TRYTOCOMPACT
Applicable only to the LTRA model. When specified, the simulator tries to
condense LTRA transmission lines’ past history of input voltages and currents.

VNTOL=x

resets the absolute voltage error tolerance of the program. The default value is
1 microvolt.

In addition, the following options have the listed effect when operating in spice2 emula-
tion mode:

ACCT

causes accounting and run time statistics to be printed

LIST

causes the summary listing of the input data to be printed

NOMOD

suppresses the printout of the model parameters

NOPAGE

suppresses page ejects

NODE

causes the printing of the node table.

OPTS

causes the option values to be printed.

9.2 Initial Conditions

9.2.1 .NODESET: Specify Initial Node Voltage Guesses

General form:
.NODESET V(NODNUM)=VAL V(NODNUM)=VAL ...

Examples:

66 NGSPICE User Manual

.NODESET V(12)=4.5 V(4)=2.23

The Nodeset line helps the program find the dc or initial transient solution by making
a preliminary pass with the specified nodes held to the given voltages. The restriction is
then released and the iteration continues to the true solution. The .NODESET line may be
necessary for convergence on bistable or a-stable circuits. In general, this line should not
be necessary.

9.2.2 .IC: Set Initial Conditions

General form:

.IC V(NODNUM)=VAL V(NODNUM)=VAL ...

Examples:

.IC V(11)=5 V(4)=-5 V(2)=2.2

The IC line is for setting transient initial conditions. It has two different interpretations,
depending on whether the UIC parameter is specified on the .TRAN control line. Also, one
should not confuse this line with the .NODESET line. The .NODESET line is only to help
dc convergence, and does not affect final bias solution (except for multi-stable circuits).
The two interpretations of this line are as follows:

1. When the UIC parameter is specified on the .TRAN line, then the node voltages spec-
ified on the .IC control line are used to compute the capacitor, diode, BJT, JFET,
and MOSFET initial conditions. This is equivalent to specifying the IC=... parameter
on each device line, but is much more convenient. The IC=... parameter can still be
specified and takes precedence over the .IC values. Since no dc bias (initial transient)
solution is computed before the transient analysis, one should take care to specify all
dc source voltages on the .IC control line if they are to be used to compute device
initial conditions.

2. When the UIC parameter is not specified on the .TRAN control line, the dc bias (initial
transient) solution is computed before the transient analysis. In this case, the node
voltages specified on the .IC control line is forced to the desired initial values during
the bias solution. During transient analysis, the constraint on these node voltages
is removed. This is the preferred method since it allows NGSPICE to compute a
consistent dc solution.

9.3 Analyses

9.3.1 .AC: Small-Signal AC Analysis

General form:

.AC DEC ND FSTART FSTOP

.AC OCT NO FSTART FSTOP

.AC LIN NP FSTART FSTOP

Examples:

.AC DEC 10 1 10K

.AC DEC 10 1K 100MEG

.AC LIN 100 1 100HZ

Chapter 9: Analyses and Output Control 67

DEC stands for decade variation, and ND is the number of points per decade. OCT
stands for octave variation, and NO is the number of points per octave. LIN stands for
linear variation, and NP is the number of points. FSTART is the starting frequency, and
FSTOP is the final frequency. If this line is included in the input file, NGSPICE performs
an AC analysis of the circuit over the specified frequency range. Note that in order for this
analysis to be meaningful, at least one independent source must have been specified with
an ac value.

9.3.2 .DC: DC Transfer Function

General form:
.DC SRCNAM VSTART VSTOP VINCR [SRC2 START2 STOP2 INCR2]

Examples:
.DC VIN 0.25 5.0 0.25
.DC VDS 0 10 .5 VGS 0 5 1
.DC VCE 0 10 .25 IB 0 10U 1U
.DC RLoad 1k 2k 100
.DC TEMP -15 75 5

The DC line defines the dc transfer curve source and sweep limits (again with capacitors
open and inductors shorted). SRCNAM is the name of an independent voltage or current
source, a resistor or the circuit temperature. VSTART, VSTOP, and VINCR are the start-
ing, final, and incrementing values respectively. The first example causes the value of the
voltage source VIN to be swept from 0.25 Volts to 5.0 Volts in increments of 0.25 Volts.
A second source (SRC2) may optionally be specified with associated sweep parameters. In
this case, the first source is swept over its range for each value of the second source. This
option can be useful for obtaining semiconductor device output characteristics. See the
second example circuit description in Appendix A.

9.3.3 .DISTO: Distortion Analysis

General form:
.DISTO DEC ND FSTART FSTOP <F2OVERF1>
.DISTO OCT NO FSTART FSTOP <F2OVERF1>
.DISTO LIN NP FSTART FSTOP <F2OVERF1>

Examples:
.DISTO DEC 10 1kHz 100Mhz
.DISTO DEC 10 1kHz 100Mhz 0.9

The Disto line does a small-signal distortion analysis of the circuit. A multi-dimensional
Volterra series analysis is done using multi-dimensional Taylor series to represent the nonlin-
earities at the operating point. Terms of up to third order are used in the series expansions.

If the optional parameter F2OVERF1 is not specified, .DISTO does a harmonic analysis
- i.e., it analyses distortion in the circuit using only a single input frequency F1, which is
swept as specified by arguments of the .DISTO command exactly as in the .AC command.
Inputs at this frequency may be present at more than one input source, and their magnitudes
and phases are specified by the arguments of the DISTOF1 keyword in the input file lines
for the input sources (see the description for independent sources). (The arguments of the
DISTOF2 keyword are not relevant in this case).

68 NGSPICE User Manual

The analysis produces information about the A.C. values of all node voltages and branch
currents at the harmonic frequencies 2F1 and 3F1, vs. the input frequency F1 as it is
swept. (A value of 1 (as a complex distortion output) signifies cos(2J(2F1)t) at 2F1 and
cos(2J(3F1)t) at 3F1, using the convention that 1 at the input fundamental frequency is
equivalent to cos(2JF1t).) The distortion component desired (2F1 or 3F1) can be selected
using commands in nutmeg, and then printed or plotted. (Normally, one is interested
primarily in the magnitude of the harmonic components, so the magnitude of the AC
distortion value is looked at). It should be noted that these are the A.C. values of the
actual harmonic components, and are not equal to HD2 and HD3. To obtain HD2 and
HD3, one must divide by the corresponding A.C. values at F1, obtained from an .AC line.
This division can be done using nutmeg commands.

If the optional F2OVERF1 parameter is specified, it should be a real number between
(and not equal to) 0.0 and 1.0; in this case, .DISTO does a spectral analysis. It considers the
circuit with sinusoidal inputs at two different frequencies F1 and F 2. F1 is swept according
to the .DISTO control line options exactly as in the .AC control line. F2 is kept fixed at a
single frequency as F1 sweeps - the value at which it is kept fixed is equal to F2OVERF1
times FSTART. Each independent source in the circuit may potentially have two (super-
imposed) sinusoidal inputs for distortion, at the frequencies F1 and F 2. The magnitude
and phase of the F1 component are specified by the arguments of the DISTOF1 keyword
in the source’s input line (see the description of independent sources); the magnitude and
phase of the F2 component are specified by the arguments of the DISTOF2 keyword. The
analysis produces plots of all node voltages/branch currents at the intermodulation product
frequencies F1 +F2, F1−F2, and (2F1)−F2, vs the swept frequency F1. The IM product of
interest may be selected using the setplot command, and displayed with the print and plot
commands. It is to be noted as in the harmonic analysis case, the results are the actual AC
voltages and currents at the intermodulation frequencies, and need to be normalized with
respect to .AC values to obtain the IM parameters.

If the DISTOF1 or DISTOF2 keywords are missing from the description of an indepen-
dent source, then that source is assumed to have no input at the corresponding frequency.
The default values of the magnitude and phase are 1.0 and 0.0 respectively. The phase
should be specified in degrees.

It should be carefully noted that the number F2OVERF1 should ideally be an irrational
number, and that since this is not possible in practice, efforts should be made to keep
the denominator in its fractional representation as large as possible, certainly above 3,
for accurate results (i.e., if F2OVERF1 is represented as a fraction A/B, where A and B
are integers with no common factors, B should be as large as possible; note that A < B
because F2OVERF1 is constrained to be < 1). To illustrate why, consider the cases where
F2OVERF1 is 49/100 and 1/2. In a spectral analysis, the outputs produced are at F1 +F2,
F1−F2 and 2F1−F2. In the latter case, F1−F2 = F2, so the result at the F1−F2 component
is erroneous because there is the strong fundamental F2 component at the same frequency.
Also, F1 + F2 = 2F1 − F2 in the latter case, and each result is erroneous individually. This
problem is not there in the case where F2OVERF1 = 49/100, because F1 − F2 = 51/100
F1 <> 49/100 F1 = F2. In this case, there are two very closely spaced frequency components
at F2 and F1−F2. One of the advantages of the Volterra series technique is that it computes
distortions at mix frequencies expressed symbolically (i.e. nF1 +mF2), therefore one is able
to obtain the strengths of distortion components accurately even if the separation between

Chapter 9: Analyses and Output Control 69

them is very small, as opposed to transient analysis for example. The disadvantage is of
course that if two of the mix frequencies coincide, the results are not merged together and
presented (though this could presumably be done as a postprocessing step). Currently,
the interested user should keep track of the mix frequencies himself or herself and add the
distortions at coinciding mix frequencies together should it be necessary.

9.3.4 .NOISE: Noise Analysis

General form:

.NOISE V(OUTPUT <,REF>) SRC (DEC | LIN | OCT) PTS FSTART FSTOP
+ <PTS_PER_SUMMARY>

Examples:

.NOISE V(5) VIN DEC 10 1kHZ 100Mhz

.NOISE V(5,3) V1 OCT 8 1.0 1.0e6 1

The Noise line does a noise analysis of the circuit. OUTPUT is the node at which
the total output noise is desired; if REF is specified, then the noise voltage V(OUTPUT)
- V(REF) is calculated. By default, REF is assumed to be ground. SRC is the name
of an independent source to which input noise is referred. PTS, FSTART and FSTOP
are .AC type parameters that specify the frequency range over which plots are desired.
PTS PER SUMMARY is an optional integer; if specified, the noise contributions of each
noise generator is produced every PTS PER SUMMARY frequency points.

The .NOISE control line produces two plots - one for the Noise Spectral Density curves
and one for the total Integrated Noise over the specified frequency range. All noise volt-
ages/currents are in squared units (V2 /Hz and A2/Hz for spectral density, V2 and A2 for
integrated noise).

9.3.5 .OP: Operating Point Analysis

General form:

.OP

The inclusion of this line in an input file directs NGSPICE to determine the dc operating
point of the circuit with inductors shorted and capacitors opened. Note: a DC analysis is
automatically performed prior to a transient analysis to determine the transient initial
conditions, and prior to an AC small-signal, Noise, and Pole-Zero analysis to determine
the linearized, small-signal models for nonlinear devices (see the KEEPOPINFO variable
above).

9.3.6 .PZ: Pole-Zero Analysis

General form:

.PZ NODE1 NODE2 NODE3 NODE4 CUR POL

.PZ NODE1 NODE2 NODE3 NODE4 CUR ZER

.PZ NODE1 NODE2 NODE3 NODE4 CUR PZ

.PZ NODE1 NODE2 NODE3 NODE4 VOL POL

.PZ NODE1 NODE2 NODE3 NODE4 VOL ZER

.PZ NODE1 NODE2 NODE3 NODE4 VOL PZ

Examples:

70 NGSPICE User Manual

.PZ 1 0 3 0 CUR POL

.PZ 2 3 5 0 VOL ZER

.PZ 4 1 4 1 CUR PZ

CUR stands for a transfer function of the type (output voltage)/(input current) while
VOL stands for a transfer function of the type (output voltage)/(input voltage). POL
stands for pole analysis only, ZER for zero analysis only and PZ for both. This feature
is provided mainly because if there is a nonconvergence in finding poles or zeros, then, at
least the other can be found. Finally, NODE1 and NODE2 are the two input nodes and
NODE3 and NODE4 are the two output nodes. Thus, there is complete freedom regarding
the output and input ports and the type of transfer function.

In interactive mode, the command syntax is the same except that the first field is PZ
instead of .PZ. To print the results, one should use the command ’print all’.

9.3.7 .SENS: DC or Small-Signal AC Sensitivity Analysis

General form:

.SENS OUTVAR

.SENS OUTVAR AC DEC ND FSTART FSTOP

.SENS OUTVAR AC OCT NO FSTART FSTOP

.SENS OUTVAR AC LIN NP FSTART FSTOP

Examples:

.SENS V(1,OUT)

.SENS V(OUT) AC DEC 10 100 100k

.SENS I(VTEST)

The sensitivity of OUTVAR to all non-zero device parameters is calculated when the
SENS analysis is specified. OUTVAR is a circuit variable (node voltage or voltage-source
branch current). The first form calculates sensitivity of the DC operating-point value of
OUTVAR. The second form calculates sensitivity of the AC values of OUTVAR. The pa-
rameters listed for AC sensitivity are the same as in an AC analysis (see ".AC" above). The
output values are in dimensions of change in output per unit change of input (as opposed
to percent change in output or per percent change of input).

9.3.8 .TF: Transfer Function Analysis

General form:

.TF OUTVAR INSRC

Examples:

.TF V(5, 3) VIN

.TF I(VLOAD) VIN

The TF line defines the small-signal output and input for the dc small-signal analysis.
OUTVAR is the smallsignal output variable and INSRC is the small-signal input source. If
this line is included, NGSPICE computes the dc small-signal value of the transfer function
(output/input), input resistance, and output resistance. For the first example, NGSPICE
would compute the ratio of V(5, 3) to VIN, the small-signal input resistance at VIN, and
the smallsignal output resistance measured across nodes 5 and 3.

Chapter 9: Analyses and Output Control 71

9.3.9 .TRAN: Transient Analysis

General form:
.TRAN TSTEP TSTOP <TSTART <TMAX>>

Examples:
.TRAN 1NS 100NS
.TRAN 1NS 1000NS 500NS
.TRAN 10NS 1US

TSTEP is the printing or plotting increment for lineprinter output. For use with the
post-processor, TSTEP is the suggested computing increment. TSTOP is the final time, and
TSTART is the initial time. If TSTART is omitted, it is assumed to be zero. The transient
analysis always begins at time zero. In the interval <zero, TSTART>, the circuit is analyzed
(to reach a steady state), but no outputs are stored. In the interval <TSTART, TSTOP>, the
circuit is analyzed and outputs are stored. TMAX is the maximum stepsize that NGSPICE
uses; for default, the program chooses either TSTEP or (TSTOP-TSTART)/50.0, whichever
is smaller. TMAX is useful when one wishes to guarantee a computing interval which is
smaller than the printer increment, TSTEP.

UIC (use initial conditions) is an optional keyword which indicates that the user does not
want NGSPICE to solve for the quiescent operating point before beginning the transient
analysis. If this keyword is specified, NGSPICE uses the values specified using IC=... on
the various elements as the initial transient condition and proceeds with the analysis. If
the .IC control line has been specified, then the node voltages on the .IC line are used to
compute the initial conditions for the devices. Look at the description on the .IC control
line for its interpretation when UIC is not specified.

9.4 Batch Output

9.4.1 .SAVE Lines

General form:
.SAVE vector vector vector ...

Examples:
.SAVE i(vin) input output
.SAVE @m1[id]

The vectors listed on the .SAVE line are recorded in the rawfile for use later with ngspice
or nutmeg (nutmeg is just the data-analysis half of ngspice, without the ability to simulate).
The standard vector names are accepted. If no .SAVE line is given, then the default set of
vectors are saved (node voltages and voltage source branch currents). If .SAVE lines are
given, only those vectors specified are saved. For more discussion on internal device data,
see Appendix B. See also the section on the interactive command interpreter for information
on how to use the rawfile.

9.4.2 .PRINT Lines

General form:
.PRINT PRTYPE OV1 <OV2 ... OV8>

Examples:

72 NGSPICE User Manual

.PRINT TRAN V(4) I(VIN)

.PRINT DC V(2) I(VSRC) V(23, 17)

.PRINT AC VM(4, 2) VR(7) VP(8, 3)

The Print line defines the contents of a tabular listing of one to eight output variables.
PRTYPE is the type of the analysis (DC, AC, TRAN, NOISE, or DISTO) for which the
specified outputs are desired. The form for voltage or current output variables is the same
as given in the previous section for the print command; Spice2 restricts the output variable
to the following forms (though this restriction is not enforced by Ngspice):

V(N1<,N2>)
specifies the voltage difference between nodes N1 and N2. If N2 (and the
preceding comma) is omitted, ground (0) is assumed. See the print command
in the previous section for more details. For compatibility with spice2, the
following five additional values can be accessed for the ac analysis by replacing
the "V" in V(N1,N2) with:

VR - real part
VI - imaginary part
VM - magnitude
VP - phase
VDB - 20 log10(magnitude)

I(VXXXXXXX)
specifies the current flowing in the independent voltage source named
VXXXXXXX. Positive current flows from the positive node, through
the source, to the negative node. For the ac analysis, the corresponding
replacements for the letter I may be made in the same way as described for
voltage outputs.

Output variables for the noise and distortion analyses have a different general form from
that of the other analyses.

There is no limit on the number of .PRINT lines for each type of analysis.

9.4.3 .PLOT Lines

General form:

.PLOT PLTYPE OV1 <(PLO1, PHI1)> <OV2 <(PLO2, PHI2)> ... OV8>

Examples:

.PLOT DC V(4) V(5) V(1)

.PLOT TRAN V(17, 5) (2, 5) I(VIN) V(17) (1, 9)

.PLOT AC VM(5) VM(31, 24) VDB(5) VP(5)

.PLOT DISTO HD2 HD3(R) SIM2

.PLOT TRAN V(5, 3) V(4) (0, 5) V(7) (0, 10)

The Plot line defines the contents of one plot of from one to eight output variables.
PLTYPE is the type of analysis (DC, AC, TRAN, NOISE, or DISTO) for which the specified
outputs are desired. The syntax for the OVI is identical to that for the .PRINT line and
for the plot command in the interactive mode.

The overlap of two or more traces on any plot is indicated by the letter X.

Chapter 9: Analyses and Output Control 73

When more than one output variable appears on the same plot, the first variable specified
is printed as well as plotted. If a printout of all variables is desired, then a companion
.PRINT line should be included.

There is no limit on the number of .PLOT lines specified for each type of analysis.

9.4.4 .FOUR: Fourier Analysis of Transient Analysis Output

General form:
.FOUR FREQ OV1 <OV2 OV3 ...>

Examples:
.FOUR 100K V(5)

The Four (or Fourier) line controls whether NGSPICE performs a Fourier analysis as a
part of the transient analysis. FREQ is the fundamental frequency, and OV1, desired. The
Fourier analysis is performed over the interval <TSTOP-period, TSTOP>, where TSTOP is
the final time specified for the transient analysis, and period is one period of the fundamental
frequency. The dc component and the first nine harmonics are determined. For maximum
accuracy, TMAX (see the .TRAN line) should be set to period/100.0 (or less for very high-Q
circuits).

74 NGSPICE User Manual

Chapter 10: Interactive Interpreter 75

10 Interactive Interpreter

Ngspice consists of a simulator and a front-end for data analysis and plotting. The front-end
may be run as a separate "stand-alone" program under the name Nutmeg.

Nutmeg will read in the "raw" data output file created by ngspice -r or with the write
command in an interactive Ngspice session. Nutmeg or interactive Ngspice can plot data
from a simulation on a graphics terminal or a workstation display. Most of the commands
available in the interactive Ngspice front end are available in nutmeg; where this is not the
case, ngspice-only commands have been marked with an asterisk ("*"). Note that the raw
output file is different from the data that Spice2 writes to the standard output, which may
also be produced by ngspice with the "-b" command line option.

Ngspice and Nutmeg use the X Window System for plotting if they find the environment
variable DISPLAY. Otherwise, a graphics-terminal independent interface (MFB) is used. If
you are using X on a workstation, the DISPLAY variable should already be set; if you want
to display graphics on a system different from the one you are running Ngspice or Nutmeg
on, DISPLAY should be of the form "machine:0.0". See the appropriate documentation on
the X Window System for more details.

Command Synopsis
ngspice [-n] [-t term] [-r rawfile] [-b] [-i] [input file ...]

nutmeg [-] [-n] [-t term] [datafile ...]

Options are:

-

Don’t try to load the default data file ("rawspice.raw") if no other files are
given. Nutmeg only.

-n (or -N)
Don’t try to source the file ".spiceinit" upon startup. Normally ngspice and
nutmeg try to find the file in the current directory, and if it is not found then
in the user’s home directory.

-t term (or -T term)
The program is being run on a terminal with mfb name term.

-b (or -B)
Run in batch mode. Ngspice reads the default input source (e.g. keyboard)
or reads the given input file and performs the analyses specified; output is
either Spice2-like line-printer plots ("ascii plots") or a ngspice rawfile. See the
following section for details. Note that if the input source is not a terminal
(e.g. using the IO redirection notation of "<") Ngspice defaults to batch mode
(-i overrides). This option is valid for Ngspice only.

-s (or -S)
Run in server mode. This is like batch mode, except that a temporary rawfile is
used and then written to the standard output, preceded by a line with a single
"@", after the simulation is done. This mode is used by the ngspice daemon.
This option is valid for Ngspice only.

76 NGSPICE User Manual

-i (or -I)
Run in interactive mode. This is useful if the standard input is not a terminal
but interactive mode is desired. Command completion is not available unless
the standard input is a terminal, however. This option is valid for Ngspice only.

-r rawfile (or -P rawfile)
Use rawfile as the default file into which the results of the simulation are saved.
This option is valid for Ngspice only.

Further arguments to ngspice are taken to be Ngspice input files, which are read and
saved (if running in batch mode then they are run immediately). Ngspice accepts most
Spice2 input file, and output ascii plots, fourier analyses, and node printouts as specified
in .plot, .four, and .print cards. If an out parameter is given on a .width card, the effect is
the same as set width = Since Ngspice ascii plots do not use multiple ranges, however,
if vectors together on a .plot card have different ranges they are not provide as much
information as they would in Spice2. The output of Ngspice is also much less verbose than
Spice2, in that the only data printed is that requested by the above cards.

For nutmeg, further arguments are taken to be data files in binary or ascii format (see
sconvert(1)) which are loaded into nutmeg. If the file is in binary format, it may be only
partially completed (useful for examining Spice2 output before the simulation is finished).
One file may contain any number of data sets from different analyses.

10.1 Expressions, Functions, and Constants

Ngspice and Nutmeg data is in the form of vectors: time, voltage, etc. Each vector has a
type, and vectors can be operated on and combined algebraically in ways consistent with
their types. Vectors are normally created when a data file is read in (see the load command
below), and when the initial datafile is loaded. They can also be created with the let
command.

An expression is an algebraic formula involving vectors and scalars (a scalar is a vector
of length 1) and the following operations:

+ - * / ^ %

% is the modulo operator, and the comma operator has two meanings: if it is present in
the argument list of a user definable function, it serves to separate the arguments. Other-
wise, the term x , y is synonymous with x + j(y).

Also available are the logical operations & (and), | (or), ! (not), and the relational
operations <, >, >=, <=, =, and <> (not equal). If used in an algebraic expression they
work like they would in C, producing values of 0 or 1. The relational operators have the
following synonyms:

gt >
lt <
ge >=
le <=
ne <>
eq =
and &
or |

Chapter 10: Interactive Interpreter 77

not !

These are useful when < and > might be confused with IO redirection (which is almost
always).

The following functions are available:

mag(vector)
The magnitude of vector

ph(vector)
The phase of vector

j(vector)
i (sqrt(-1)) times vector

real(vector)
The real component of vector

imag(vector)
The imaginary part of vector

db(vector)
20 log10(mag(vector))

log(vector)
The logarithm (base 10) of vector

ln(vector)
The natural logarithm (base e) of vector

exp(vector)
e to the vector power

abs(vector)
The absolute value of vector.

sqrt(vector)
The square root of vector.

sin(vector)
The sine of vector.

cos(vector)
The cosine of vector.

tan(vector)
The tangent of vector.

atan(vector)
The inverse tangent of vector.

norm(vector)
The vector normalized to 1 (i.e, the largest magnitude of any component is 1).

rnd(vector)
A vector with each component a random integer between 0 and the absolute
value of the vectors’s corresponding component.

78 NGSPICE User Manual

mean(vector)
The result is a scalar (a length 1 vec tor) that is the mean of the elements of
vector.

vector(number)
The result is a vector of length number, with elements 0, 1, ... number - 1. If
number is a vector then just the first element is taken, and if it isn’t an integer
then the floor of the magnitude is used.

length(vector)
The length of vector.

interpolate(plot.vector)
The result of interpolating the named vector onto the scale of the current plot.
This function uses the variable polydegree to determine the degree of interpo-
lation.

deriv(vector)
Calculates the derivative of the given vector. This uses numeric differentiation
by interpolating a polynomial and may not produce satisfactory results (par-
ticularly with iterated differentiation). The implementation only calculates the
derivative with respect to the real component of that vector’s scale.

A vector may be either the name of a vector already defined or a floating-point number (a
scalar). A number may be written in any format acceptable to NGSPICE, such as 14.6Meg
or -1.231e-4. Note that you can either use scientific notation or one of the abbreviations
like MEG or G, but not both. As with NGSPICE, a number may have trailing alphabetic
characters after it.

The notation expr [num] denotes the num’th element of expr. For multi-dimensional
vectors, a vector of one less dimension is returned. Also for multi-dimensional vectors, the
notation expr[m][n] will return the nth element of the mth subvector. To get a subrange of
a vector, use the form expr[lower, upper].

To reference vectors in a plot that is not the current plot (see the setplot command,
below), the notation plotname.vecname can be used.

Either a plotname or a vector name may be the wildcard all. If the plotname is all,
matching vectors from all plots are specified, and if the vector name is all, all vectors in the
specified plots are referenced. Note that you may not use binary operations on expressions
involving wildcards - it is not obvious what all + all should denote, for instance. Thus some
(contrived) examples of expressions are:

cos(TIME) + db(v(3))
sin(cos(log([1 2 3 4 5 6 7 8 9 10])))
TIME * rnd(v(9)) - 15 * cos(vin#branch) ^ [7.9e5 8]
not ((ac3.FREQ[32] & tran1.TIME[10]) gt 3)

Vector names in ngspice may have a name such as @name[param], where name is either
the name of a device instance or model. This denotes the value of the param parameter
of the device or model. See Appendix B for details of what parameters are available. The
value is a vector of length 1. This function is also available with the show command, and
is available with variables for convenience for command scripts.

There are a number of pre-defined constants in nutmeg. They are:

Chapter 10: Interactive Interpreter 79

pi

J (3.14159...)

e

The base of natural logarithms (2.71828...)

c

The speed of light (299,792,500 m/sec)

i

The square root of -1

kelvin

Absolute 0 in Centigrade (-273.15 oC)

echarge

The charge on an electron (1.6021918e-19 C)

boltz

Boltzman’s constant (1.3806226e-23)

planck

Planck’s constant (h = 6.626200e-34)

These are all in MKS units. If you have another variable with a name that conflicts with
one of these then it takes precedence.

10.2 Command Interpretation

If a word is typed as a command, and there is no built-in command with that name, the
directories in the sourcepath list are searched in order for the file. If it is found, it is read in
as a command file (as if it were sourced). Before it is read, however, the variables argc and
argv are set to the number of words following the filename on the command line, and a list
of those words respectively. After the file is finished, these variables are unset. Note that
if a command file calls another, it must save its argv and argc since they are altered. Also,
command files may not be re-entrant since there are no local variables. (Of course, the
procedures may explicitly manipulate a stack...) This way one can write scripts analogous
to shell scripts for nutmeg and Ngspice.

Note that for the script to work with Ngspice, it must begin with a blank line (or
whatever else, since it is thrown away) and then a line with .control on it. This is an
unfortunate result of the source command being used for both circuit input and command
file execution. Note also that this allows the user to merely type the name of a circuit file as
a command and it is automatically run. The commands are executed immediately, without
running any analyses that may be specified in the circuit (to execute the analyses before
the script executes, include a "run" command in the script).

There are various command scripts installed in /usr/local/lib/spice/scripts (or whatever
the path is on your machine), and the default sourcepath includes this directory, so you can
use these command files (almost) like builtin commands.

80 NGSPICE User Manual

10.3 Commands

10.3.1 Ac*: Perform an AC, small-signal frequency response
analysis

General Form:

ac (DEC | OCT | LIN) N Fstart Fstop

Do an ac analysis. See the previous sections of this manual for more details.

10.3.2 Alias: Create an alias for a command

General Form:

alias [word] [text ...]

Causes word to be aliased to text. History substitutions may be used, as in C-shell
aliases.

10.3.3 Alter*: Change a device or model parameter

General Form:

alter device value
alter device parameter value [parameter value]

Alter changes the value for a device or a specified parameter of a device or model. The
first form is used by simple devices which have one principal value (resistors, capacitors,
etc.) where the second form is for more complex devices (bjt’s, etc.). Model parameters
can be changed with the second form if the name contains a "#".

For specifying vectors as values, start the vector with "[", followed by the values in the
vector, and end with "]". Be sure to place a space between each of the values and before
and after the "[" and "]".

10.3.4 Asciiplot: Plot values using old-style character plots

General Form:

asciiplot plotargs

Produce a line printer plot of the vectors. The plot is sent to the standard output, so you
can put it into a file with asciiplot args ... > file. The set options width, height, and nobreak
determine the width and height of the plot, and whether there are page breaks, respectively.
Note that you will have problems if you try to asciiplot something with an X-scale that isn’t
monotonic (i.e, something like sin(TIME)), because asciiplot uses a simple-minded linear
interpolation.

10.3.5 Aspice: Asynchronous ngspice run

General Form:

aspice input-file [output-file]

Start a NGSPICE run, and when it is finished load the resulting data. The raw data
is kept in a temporary file. If output-file is specified then the diagnostic output is directed
into that file, otherwise it is thrown away.

Chapter 10: Interactive Interpreter 81

10.3.6 Bug: Mail a bug report

General Form:
bug

Send a bug report. Please include a short summary of the problem, the version number
and name of the operating system that you are running, the version of ngspice that you are
running, and the relevant ngspice input file. (If you have defined BUGADDR, the mail is
delivered to there.)

10.3.7 Cd: Change directory

General Form:
cd [directory]

Change the current working directory to directory, or to the user’s home directory if
none is given.

10.3.8 Destroy: Delete a data set

General Form:
destroy [plotnames | all]

Release the memory holding the data for the specified runs.

10.3.9 Dc*: Perform a DC-sweep analysis

General Form:
dc Source-Name Vstart Vstop Vincr [Source2 Vstart2 Vstop2 Vincr2]

Do a dc transfer curve analysis. See the previous sections of this manual for more details.

10.3.10 Define: Define a function

General Form:
define function(arg1, arg2, ...) expression

Define the user-definable function with the name function and arguments arg1, arg2,
... to be expression, which may involve the arguments. When the function is later used,
the arguments it is given are substituted for the formal arguments when it is parsed. If
expression is not present, any definition for function is printed, and if there are no arguments
to define then all currently active definitions are printed. Note that you may have different
functions defined with the same name but different arities.

Some useful definitions are:
define max(x,y) (x > y) * x + (x <= y) * y
define min(x,y) (x < y) * x + (x >= y) * y

10.3.11 Delete*: Remove a trace or breakpoint

General Form:
delete [debug-number ...]

Delete the specified breakpoints and traces. The debug numbers are those shown by
the status command (unless you do status > file, in which case the debug numbers are not
printed).

82 NGSPICE User Manual

10.3.12 Diff: Compare vectors

General Form:

diff plot1 plot2 [vec ...]

Compare all the vectors in the specified plots, or only the named vectors if any are given.
There are different vectors in the two plots, or any values in the vectors differ significantly
the difference is reported. The variable diff abstol, diff reltol, and diff vntol are used to
determine a significant difference.

10.3.13 Display: List known vectors and types

General Form:

display [varname ...]

Prints a summary of currently defined vectors, or of the names specified. The vectors
are sorted by name unless the variable nosort is set. The information given is the name
of the vector, the length, the type of the vector, and whether it is real or complex data.
Additionally, one vector is labelled [scale]. When a command such as plot is given without
a vs argument, this scale is used for the X-axis. It is always the first vector in a rawfile, or
the first vector defined in a new plot. If you undefine the scale (i.e, let TIME = []), one of
the remaining vectors becomes the new scale (which is undetermined).

10.3.14 Echo: Print text

General Form:

echo [text...]

Echos the given text to the screen.

10.3.15 Edit*: Edit the current circuit

General Form:

edit [file]

Print the current Ngspice input file into a file, call up the editor on that file and allow
the user to modify it, and then read it back in, replacing the original file. If a filename is
given, then edit that file and load it, making the circuit the current one.

10.3.16 Fourier: Perform a fourier transform

General Form:

fourier fundamental_frequency [value ...]

Does a fourier analysis of each of the given values, using the first 10 multiples of the
fundamental frequency (or the first nfreqs, if that variable is set - see below). The output
is like that of the .four Ngspice line. The values may be any valid expression. The values
are interpolated onto a fixed-space grid with the number of points given by the fourgridsize
variable, or 200 if it is not set. The interpolation is of degree polydegree if that variable is
set, or 1. If polydegree is 0, then no interpolation is done. This is likely to give erroneous
results if the time scale is not monotonic, though.

Chapter 10: Interactive Interpreter 83

10.3.17 Hardcopy: Save a plot to a file for printing

General Form:

hardcopy file plotargs

Just like plot, except creates a file called file containing the plot. The file is an image in
plot(5) format, and can be printed by either the plot(1) program or lpr with the -g flag.

10.3.18 Help: Print summaries of Ngspice commands

General Form:

help [all] [command ...]

Prints help. If the argument all is given, a short description of everything you could
possibly type is printed. If commands are given, descriptions of those commands are printed.
Otherwise help for only a few major commands is printed.

10.3.19 History: Review previous commands

General Form:

history [number]

Print out the history, or the last number commands typed at the keyboard. Note: in
Ngspice version 3a7 and earlier, all commands (including ones read from files) were saved.

10.3.20 Iplot*: Incremental plot

General Form:

iplot [node ...]

Incrementally plot the values of the nodes while Ngspice runs. The iplot command can
be used with the where command to find trouble spots in a transient simulation.

10.3.21 Jobs: List active asynchronous ngspice runs

General Form:

jobs

Report on the asynchronous NGSPICE jobs currently running. Nutmeg checks to see
if the jobs are finished every time you execute a command. If it is done then the data is
loaded and becomes available.

10.3.22 Let: Assign a value to a vector

General Form:

let name = expr

Creates a new vector called name with the value specified by expr, an expression as
described above. If expr is [] (a zero-length vector) then the vector becomes undefined.
Individual elements of a vector may be modified by appending a subscript to name (ex.
name[0]). If there are no arguments, let is the same as display.

84 NGSPICE User Manual

10.3.23 Linearize*: Interpolate to a linear scale

General Form:
linearize vec ...

Create a new plot with all of the vectors in the current plot, or only those mentioned
if arguments are given. The new vectors are interpolated onto a linear time scale, which
is determined by the values of tstep, tstart, and tstop in the currently active transient
analysis. The currently loaded input file must include a transient analysis (a tran command
may be run interactively before the last reset, alternately), and the current plot must be
from this transient analysis. This command is needed because Ngspice doesn’t output the
results from a transient analysis in the same manner that Spice2 did.

10.3.24 Listing*: Print a listing of the current circuit

General Form:
listing [logical] [physical] [deck] [expand]

If the logical argument is given, the listing is with all continuation lines collapsed into
one line, and if the physical argument is given the lines are printed out as they were found in
the file. The default is logical. A deck listing is just like the physical listing, except without
the line numbers it recreates the input file verbatim (except that it does not preserve case).
If the word expand is present, the circuit is printed with all subcircuits expanded.

10.3.25 Load: Load rawfile data

General Form:
load [filename] ...

Loads either binary or ascii format rawfile data from the files named. The default
filename is rawspice.raw, or the argument to the -r flag if there was one.

10.3.26 Op*: Perform an operating point analysis

General Form:
op

Do an operating point analysis. See the previous sections of this manual for more details.

10.3.27 Plot: Plot values on the display

General Form:
plot exprs [ylimit ylo yhi] [xlimit xlo xhi] [xindices xilo xihi]

[xcompress comp] [xdelta xdel] [ydelta ydel] [xlog] [ylog] [loglog]
[vs xname] [xlabel word] [ylabel word] [title word] [samep]
[linear]

Plot the given exprs on the screen (if you are on a graphics terminal). The xlimit and
ylimit arguments determine the high and low x- and y-limits of the axes, respectively. The
xindices arguments determine what range of points are to be plotted - everything between
the xilo’th point and the xihi’th point is plotted. The xcompress argument specifies that
only one out of every comp points should be plotted. If an xdelta or a ydelta parameter is
present, it specifies the spacing between grid lines on the X- and Y-axis. These parameter
names may be abbreviated to xl, yl, xind, xcomp, xdel, and ydel respectively.

Chapter 10: Interactive Interpreter 85

The xname argument is an expression to use as the scale on the x-axis. If xlog or ylog are
present then the X or Y scale, respectively, is logarithmic (loglog is the same as specifying
both). The xlabel and ylabel arguments cause the specified labels to be used for the X and
Y axes, respectively.

If samep is given, the values of the other parameters (other than xname) from the
previous plot, hardcopy, or asciiplot command is used unless re-defined on the command
line.

The title argument is used in the place of the plot name at the bottom of the graph.
The linear keyword is used to override a default logscale plot (as in the output for an

AC analysis).
Finally, the keyword polar to generate a polar plot. To produce a smith plot, use the

keyword smith. Note that the data is transformed, so for smith plots you will see the data
transformed by the function (x-1)/(x+1). To produce a polar plot with a smith grid but
without performing the smith transform, use the keyword smithgrid.

10.3.28 Print: Print values

General Form:
print [col] [line] expr ...

Prints the vector described by the expression expr. If the col argument is present, print
the vectors named side by side. If line is given, the vectors are printed horizontally. col is the
default, unless all the vectors named have a length of one, in which case line is the default.
The options width, length, and nobreak are effective for this command (see asciiplot). If
the expression is all, all of the vectors available are printed. Thus print col all > file prints
everything in the file in SPICE2 format. The scale vector (time, frequency) is always in the
first column unless the variable noprintscale is true.

10.3.29 Quit: Leave Ngspice or Nutmeg

General Form:
quit

Quit nutmeg or ngspice.

10.3.30 Rehash: Reset internal hash tables

General Form:
rehash

Recalculate the internal hash tables used when looking up UNIX commands, and make
all UNIX commands in the user’s PATH available for command completion. This is useless
unless you have set unixcom first (see above).

10.3.31 Reset*: Reset an analysis

General Form:
reset

Throw out any intermediate data in the circuit (e.g, after a breakpoint or after one or
more analyses have been done already), and re-parse the input file. The circuit can then be
re-run from it’s initial state, overriding the affect of any set or alter commands. In Spice-3e
and earlier versions this was done automatically by the run command.

86 NGSPICE User Manual

10.3.32 Reshape: Alter the dimensionality or dimensions of

a vector

General Form:

reshape vector vector ...
or
reshape vector vector ... [dimension, dimension, ...]
or
reshape vector vector ... [dimension][dimension] ...

This command changes the dimensions of a vector or a set of vectors. The final dimension
may be left off and it will be filled in automatically. If no dimensions are specified, then
the dimensions of the first vector are copied to the other vectors. An error message of the
form ’dimensions of x were inconsistent’ can be ignored.

10.3.33 Resume*: Continue a simulation after a stop

General Form:

resume

Resume a simulation after a stop or interruption (control-C).

10.3.34 Rspice: Remote ngspice submission

General Form:

rspice input file

Runs a NGSPICE remotely taking the input file as a NGSPICE input file, or the current
circuit if no argument is given. Nutmeg or Ngspice waits for the job to complete, and passes
output from the remote job to the user’s standard output. When the job is finished the data
is loaded in as with aspice. If the variable rhost is set, nutmeg connects to this host instead
of the default remote Ngspice server machine. This command uses the "rsh" command
and thereby requires authentication via a ".rhosts" file or other equivalent method. Note
that "rsh" refers to the "remote shell" program, which may be "remsh" on your system; to
override the default name of "rsh", set the variable remote shell. If the variable rprogram
is set, then rspice uses this as the pathname to the program to run on the remote system.

Note: rspice will not acknowledge elements that have been changed via the "alter" or
"altermod" commands.

10.3.35 Run*: Run analysis from the input file

General Form:

run [rawfile]

Run the simulation as specified in the input file. If there were any of the control lines .ac,
.op, .tran, or .dc, they are executed. The output is put in rawfile if it was given, in addition
to being available interactively. In Spice-3e and earlier versions, the input file would be
re-read and any affects of the set or alter commands would be reversed. This is no longer
the affect.

Chapter 10: Interactive Interpreter 87

10.3.36 Rusage: Resource usage

General Form:
rusage [resource ...]

Print resource usage statistics. If any resources are given, just print the usage of that
resource. Most resources require that a circuit be loaded. Currently valid resources are:

elapsed The amount of time elapsed since the last rusage elapsed call. faults Number of
page faults and context switches (BSD only). space Data space used. time CPU time used
so far.

temp Operating temperature. tnom Temperature at which device parameters were mea-
sured. equations Circuit Equations

time Total Analysis Time totiter Total iterations accept Accepted timepoints rejected
Rejected timepoints

loadtime Time spent loading the circuit matrix and RHS. reordertime Matrix reordering
time lutime L-U decomposition time solvetime Matrix solve time

trantime Transient analysis time tranpoints Transient timepoints traniter Transient it-
erations trancuriters Transient iterations for the last time point* tranlutime Transient L-U
decomposition time transolvetime Transient matrix solve time

everything All of the above.
* listed incorrectly as "Transient iterations per point".

10.3.37 Save*: Save a set of outputs

General Form:
save [all | allv | alli | output ...]
.save [all | allv | alli | output ...]

Save a set of outputs, discarding the rest. If a node has been mentioned in a save
command, it appears in the working plot after a run has completed, or in the rawfile if
ngspice is run in batch mode. If a node is traced or plotted (see below) it is also saved. For
backward compatibility, if there are no save commands given, all outputs are saved.

When the keyword "all" or the keyword "allv", appears in the save command, all node
voltages, voltage source currents and inductor currents are saved in addition to any other
values listed. If the keyword "alli" appears in the save command, all devices currents are
saved.

Note: the current implementation saves only the currents of devices which have internal
nodes, i.e. MOSFETs with non zero RD and RS; BJTs with non-zero RC, RB and RE;
DIODEs with non-zero RS; etc. Resistor and capacitor currents are not saved with this
option. These deficiencies will be addressed in a later revision.

10.3.38 Sens*: Run a sensitivity analysis

General Form:
sens output_variable
sens output_variable ac (DEC | OCT | LIN) N Fstart Fstop

Perform a Sensitivity analysis. output variable is either a node voltage (ex. "v(1)"
or "v(A,out)") or a current through a voltage source (ex. "i(vtest)"). The first form

88 NGSPICE User Manual

calculates DC sensitivities, the second form calculates AC sensitivies. The output values
are in dimensions of change in output per unit change of input (as opposed to percent
change in output or per percent change of input).

10.3.39 Set: Set the value of a variable

General Form:
set [word]
set [word = value] ...

Set the value of word to be value, if it is present. You can set any word to be any value,
numeric or string. If no value is given then the value is the boolean ’true’.

The value of word may be inserted into a command by writing $word. If a variable is
set to a list of values that are enclosed in parentheses (which must be separated from their
values by white space), the value of the variable is the list.

The variables used by nutmeg are listed in the following section.

10.3.40 Setcirc*: Change the current circuit

General Form:
setcirc [circuit name]

The current circuit is the one that is used for the simulation commands below. When a
circuit is loaded with the source command (see below) it becomes the current circuit.

10.3.41 Setplot: Switch the current set of vectors

General Form:
setplot [plotname]

Set the current plot to the plot with the given name, or if no name is given, prompt the
user with a menu. (Note that the plots are named as they are loaded, with names like tran1
or op2. These names are shown by the setplot and display commands and are used by diff,
below.) If the "New plot" item is selected, the current plot becomes one with no vectors
defined.

Note that here the word "plot" refers to a group of vectors that are the result of one
NGSPICE run. When more than one file is loaded in, or more than one plot is present in
one file, nutmeg keeps them separate and only shows you the vectors in the current plot.

10.3.42 Settype: Set the type of a vector

General Form:
settype type vector ...

Change the type of the named vectors to type. Type names can be found in the manual
page for sconvert.

10.3.43 Shell: Call the command interpreter

General Form:
shell [command]

Call the operating system’s command interpreter; execute the specified command or call
for interactive use.

Chapter 10: Interactive Interpreter 89

10.3.44 Shift: Alter a list variable

General Form:
shift [varname] [number]

If varname is the name of a list variable, it is shifted to the left by number elements (i.e,
the number leftmost elements are removed). The default varname is argv, and the default
number is 1.

10.3.45 Show*: List device state

General Form:
show devices [: parameters] , ...

The show command prints out tables summarizing the operating condition of selected
devices (much like the spice2 operation point summary). If device is missing, a default set
of devices are listed, if device is a single letter, devices of that type are listed; if device is
a subcircuit name (beginning and ending in ":") only devices in that subcircuit are shown
(end the name in a double-":" to get devices within sub-subcircuits recursively). The second
and third forms may be combined ("letter:subcircuit:") or "letter:subcircuit::") to select a
specific type of device from a subcircuit. A device’s full name may be specified to list only
that device. Finally, devices may be selected by model by using the form "#modelname"
or ":subcircuit#modelname" or "letter:subcircuit#modelname".

If no parameters are specified, the values for a standard set of parameters are listed. If
the list of parameters contains a "+", the default set of parameters is listed along with any
other specified parameters.

For both devices and parameters, the word "all" has the obvious meaning. Note: there
must be spaces separating the ":" that divides the device list from the parameter list.

10.3.46 Showmod*: List model parameter values

General Form:
showmod models [: parameters] , ...

The showmod command operates like the show command (above) but prints out
model parameter values. The applicable forms for models are a single letter specifying
the device type letter, "letter:subckt:", "modelname", ":subckt:modelname", or
"letter:subcircuit:modelname".

10.3.47 Source: Read a Ngspice input file

General Form:
source file

For Ngspice: Read the Ngspice input file file. Nutmeg and Ngspice commands may
be included in the file, and must be enclosed between the lines .control and .endc. These
commands are executed immediately after the circuit is loaded, so a control line of ac ...
works the same as the corresponding .ac card. The first line in any input file is considered
a title line and not parsed but kept as the name of the circuit. The exception to this rule is
the file .spiceinit. Thus, a Ngspice command script must begin with a blank line and then
with a acters *# is considered a control line. This makes it possible to imbed commands
in Ngspice input files that are ignored by earlier versions of Spice2

90 NGSPICE User Manual

For Nutmeg: Reads commands from the file filename. Lines beginning with the character
* are considered comments and ignored.

10.3.48 Status*: Display breakpoint information

General Form:

status

Display all of the traces and breakpoints currently in effect.

10.3.49 Step*: Run a fixed number of timepoints

General Form:

step [number]

Iterate number times, or once, and then stop.

10.3.50 Stop*: Set a breakpoint

General Form:

stop [after n] [when value cond value] ...

Set a breakpoint. The argument after n means stop after n iteration number n, and the
argument when value cond value means stop when the first value is in the given relation
with the second value, the possible relations being

eq or = equal to
ne or <> not equal to
gt or > greater than
lt or < less than
ge or >= greater than or equal to
le or <= less than or equal to

IO redirection is disabled for the stop command, since the relational operations conflict
with it (it doesn’t produce any output anyway). The values above may be node names in
the running circuit, or real values. If more than one condition is given, e.g. stop after 4
when v(1) > 4 when v(2) < 2, the conjunction of the conditions is implied.

10.3.51 Sysinfo: Print system information

General Form:

sysinfo

The command prints system information useful for sending bug report to developers.
Information consists of:

• Name of the operating system,

• Name of the node,

• Current release of the operating system,

• Current version of this release,

• Name of hardware type.

The example below shows the use of this command.

Chapter 10: Interactive Interpreter 91

ngspice 1 -> sysinfo
Linux janus.wayout.net 2.4.20 #1 SMP Tue Jun 10 18:58:26 CEST 2003 i686
ngspice 2 ->

Note: This command may not be available on your environment, if it is not
available, please send analogous information when submitting bug reports.

10.3.52 Tf*: Run a Transfer Function analysis

General Form:

tf output_node input_source

The tf command performs a transfer function analysis, returning the transfer function
(output/input), output resistance, and input resistance between the given output node and
the given input source. The analysis assumes a small-signal DC (slowly varying) input.

10.3.53 Trace*: Trace nodes

General Form:

trace [node ...]

For every step of an analysis, the value of the node is printed. Several traces may be
active at once. Tracing is not applicable for all analyses. To remove a trace, use the delete
command.

10.3.54 Tran*: Perform a transient analysis

General Form:

tran Tstep Tstop [Tstart [Tmax]] [UIC]

Perform a transient analysis. See the previous sections of this manual for more details.

10.3.55 Transpose: Swap the elements in a multi-dimensional data
set

General Form:

transpose vector vector ...

This command transposes a multidimensional vector. No analysis in Ngspice produces
multidimensional vectors, although the DC transfer curve may be run with two varying
sources. You must use the "reshape" command to reform the one-dimensional vectors into
two dimensional vectors. In addition, the default scale is incorrect for plotting. You must
plot versus the vector corresponding to the second source, but you must also refer only to
the first segment of this second source vector. For example (circuit to produce the transfer
characteristic of a MOS transistor):

ngspice > dc vgg 0 5 1 vdd 0 5 1
ngspice > plot i(vdd)
ngspice > reshape all [6,6]
ngspice > transpose i(vdd) v(drain)
ngspice > plot i(vdd) vs v(drain)[0]

92 NGSPICE User Manual

10.3.56 Unalias: Retract an alias

General Form:
unalias [word ...]

Removes any aliases present for the words.

10.3.57 Undefine: Retract a definition

General Form:
undefine function

Definitions for the named user-defined functions are deleted.

10.3.58 Unset: Clear a variable

General Form:
unset [word ...]

Clear the value of the specified variable(s) (word).

10.3.59 Version: Print the version of ngspice

General Form:
version [-s | -f | <version id>]

Print out the version of nutmeg that is running, if invoked without argument or with -s
or -f. If the argument is a <version id> (any string different from -s or -f is considered a
<version id>), the command checks to make sure that the arguments match the current
version of NGSPICE. (This is mainly used as a Command: line in rawfiles.)

Options description
• No option: The output of the command is the message you can see when running

NGSPICE from the command line, no more no less.
• -s(hort): A shorter version of the message you see when calling NGSPICE from the

command line.
• -f(ull): You may want to use this option if you want to know what extensions are

included into the simulator and what compilation switches are active. A list of compi-
lation options and included extensions is appended to the normal (not short) message.
May be useful when sending bug reports.

The following example shows what the command returns is some situations:
ngspice 10 -> version

** ngspice-15 : Circuit level simulation program
** The U. C. Berkeley CAD Group
** Copyright 1985-1994, Regents of the University of California.
** Please submit bug-reports to: ngspice-devel@lists.sourceforge.net
** Creation Date: Sun Aug 24 00:35:57 CEST 2003

ngspice 11 -> version 14
Note: rawfile is version 14 (current version is 15)
ngspice 12 -> version 15

Chapter 10: Interactive Interpreter 93

ngspice 13 ->

Note for developers: The option listing returned when version is called with the -f
option is built at compile time using #ifdef blocks. When new compile switch are added,
if you want them to appear on the list, you have to modify the code in ‘misccoms.c’.

10.3.60 Where: Identify troublesome node or device

General Form:

where

When performing a transient or operating point analysis, the name of the last node or
device to cause non-convergence is saved. The where command prints out this information
so that you can examine the circuit and either correct the problem or make a bug report.
You may do this either in the middle of a run or after the simulator has given up on the
analysis. For transient simulation, the iplot command can be used to monitor the progress of
the analysis. When the analysis slows down severly or hangs, interrupt the simulator (with
control-C) and issue the where command. Note that only one node or device is printed;
there may be problems with more than one node.

10.3.61 Write: Write data to a file

General Form:

write [file] [exprs]

Writes out the expressions to file.

First vectors are grouped together by plots, and written out as such (i.e, if the expression
list contained three vectors from one plot and two from another, then two plots are written,
one with three vectors and one with two). Additionally, if the scale for a vector isn’t present,
it is automatically written out as well.

The default format is ascii, but this can be changed with the set filetype command. The
default filename is rawspice.raw, or the argument to the -r flag on the command line, if
there was one, and the default expression list is all.

10.3.62 Xgraph: use the xgraph(1) program for plotting.

General Form:

xgraph file [exprs] [plot options]

The ngspice/nutmeg xgraph command plots data like the plot command but via xgraph,
a popular X11 plotting program.

If file is either "temp" or "tmp" a temporary file is used to hold the data while being
plotted. For available plot options, see the plot command. All options except for polar or
smith plots are supported.

10.4 Control Structures

10.4.1 While - End

General Form:

94 NGSPICE User Manual

while condition
statement
...

end

While condition, an arbitrary algebraic expression, is true, execute the statements.

10.4.2 Repeat - End

General Form:

repeat [number]
statement
...

end

Execute the statements number times, or forever if no argument is given.

10.4.3 Dowhile - End

General Form:

dowhile condition
statement
...

end

The same as while, except that the condition is tested after the statements are executed.

10.4.4 Foreach - End

General Form:

foreach var value ...
statement
...

end

The statements are executed once for each of the values, each time with the variable var
set to the current one. (var can be accessed by the $var notation - see below).

10.4.5 If - Then - Else

General Form:

if condition
statement
...

else
statement
...

end

If the condition is non-zero then the first set of statements are executed, otherwise the
second set. The else and the second set of statements may be omitted.

Chapter 10: Interactive Interpreter 95

10.4.6 Label

General Form:
label word

If a statement of the form goto word is encountered, control is transferred to this point,
otherwise this is a no-op.

10.4.7 Goto

General Form:
goto word

If a statement of the form label word is present in the block or an enclosing block, control
is transferred there. Note that if the label is at the top level, it must be before the goto
statement (i.e, a forward goto may occur only within a block).

10.4.8 Continue

General Form:
continue

If there is a while, dowhile, or foreach block enclosing this statement, control passes to
the test, or in the case of foreach, the next value is taken. Otherwise an error results.

10.4.9 Break

General Form:
break

If there is a while, dowhile, or foreach block enclosing this statement, control passes out
of the block. Otherwise an error results.

Of course, control structures may be nested. When a block is entered and the input is
the terminal, the prompt becomes a number of >’s corresponding to the number of blocks
the user has entered. The current control structures may be examined with the debugging
command cdump.

10.5 Variables

The operation of both Nutmeg and Ngspice may be affected by setting variables with the
"set" command. In addition to the variables mentioned below, the set command in Ngspice
also affect the behaviour of the simulator via the options previously described under the
section on ".OPTIONS".

The variables meaningful to nutmeg which may be altered by the set command are:

diff_abstol
The absolute tolerance used by the diff command. appendwrite Append to the
file when a write command is is sued, if one already exists.

colorN

These variables determine the colors used, if X is being run on a color display.
N may be between 0 and 15. Color 0 is the background, color 1 is the grid and
text color, and colors 2 through 15 are used in order for vectors plot ted. The

96 NGSPICE User Manual

value of the color variables should be names of colors, which may be found in
the file /usr/lib/rgb.txt.

combplot

Plot vectors by drawing a vertical line from each point to the X-axis, as opposed
to joining the points. Note that this option is subsumed in the plottype option,
below.

cpdebug

Print cshpar debugging information (must be com plied with the -DCPDEBUG
flag). Unsupported in the current release.

debug

If set then a lot of debugging information is printed (must be compiled with
the -DFTEDEBUG flag). Unsupported in the current release.

device

The name (/dev/tty??) of the graphics device. If this variable isn’t set then
the user’s terminal is used. To do plotting on another monitor you probably
have to set both the device and term variables. (If device is set to the name of
a file, nutmeg dumps the graphics control codes into this file – this is useful for
saving plots.)

echo

Print out each command before it is executed.

filetype

This can be either ascii or binary, and determines what format are. The default
is ascii.

fourgridsize
How many points to use for interpolating into when doing fourier analysis.

gridsize

If this variable is set to an integer, this number is used as the number of equally
spaced points to use for the Y axis when plotting. Otherwise the current scale
is used (which may not have equally spaced points). If the current scale isn’t
strictly monotonic, then this option has no effect.

hcopydev

If this is set, when the hardcopy command is run the resulting file is auto-
matically printed on the printer named hcopydev with the command lpr -
Phcopydev -g file.

hcopyfont
This variable specifies the font name for hardcopy output plots. The value is
device dependent.

hcopyfontsize
This is a scaling factor for the font used in hardcopy plots.

Chapter 10: Interactive Interpreter 97

hcopydevtype
This variable specifies the type of the printer output to use in the hardcopy
command. If hcopydevtype is not set, plot (5) format is assumed. The standard
distribution currently recognizes postscript as an alternative output for mat.
When used in conjunction with hcopydev, hcopydevtype should specify a format
supported by the printer.

height

The length of the page for asciiplot and print col.

history

The number of events to save in the his tory list.

lprplot5

This is a printf(3s) style format string used to specify the command to use for
sending plot(5)-style plots to a printer or plotter. The first parameter sup plied
is the printer name, the second parameter supplied is a file name containing
the plot. Both parameters are strings. It is trivial to cause Ngspice to abort by
supplying a unreasonable format string.

lprps

This is a printf(3s) style format string used to specify the command to use for
sending PostScript plots to a printer or plotter. The first parameter supplied is
the printer name, the second parameter supplied is a file name containing the
plot. Both parameters are strings. It is trivial to cause Ngspice to abort by
supplying a unreasonable format string.

nfreqs

The number of frequencies to compute in the fourier command. (Defaults to
10.)

nobreak

Don’t have asciiplot and print col break between pages.

noasciiplotvalue
Don’t print the first vector plotted to the left when doing an asciiplot.

noclobber
Don’t overwrite existing files when do ing IO redirection.

noglob

Don’t expand the global characters ‘*’, ‘?’, ‘[’, and ‘]’. This is the default.

nogrid

Don’t plot a grid when graphing curves (but do label the axes).

nomoremode
If nomoremode is not set, whenever a large amount of data is being printed to
the screen (e.g, the print or asciiplot commands), the output is stopped every
screenful and continues when a carriage return is typed. If nomoremode is set
then data scrolls off the screen without check.

98 NGSPICE User Manual

nonomatch
If noglob is unset and a global expression cannot be matched, use the global
characters literally instead of complaining.

nosort

Don’t have display sort the variable names.

noprintscale
Don’t print the scale in the leftmost column when a print col command is given.

numdgt

The number of digits to print when printing tables of data (fourier, print col).
The default precision is 6 digits. On the VAX, approximately 16 decimal digits
are avail able using double precision, so numdgt should not be more than 16.
If the number is negative, one fewer digit is printed to ensure constant widths
in tables.

plottype

This should be one of normal, comb, or point:chars. normal, the default, causes
points to be plotted as parts of connected lines. comb causes a comb plot to
be done (see the description of the combplot variable above). point causes each
point to be plotted separately - the chars are a list of characters that are used
for each vector plotted. If they are omitted then a de fault set is used.

polydegree
The degree of the polynomial that the plot command should fit to the data.
If polydegree is N, then nutmeg fits a degree N polynomial to every set of N
points and draw 10 intermediate points in between each end point. If the points
aren’t monotonic, then it tries rotating the curve and reducing the degree until
a fit is achieved.

polysteps
The number of points to interpolate between every pair of points available when
doing curve fitting. The default is 10.

program

The name of the current program (argv[0]).

prompt

The prompt, with the character ‘!’ replaced by the current event number.

rawfile

The default name for rawfiles created.

diff_reltol
The relative tolerance used by the diff command.

remote_shell
Overrides the name used for generating rspice runs (default is "rsh").

rhost

The machine to use for remote NGSPICE runs, in stead of the default one (see
the description of the rspice command, below).

Chapter 10: Interactive Interpreter 99

rprogram

The name of the remote program to use in the rspice command.

slowplot

Stop between each graph plotted and wait for the user to type return before
continuing.

sourcepath
A list of the directories to search when a source command is given. The default is
the current directory and the standard ngspice library (/usr/local/lib/ngspice,
or whatever LIBPATH is #defined to in the Ngspice source.

spicepath
The program to use for the aspice command. The default is /cad/bin/spice.

term

The mfb name of the current terminal.

units

If this is degrees, then all the trig functions will use degrees instead of radians.

unixcom

If a command isn’t defined, try to execute it as a UNIX command. Setting
this option has the effect of giving a rehash command, below. This is useful for
people who want to use nutmeg as a login shell.

verbose

Be verbose. This is midway between echo and de bug / cpdebug.

diff _vntol
The absolute voltage tolerance used by the diff command.

width

The width of the page for asciiplot and print col.

x11lineararcs
Some X11 implementations have poor arc drawing. If you set this option,
Ngspice will plot using an approximation to the curve using straight lines.

xbrushheight
The height of the brush to use if X is being run.

xbrushwidth
The width of the brush to use if X is being run.

xfont

The name of the X font to use when plotting data and entering labels. The
plot may not look good if this is a variable-width font.

There are several set variables that Ngspice uses but Nutmeg does not. They are:

editor

The editor to use for the edit command.

100 NGSPICE User Manual

modelcard
The name of the model card (normally

noaskquit
Do not check to make sure that there are no circuits suspended and no plots
un saved. Normally Ngspice warns the user when he tries to quit if this is the
case.

nobjthack
Assume that BJTs have 4 nodes.

noparse

Don’t attempt to parse input files when they are read in (useful for debugging).
Of course, they cannot be run if they are not parsed. nosubckt Don’t expand
subcircuits.

renumber

Renumber input lines when an input file has .include’s. subend The card to
end subcircuits (normally

subinvoke
The prefix to invoke subcircuits (nor mally x). substart The card to begin
subcircuits (normally

10.6 MISCELLANEOUS

If there are subcircuits in the input file, Ngspice expands instances of them. A subcircuit
is delimited by the cards .subckt and .ends, or whatever the value of the variables substart
and subend is, respectively. An instance of a subcircuit is created by specifying a device
with type ’x’ - the device line is written

xname node1 node2 ... subcktname

where the nodes are the node names that replace the formal parameters on the .subckt
line. All nodes that are not formal parameters are prepended with the name given to the
instance and a ’:’, as are the names of the devices in the subcircuit. If there are several
nested subcircuits, node and device names look like subckt1:subckt2:...:name. If the variable
subinvoke is set, then it is used as the prefix that specifies instances of subcircuits, instead
of ’x’.

Nutmeg occasionally checks to see if it is getting close to running out of space, and warns
the user if this is the case. (This is more likely to be useful with the NGSPICE front end.)

C-shell type quoting with "" and ”, and backquote substitution may be used. Within
single quotes, no further substitution (like history substitution) is done, and within double
quotes, the words are kept together but further substitution is done. Any text between
backquotes is replaced by the result of executing the text as a command to the shell.

Tenex-style (’set filec’ in the 4.3 C-shell) command, filename, and keyword completion
is possible: If EOF (control-D) is typed after the first character on the line, a list of the
commands or possible arguments is printed (If it is alone on the line it exits nutmeg). If
escape is typed, then nutmeg tries to complete what the user has already typed. To get a
list of all commands, the user should type <space> ^D.

Chapter 10: Interactive Interpreter 101

The values of variables may be used in commands by writing $varname where the value
of the variable is to appear. The special variables $$ and $< refer to the process ID of the
program and a line of input which is read from the terminal when the variable is evaluated,
respectively. If a variable has a name of the form $&word, then word is considered a vector
(see above), and its value is taken to be the value of the variable. If $foo is a valid variable,
and is of type list, then the expression $foo[low-high] represents a range of elements. Either
the upper index or the lower may be left out, and the reverse of a list may be obtained with
$foo[len-0]. Also, the notation $?foo evaluates to 1 if the variable foo is defined, 0 otherwise,
and $#foo evaluates to the number of elements in foo if it is a list, 1 if it is a number or
string, and 0 if it is a boolean variable.

History substitutions, similar to C-shell history substitutions, are also available - see the
C-shell manual page for all of the details.

The characters ~, {, and } have the same effects as they do in the C-Shell, i.e., home
directory and alternative expansion. It is possible to use the wildcard characters *, ?, [, and]
also, but only if you unset noglob first. This makes them rather useless for typing algebraic
expressions, so you should set noglob again after you are done with wildcard expansion.
Note that the pattern [^abc] matchs all characters except a, b, and c.

IO redirection is available - the symbols >, >>, >&, >>&, and < have the same effects as
in the C-shell.

You may type multiple commands on one line, separated by semicolons.
If you want to use a different mfbcap file than the default (usually ~cad/lib/mfbcap),

you have to set the environment variable SPICE MFBCAP before you start nutmeg or
ngspice. The -m option and the mfbcap variable no longer work.

If X is being used, the cursor may be positioned at any point on the screen when the
window is up and characters typed at the keyboard are added to the window at that point.
The window may then be sent to a printer using the xpr(1) program.

Nutmeg can be run under VAX/VMS, as well as several other operating systems. Some
features like command completion, expansion of *, ?, and [], backquote substitution, the
shell command, and so forth do not work.

On some systems you have to respond to the -moreprompt during plot with a carriage
return instead of any key as you can do on UNIX.

10.7 Bugs

The label entry facilities are primitive. You must be careful to type slowly when entering
labels – nutmeg checks for input once every second, and can get confused if characters arrive
faster.

If you redefine colors after creating a plot window with X, and then cause the window
to be redrawn, it does not redraw in the correct colors.

When defining aliases like
alias pdb plot db(’!:1’ - ’!:2’)

you must be careful to quote the argument list substitutions in this manner. If you quote
the whole argument it might not work properly.

In a user-defined function, the arguments cannot be part of a name that uses the plot.vec
syntax. For example:

102 NGSPICE User Manual

define check(v(1)) cos(tran1.v(1))

does not work.
If you type plot all all, or otherwise use a wildcard reference for one plot twice in a

command, the effect is unpredictable.
The asciiplot command doesn’t deal with log scales or the delta keywords.
Often the names of terminals recognized by MFB are different from those in

/etc/termcap. Thus you may have to reset your terminal type with the command
set term = termname

where termname is the name in the mfbcap file.
The hardcopy command is useless on VMS and other systems without the plot command,

unless the user has a program that understands plot(5) format.
Ngspice recognizes all the notations used in SPICE2 .plot cards, and translates vp(1)

into ph(v(1)), and so forth. However, if there are spaces in these names it won’t work.
Hence v(1, 2) and (-.5, .5) aren’t recognized.

BJTs can have either 3 or 4 nodes, which makes it difficult for the subcircuit expansion
routines to decide what to rename. If the fourth parameter has been declared as a model
name, then it is assumed that there are 3 nodes, otherwise it is considered a node. To
disable this, you can set the variable "nobjthack" which forces BJTs to have 4 nodes (for
the purposes of subcircuit expansion, at least).

The @name[param] notation might not work with trace, iplot, etc. yet.
The first line of a command file (except for the .spiceinit file) should be a comment,

otherwise NGSPICE may create an empty circuit.
Files specified on the command line are read before .spiceinit is read.

Chapter 11: Bibliography 103

11 Bibliography

[1] A. Vladimirescu and S. Liu, The Simulation of MOS Integrated Circuits Using SPICE2
ERL Memo No. ERL M80/7, Electronics Research Laboratory University of California,
Berkeley, October 1980

[2] T. Sakurai and A. R. Newton, A Simple MOSFET Model for Circuit Analysis and
its application to CMOS gate delay analysis and series-connected MOSFET Structure ERL
Memo No. ERL M90/19, Electronics Research Labora tory, University of California, Berke-
ley, March 1990

[3] B. J. Sheu, D. L. Scharfetter, and P. K. Ko, SPICE2 Implementation of BSIM ERL
Memo No. ERL M85/42, Electronics Research Labora tory University of California, Berke-
ley, May 1985

[4] J. R. Pierret, A MOS Parameter Extraction Program for the BSIM Model ERL Memo
Nos. ERL M84/99 and M84/100, Electronics Research Laboratory University of California,
Berkeley, November 1984

[5] Min-Chie Jeng, Design and Modeling of Deep Submicrometer MOSFETSs ERL Memo
Nos. ERL M90/90, Electronics Research Labora tory University of California, Berkeley,
October 1990

[6] Soyeon Park, Analysis and SPICE implementation of High Temperature Effects on
MOSFET, Master’s thesis, University of California, Berkeley, December 1986.

[7] Clement Szeto, Simulator of Temperature Effects in MOS FETs (STEIM), Master’s
thesis, University of California, Berkeley, May 1988.

[8] J.S. Roychowdhury and D.O. Pederson, Efficient Tran sient Simulation of Lossy
Interconnect, Proc. of the 28th ACM/IEEE Design Automation Confer ence, June 17-21
1991, San Francisco

[9] A. E. Parker and D. J. Skellern, An Improved FET Model for Computer Simulators,
IEEE Trans CAD, vol. 9, no. 5, pp. 551-553, May 1990.

[10] R. Saleh and A. Yang, Editors, Simulation and Modeling, IEEE Circuits and Devices,
vol. 8, no. 3, pp. 7-8 and 49, May 1992

[11] H.Statz et al., GaAs FET Device and Circuit Simulation in SPICE, IEEE Transac-
tions on Electron Devices, V34, Number 2, February, 1987 pp160-169.

[12] Weidong Liu et al., BSIM3v3.2.2 MOSFET Model Users’ Manual, http://www-
device.eecs.berkeley.edu/~bsim3/ftpv322/Mod doc/V322manu.tar.Z

[13] Weidong Lui et al. BSIM3.v3.2.3 MOSFET Model Users’ Manual, http://www-
device.eecs.berkeley.edu/~bsim3/ftpv323/Mod doc/BSIM323 manu.tar

104 NGSPICE User Manual

Chapter 12: Example Circuits 105

12 Example Circuits

12.1 Differential Pair

The following deck determines the dc operating point of a simple differential pair. In addi-
tion, the ac small-signal response is computed over the frequency range 1Hz to 100MEGHz.

SIMPLE DIFFERENTIAL PAIR
VCC 7 0 12
VEE 8 0 -12
VIN 1 0 AC 1
RS1 1 2 1K
RS2 6 0 1K
Q1 3 2 4 MOD1
Q2 5 6 4 MOD1
RC1 7 3 10K
RC2 7 5 10K
RE 4 8 10K
.MODEL MOD1 NPN BF=50 VAF=50 IS=1.E-12 RB=100 CJC=.5PF TF=.6NS
.TF V(5) VIN
.AC DEC 10 1 100MEG
.END

12.2 MOSFET Characterization

The following deck computes the output characteristics of a MOSFET device over the range
0-10V for VDS and 0-5V for VGS.

MOS OUTPUT CHARACTERISTICS
.OPTIONS NODE NOPAGE
VDS 3 0
VGS 2 0
M1 1 2 0 0 MOD1 L=4U W=6U AD=10P AS=10P
* VIDS MEASURES ID, WE COULD HAVE USED VDS, BUT ID WOULD BE NEGATIVE
VIDS 3 1
.MODEL MOD1 NMOS VTO=-2 NSUB=1.0E15 UO=550
.DC VDS 0 10 .5 VGS 0 5 1
.END

12.3 RTL Inverter

The following deck determines the dc transfer curve and the transient pulse response of a
simple RTL inverter. The input is a pulse from 0 to 5 Volts with delay, rise, and fall times
of 2ns and a pulse width of 30ns. The transient interval is 0 to 100ns, with printing to be
done every nanosecond.

SIMPLE RTL INVERTER
VCC 4 0 5
VIN 1 0 PULSE 0 5 2NS 2NS 2NS 30NS
RB 1 2 10K

106 NGSPICE User Manual

Q1 3 2 0 Q1
RC 3 4 1K
.MODEL Q1 NPN BF 20 RB 100 TF .1NS CJC 2PF
.DC VIN 0 5 0.1
.TRAN 1NS 100NS
.END

12.4 Four-Bit Binary Adder

The following deck simulates a four-bit binary adder, using several subcircuits to describe
various pieces of the overall circuit.

ADDER - 4 BIT ALL-NAND-GATE BINARY ADDER

*** SUBCIRCUIT DEFINITIONS
.SUBCKT NAND 1 2 3 4
* NODES: INPUT(2), OUTPUT, VCC
Q1 9 5 1 QMOD
D1CLAMP 0 1 DMOD
Q2 9 5 2 QMOD
D2CLAMP 0 2 DMOD
RB 4 5 4K
R1 4 6 1.6K
Q3 6 9 8 QMOD
R2 8 0 1K
RC 4 7 130
Q4 7 6 10 QMOD
DVBEDROP 10 3 DMOD
Q5 3 8 0 QMOD
.ENDS NAND

.SUBCKT ONEBIT 1 2 3 4 5 6
* NODES: INPUT(2), CARRY-IN, OUTPUT, CARRY-OUT, VCC
X1 1 2 7 6 NAND
X2 1 7 8 6 NAND
X3 2 7 9 6 NAND
X4 8 9 10 6 NAND
X5 3 10 11 6 NAND
X6 3 11 12 6 NAND
X7 10 11 13 6 NAND
X8 12 13 4 6 NAND
X9 11 7 5 6 NAND
.ENDS ONEBIT

.SUBCKT TWOBIT 1 2 3 4 5 6 7 8 9
* NODES: INPUT - BIT0(2) / BIT1(2), OUTPUT - BIT0 / BIT1,
* CARRY-IN, CARRY-OUT, VCC
X1 1 2 7 5 10 9 ONEBIT

Chapter 12: Example Circuits 107

X2 3 4 10 6 8 9 ONEBIT
.ENDS TWOBIT

.SUBCKT FOURBIT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
* NODES: INPUT - BIT0(2) / BIT1(2) / BIT2(2) / BIT3(2),
* OUTPUT - BIT0 / BIT1 / BIT2 / BIT3, CARRY-IN, CARRY-OUT, VCC
X1 1 2 3 4 9 10 13 16 15 TWOBIT
X2 5 6 7 8 11 12 16 14 15 TWOBIT
.ENDS FOURBIT

*** DEFINE NOMINAL CIRCUIT
.MODEL DMOD D
.MODEL QMOD NPN(BF=75 RB=100 CJE=1PF CJC=3PF)
VCC 99 0 DC 5V
VIN1A 1 0 PULSE(0 3 0 10NS 10NS 10NS 50NS)
VIN1B 2 0 PULSE(0 3 0 10NS 10NS 20NS 100NS)
VIN2A 3 0 PULSE(0 3 0 10NS 10NS 40NS 200NS)
VIN2B 4 0 PULSE(0 3 0 10NS 10NS 80NS 400NS)
VIN3A 5 0 PULSE(0 3 0 10NS 10NS 160NS 800NS)
VIN3B 6 0 PULSE(0 3 0 10NS 10NS 320NS 1600NS)
VIN4A 7 0 PULSE(0 3 0 10NS 10NS 640NS 3200NS)
VIN4B 8 0 PULSE(0 3 0 10NS 10NS 1280NS 6400NS)
X1 1 2 3 4 5 6 7 8 9 10 11 12 0 13 99 FOURBIT
RBIT0 9 0 1K
RBIT1 10 0 1K
RBIT2 11 0 1K
RBIT3 12 0 1K
RCOUT 13 0 1K

*** (FOR THOSE WITH MONEY (AND MEMORY) TO BURN)
.TRAN 1NS 6400NS
.END

12.5 Transmission-Line Inverter

The following deck simulates a transmission-line inverter. Two transmission-line elements
are required since two propagation modes are excited. In the case of a coaxial line, the first
line (T1) models the inner conductor with respect to the shield, and the second line (T2)
models the shield with respect to the outside world.

TRANSMISSION-LINE INVERTER
V1 1 0 PULSE(0 1 0 0.1N)
R1 1 2 50
X1 2 0 0 4 TLINE
R2 4 0 50

.SUBCKT TLINE 1 2 3 4
T1 1 2 3 4 Z0=50 TD=1.5NS

108 NGSPICE User Manual

T2 2 0 4 0 Z0=100 TD=1NS
.ENDS TLINE

.TRAN 0.1NS 20NS

.END

Chapter 13: Model and Device Parameters 109

13 Model and Device Parameters

The following tables summarize the parameters available on each of the devices and models
in (note that for some systems with limited memory, output parameters are not available).
There are several tables for each type of device supported by . Input parameters to instances
and models are parameters that can occur on an instance or model definition line in the form
"keyword=value" where "keyword" is the parameter name as given in the tables. Default
input parameters (such as the resistance of a resistor or the capacitance of a capacitor)
obviously do not need the keyword specified.

Output parameters are those additional parameters which are available for many types
of instances for the output of operating point and debugging information. These parameters
are specified as "@device[keyword]" and are available for the most recent point computed
or, if specified in a ".save" statement, for an entire simulation as a normal output vector.
Thus, to monitor the gate-to-source capacitance of a MOSFET, a command

save @m1[cgs]

given before a transient simulation causes the specified capacitance value to be saved at
each timepoint, and a subsequent command such as

plot @m1[cgs]

produces the desired plot. (Note that the show command does not use this format).
Some variables are listed as both input and output, and their output simply returns

the previously input value, or the default value after the simulation has been run. Some
parameter are input only because the output system can not handle variables of the given
type yet, or the need for them as output variables has not been apparent. Many such input
variables are available as output variables in a different format, such as the initial condition
vectors that can be retrieved as individual initial condition values. Finally, internally derived
values are output only and are provided for debugging and operating point output purposes.

Please note that these tables do not provide the detailed information available about the
parameters provided in the section on each device and model, but are provided as a quick
reference guide.

13.1 URC: Uniform R.C. line

--
| URC - instance parameters (input-output) |
|---+
| l Length of transmission line |
n Number of lumps

--
| URC - instance parameters (output-only) |
|---+
| pos_node Positive node of URC |
| neg_node Negative node of URC |

110 NGSPICE User Manual

gnd Ground node of URC

--
| URC - model parameters (input-only) |
|---+
urc Uniform R.C. line model

--
| URC - model parameters (input-output) |
|---+
| k Propagation constant |
| fmax Maximum frequency of interest |
| rperl Resistance per unit length |
| cperl Capacitance per unit length |
| isperl Saturation current per length |
rsperl Diode resistance per length

13.2 ASRC: Arbitrary Source

--
| ASRC - instance parameters (input-only) |
|---+
| i Current source |
v Voltage source

--
| ASRC - instance parameters (output-only) |
|---+
| i Current through source |
| v Voltage across source |
| pos_node Positive Node |
neg_node Negative Node

13.3 BJT: Bipolar Junction Transistor

--
| BJT - instance parameters (input-only) |
|---+

Chapter 13: Model and Device Parameters 111

ic Initial condition vector

--
| BJT - instance parameters (input-output) |
|---+
| off Device initially off |
| icvbe Initial B-E voltage |
| icvce Initial C-E voltage |
| area Area factor |
temp instance temperature

--
| BJT - instance parameters (output-only) |
|---+
| colnode Number of collector node |
| basenode Number of base node |
| emitnode Number of emitter node |
substnode Number of substrate node
colprimenode Internal collector node
baseprimenode Internal base node
emitprimenode Internal emitter node
ic Current at collector node
---+
ib Current at base node

| ie Emitter current |
| is Substrate current |
vbe B-E voltage
vbc B-C voltage
gm Small signal transconductance
gpi Small signal input conductance - pi
gmu Small signal conductance - mu
---+
gx Conductance from base to internal base
go Small signal output conductance
geqcb d(Ibe)/d(Vbc)
gccs Internal C-S cap. equiv. cond.
--
| geqbx Internal C-B-base cap. equiv. cond. |
| cpi Internal base to emitter capactance |
| cmu Internal base to collector capactiance |
| cbx Base to collector capacitance |

112 NGSPICE User Manual

|---+
| ccs Collector to substrate capacitance |
| cqbe Cap. due to charge storage in B-E jct. |
| cqbc Cap. due to charge storage in B-C jct. |
| cqcs Cap. due to charge storage in C-S jct. |
| cqbx Cap. due to charge storage in B-X jct. |
continued

--
| BJT - instance output-only parameters - continued
|---+
| cexbc Total Capacitance in B-X junction |
| qbe Charge storage B-E junction |
| qbc Charge storage B-C junction |
| qcs Charge storage C-S junction |
| qbx Charge storage B-X junction |
p Power dissipation

--
| BJT - model parameters (input-output) |
|---+
| npn NPN type device |
| pnp PNP type device |
| is Saturation Current |
bf Ideal forward beta
nf Forward emission coefficient
vaf Forward Early voltage
va (null)
ikf Forward beta roll-off corner current
---+
ik (null)
ise B-E leakage saturation current
ne B-E leakage emission coefficient
br Ideal reverse beta
--
| nr Reverse emission coefficient |
| var Reverse Early voltage |
| vb (null) |
| ikr reverse beta roll-off corner current |
|---+
| isc B-C leakage saturation current |
| nc B-C leakage emission coefficient |

Chapter 13: Model and Device Parameters 113

| rb Zero bias base resistance |
irb Current for base resistance=(rb+rbm)/2
rbm Minimum base resistance
re Emitter resistance
rc Collector resistance
cje Zero bias B-E depletion capacitance
---+
vje B-E built in potential
pe (null)
mje B-E junction grading coefficient
me (null)
--
| tf Ideal forward transit time |
| xtf Coefficient for bias dependence of TF |
| vtf Voltage giving VBC dependence of TF |
| itf High current dependence of TF |
|---+
| ptf Excess phase |
| cjc Zero bias B-C depletion capacitance |
| vjc B-C built in potential |
continued

--
| BJT - model input-output parameters - continued
|---+
| pc (null) |
| mjc B-C junction grading coefficient |
| mc (null) |
xcjc Fraction of B-C cap to internal base
tr Ideal reverse transit time
cjs Zero bias C-S capacitance
ccs Zero bias C-S capacitance
vjs Substrate junction built in potential
---+
ps (null)
mjs Substrate junction grading coefficient
ms (null)
xtb Forward and reverse beta temp. exp.
--
| eg Energy gap for IS temp. dependency |
| xti Temp. exponent for IS |
| fc Forward bias junction fit parameter |
| tnom Parameter measurement temperature |

114 NGSPICE User Manual

| kf Flicker Noise Coefficient |
af Flicker Noise Exponent

--
| BJT - model parameters (output-only) |
|---+
| type NPN or PNP |
| invearlyvoltf Inverse early voltage:forward |
| invearlyvoltr Inverse early voltage:reverse |
invrollofff Inverse roll off - forward
invrolloffr Inverse roll off - reverse
collectorconduct Collector conductance
emitterconduct Emitter conductance
transtimevbcfact Transit time VBC factor
excessphasefactor Excess phase fact.
--

13.4 BSIM1: Berkeley Short Channel IGFET Model

--
| BSIM1 - instance parameters (input-only) |
|---+
ic Vector of DS,GS,BS initial voltages

--
| BSIM1 - instance parameters (input-output) |
|---+
| l Length |
| w Width |
| ad Drain area |
as Source area
pd Drain perimeter
ps Source perimeter
nrd Number of squares in drain
nrs Number of squares in source
---+
off Device is initially off
vds Initial D-S voltage
vgs Initial G-S voltage
vbs Initial B-S voltage

Chapter 13: Model and Device Parameters 115

--

--
| BSIM1 - model parameters (input-only) |
|---+
| nmos Flag to indicate NMOS |
pmos Flag to indicate PMOS

--
| BSIM1 - model parameters (input-output) |
|---+
| vfb Flat band voltage |
|lvfb Length dependence of vfb |
| wvfb Width dependence of vfb |
phi Strong inversion surface potential
lphi Length dependence of phi
wphi Width dependence of phi
k1 Bulk effect coefficient 1
lk1 Length dependence of k1
---+
wk1 Width dependence of k1
k2 Bulk effect coefficient 2
lk2 Length dependence of k2
wk2 Width dependence of k2
--
| eta VDS dependence of threshold voltage |
| leta Length dependence of eta |
| weta Width dependence of eta |
| x2e VBS dependence of eta |
| lx2e Length dependence of x2e |
continued

| BSIM1 - model input-output parameters - continued |
|--+
|wx2e Width dependence of x2e |
|x3e VDS dependence of eta |
|lx3e Length dependence of x3e |
wx3e Width dependence of x3e
dl Channel length reduction in um

116 NGSPICE User Manual

|dw Channel width reduction in um |
|muz Zero field mobility at VDS=0 VGS=VTH |
|x2mz VBS dependence of muz |
|--+
|lx2mz Length dependence of x2mz |
|wx2mz Width dependence of x2mz |
mus Mobility at VDS=VDD VGS=VTH, channel length modulation
lmus Length dependence of mus
wmus Width dependence of mus
x2ms VBS dependence of mus
lx2ms Length dependence of x2ms
wx2ms Width dependence of x2ms
--+
x3ms VDS dependence of mus
lx3ms Length dependence of x3ms
wx3ms Width dependence of x3ms
u0 VGS dependence of mobility

|lu0 Length dependence of u0 |
|wu0 Width dependence of u0 |
|x2u0 VBS dependence of u0 |
|lx2u0 Length dependence of x2u0 |
|--+
|wx2u0 Width dependence of x2u0 |
|u1 VDS dependece of mobility, velocity saturation |
|lu1 Length dependence of u1 |
wu1 Width dependence of u1
x2u1 VBS dependence of u1
lx2u1 Length dependence of x2u1
wx2u1 Width dependence of x2u1
x3u1 VDS dependence of u1
--+
lx3u1 Length dependence of x3u1
wx3u1 Width dependence of x3u1
n0 Subthreshold slope
ln0 Length dependence of n0

|wn0 Width dependence of n0 |
|nb VBS dependence of subthreshold slope |
|lnb Length dependence of nb |
|wnb Width dependence of nb |
|--+
|nd VDS dependence of subthreshold slope |
|lnd Length dependence of nd |
|wnd Width dependence of nd |

Chapter 13: Model and Device Parameters 117

continued

| BSIM1 - model input-output parameters - continued |
|---+
|tox Gate oxide thickness in um |
|temp Temperature in degree Celsius |
|vdd Supply voltage to specify mus |
cgso Gate source overlap capacitance per unit channel width(m)
cgdo Gate drain overlap capacitance per unit channel width(m)
cgbo Gate bulk overlap capacitance per unit channel length(m)
xpart Flag for channel charge partitioning
rsh Source drain diffusion sheet resistance in ohm per square
---+
js Source drain junction saturation current per unit area
pb Source drain junction built in potential
mj Source drain bottom junction capacitance grading coefficient
pbsw Source drain side junction capacitance built in potential
--
|mjsw Source drain side junction capacitance grading coefficient |
|cj Source drain bottom junction capacitance per unit area |
|cjsw Source drain side junction capacitance per unit area |
|wdf Default width of source drain diffusion in um |
dell Length reduction of source drain diffusion

13.5 BSIM2: Berkeley Short Channel IGFET Model

--
| BSIM2 - instance parameters (input-only) |
|---+
ic Vector of DS,GS,BS initial voltages

--
| BSIM2 - instance parameters (input-output) |
|---+
| l Length |
| w Width |
| ad Drain area |
as Source area

118 NGSPICE User Manual

| pd Drain perimeter |
| ps Source perimeter |
| nrd Number of squares in drain |
| nrs Number of squares in source |
|---+
| off Device is initially off |
| vds Initial D-S voltage |
| vgs Initial G-S voltage |
vbs Initial B-S voltage

--
| BSIM2 - model parameters (input-only) |
|---+
| nmos Flag to indicate NMOS |
pmos Flag to indicate PMOS

--
| BSIM2 - model parameters (input-output) |
|---+
|vfb Flat band voltage |
|lvfb Length dependence of vfb |
|wvfb Width dependence of vfb |
phi Strong inversion surface potential
lphi Length dependence of phi
wphi Width dependence of phi
k1 Bulk effect coefficient 1
lk1 Length dependence of k1
---+
wk1 Width dependence of k1
k2 Bulk effect coefficient 2
lk2 Length dependence of k2
wk2 Width dependence of k2
--
|eta0 VDS dependence of threshold voltage at VDD=0
|leta0 Length dependence of eta0 |
|weta0 Width dependence of eta0 |
|etab VBS dependence of eta |
|---+
|letab Length dependence of etab |
|wetab Width dependence of etab |
|dl Channel length reduction in um |
|dw Channel width reduction in um |

Chapter 13: Model and Device Parameters 119

--
|mu0 Low-field mobility, at VDS=0 VGS=VTH |
|mu0b VBS dependence of low-field mobility |
|lmu0b Length dependence of mu0b |
|wmu0b Width dependence of mu0b |
|---+
|mus0 Mobility at VDS=VDD VGS=VTH |
|lmus0 Length dependence of mus0 |
|wmus0 Width dependence of mus |
musb VBS dependence of mus
lmusb Length dependence of musb
wmusb Width dependence of musb
mu20 VDS dependence of mu in tanh term
lmu20 Length dependence of mu20
---+
wmu20 Width dependence of mu20
mu2b VBS dependence of mu2
lmu2b Length dependence of mu2b
wmu2b Width dependence of mu2b
--
|mu2g VGS dependence of mu2 |
continued

--
| BSIM2 - model input-output parameters - continued
|---+
| lmu2g Length dependence of mu2g |
| wmu2g Width dependence of mu2g |
| mu30 VDS dependence of mu in linear term |
lmu30 Length dependence of mu30
wmu30 Width dependence of mu30
mu3b VBS dependence of mu3
lmu3b Length dependence of mu3b
wmu3b Width dependence of mu3b
---+
mu3g VGS dependence of mu3
lmu3g Length dependence of mu3g
wmu3g Width dependence of mu3g
mu40 VDS dependence of mu in linear term
--
| lmu40 Length dependence of mu40 |
| wmu40 Width dependence of mu40 |
| mu4b VBS dependence of mu4 |

120 NGSPICE User Manual

| lmu4b Length dependence of mu4b |
|---+
| wmu4b Width dependence of mu4b |
| mu4g VGS dependence of mu4 |
| lmu4g Length dependence of mu4g |
wmu4g Width dependence of mu4g
ua0 Linear VGS dependence of mobility
lua0 Length dependence of ua0
wua0 Width dependence of ua0
uab VBS dependence of ua
---+
luab Length dependence of uab
wuab Width dependence of uab
ub0 Quadratic VGS dependence of mobility
lub0 Length dependence of ub0
--
| wub0 Width dependence of ub0 |
| ubb VBS dependence of ub |
| lubb Length dependence of ubb |
| wubb Width dependence of ubb |
|---+
| u10 VDS dependence of mobility |
| lu10 Length dependence of u10 |
wu10 Width dependence of u100 |

u1b VBS dependence of u1
lu1b Length dependence of u1b
wu1b Width dependence of u1b
u1d VDS dependence of u1
lu1d Length dependence of u1d
---+
wu1d Width dependence of u1d
n0 Subthreshold slope at VDS=0 VBS=0
ln0 Length dependence of n0
continued
--

--
| BSIM2 - model input-output parameters - continued |
|--+
|wn0 Width dependence of n0 |
|nb VBS dependence of n |
|lnb Length dependence of nb |
|wnb Width dependence of nb |
--+

Chapter 13: Model and Device Parameters 121

|nd VDS dependence of n |
|lnd Length dependence of nd |
|wnd Width dependence of nd |
|vof0 Threshold voltage offset AT VDS=0 VBS=0 |
|--+
|lvof0 Length dependence of vof0 |
|wvof0 Width dependence of vof0 |
|vofb VBS dependence of vof |
|lvofb Length dependence of vofb |
--+
|wvofb Width dependence of vofb |
|vofd VDS dependence of vof |
|lvofd Length dependence of vofd |
|wvofd Width dependence of vofd |
|--+
|ai0 Pre-factor of hot-electron effect. |
|lai0 Length dependence of ai0 |
|wai0 Width dependence of ai0 |
|aib VBS dependence of ai |
--+
|laib Length dependence of aib |
|waib Width dependence of aib |
|bi0 Exponential factor of hot-electron effect. |
|lbi0 Length dependence of bi0 |
|--+
|wbi0 Width dependence of bi0 |
|bib VBS dependence of bi |
|lbib Length dependence of bib |
|wbib Width dependence of bib |
--+
|vghigh Upper bound of the cubic spline function. |
|lvghigh Length dependence of vghigh |
|wvghigh Width dependence of vghigh |
|vglow Lower bound of the cubic spline function. |
|--+
|lvglow Length dependence of vglow |
|wvglow Width dependence of vglow |
|tox Gate oxide thickness in um |
|temp Temperature in degree Celcius |
--+
|vdd Maximum Vds |
|vgg Maximum Vgs |
|vbb Maximum Vbs |
|cgso Gate source overlap capacitance per unit |
| channel width(m) |
|--+
|cgdo Gate drain overlap capacitance |

122 NGSPICE User Manual

| per unit channel width(m) |
|cgbo Gate bulk overlap capacitance |
| per unit channel length(m) |
|xpart Flag for channel charge partitioning |
continued

| BSIM2 - model input-output parameters |
|--+
|rsh Source drain diffusion sheet resistance |
| in ohm per square |
|js Source drain junction saturation current |
| per unit area |
|pb Source drain junction built in potential |
|mj Source drain bottom junction capacitance |
| grading coefficient |
--+
|pbsw Source drain side junction capacitance |
| built in potential |
|mjsw Source drain side junction capacitance |
| grading coefficient |
|cj Source drain bottom junction capacitance |
| per unit area |
|cjsw Source drain side junction capacitance |
| per unit area |
|wdf Default width of source drain diffusion in um |
dell Length reduction of source drain diffusion

13.6 Capacitor: Fixed capacitor

--
| Capacitor - instance parameters (input-output) |
|---+
| capacitance Device capacitance |
| ic Initial capacitor voltage |
| w Device width |
l Device length

--
| Capacitor - instance parameters (output-only) |
|---+

Chapter 13: Model and Device Parameters 123

| i Device current |
p Instantaneous device power

--
| Capacitor - model parameters (input-only) |
|---+
c Capacitor model

--
| Capacitor - model parameters (input-output) |
|---+
| cj Bottom Capacitance per area |
| cjsw Sidewall capacitance per meter |
| defw Default width |
narrow width correction factor

13.7 CCCS: Current controlled current source

--
| CCCS - instance parameters (input-output) |
|---+
| gain Gain of source |
control Name of controlling source

--
| CCCS - instance parameters (output-only) |
|---+
| neg_node Negative node of source |
| pos_node Positive node of source |
| i CCCS output current |
| v CCCS voltage at output |
p CCCS power

13.8 CCVS: Linear current controlled current source

--
| CCVS - instance parameters (input-output) |
|---+

124 NGSPICE User Manual

| gain Transresistance (gain) |
control Controlling voltage source

--
| CCVS - instance parameters (output-only) |
|---+
| pos_node Positive node of source |
| neg_node Negative node of source |
| i CCVS output current |
| v CCVS output voltage |
p CCVS power

13.9 CSwitch: Current controlled ideal switch

--
| CSwitch - instance parameters (input-only) |
|---+
| on Initially closed |
off Initially open

--
| CSwitch - instance parameters (input-output) |
|---+
control Name of controlling source

--
| CSwitch - instance parameters (output-only) |
|---+
| pos_node Positive node of switch |
| neg_node Negative node of switch |
| i Switch current |
p Instantaneous power

--
| CSwitch - model parameters (input-output) |
|---+
| csw Current controlled switch model |

Chapter 13: Model and Device Parameters 125

| it Threshold current |
| ih Hysteresis current |
| ron Closed resistance |
roff Open resistance

--
| CSwitch - model parameters (output-only) |
|---+
| gon Closed conductance |
goff Open conductance

13.10 Diode: Junction Diode model

--
| Diode - instance parameters (input-output) |
|---+
| off Initially off |
| temp Instance temperature |
| ic Initial device voltage |
area Area factor

--
| Diode - instance parameters (output-only) |
|---+
| vd Diode voltage |
| id Diode current |
| c Diode current |
gd Diode conductance
cd Diode capacitance
charge Diode capacitor charge
capcur Diode capacitor current
p Diode power
--

--
| Diode - model parameters (input-only) |
|---+
d Diode model

126 NGSPICE User Manual

--
| Diode - model parameters (input-output) |
|---+
| is Saturation current |
| tnom Parameter measurement temperature |
| rs Ohmic resistance |
n Emission Coefficient
tt Transit Time
cjo Junction capacitance
cj0 (null)
vj Junction potential
---+
m Grading coefficient
eg Activation energy
xti Saturation current temperature exp.
kf flicker noise coefficient
--
| af flicker noise exponent |
| fc Forward bias junction fit parameter |
| bv Reverse breakdown voltage |
ibv Current at reverse breakdown voltage

--
| Diode - model parameters (output-only) |
|---+
cond Ohmic conductance

13.11 Inductor: Inductors

--
| Inductor - instance parameters (input-output) |
|---+
| inductance Inductance of inductor |
ic Initial current through inductor

| Inductor - instance parameters (output-only) |
|--+

Chapter 13: Model and Device Parameters 127

|flux Flux through inductor |
|v Terminal voltage of inductor |
|volt |
|i Current through the inductor |
|current |
p instantaneous power dissipated by the inductor

13.12 mutual: Mutual inductors

--
| mutual - instance parameters (input-output) |
|---+
| k Mutual inductance |
| coefficient (null) |
| inductor1 First coupled inductor |
inductor2 Second coupled inductor

13.13 Isource: Independent current source

--
| Isource - instance parameters (input-only) |
|---+
| pulse Pulse description |
| sine Sinusoidal source description |
| sin Sinusoidal source description |
exp Exponential source description
pwl Piecewise linear description
sffm single freq. FM description
ac AC magnitude,phase vector
c Current through current source
distof1 f1 input for distortion
distof2 f2 input for distortion
--

--
| Isource - instance parameters (input-output) |
|---+
| dc DC value of source |
| acmag AC magnitude |
acphase AC phase

128 NGSPICE User Manual

--
| Isource - instance parameters (output-only) |
|---+
| neg_node Negative node of source |
| pos_node Positive node of source |
acreal AC real part

acimag AC imaginary part
function Function of the source
order Order of the source function
coeffs Coefficients of the source
v Voltage across the supply
p Power supplied by the source
--

13.14 JFET: Junction Field effect transistor

--
| JFET - instance parameters (input-output) |
|---+
| off Device initially off |
| ic Initial VDS,VGS vector |
| area Area factor |
| ic-vds Initial D-S voltage |
| ic-vgs Initial G-S volrage |
temp Instance temperature

| JFET - instance parameters (output-only) |
|--+
|drain-node Number of drain node |
|gate-node Number of gate node |
|source-node Number of source node |
drain-prime-node Internal drain node
source-prime-nodeInternal source node
vgs Voltage G-S
vgd Voltage G-D
ig Current at gate node
--+
id Current at drain node
is Source current

Chapter 13: Model and Device Parameters 129

|igd Current G-D |
gm Transconductance
gds Conductance D-S
ggs Conductance G-S
ggd Conductance G-D
qgs Charge storage G-S junction
--+
qgd Charge storage G-D junction
cqgs Capacitance due to charge storage G-S junction
cqgd Capacitance due to charge storage G-D junction
p Power dissipated by the JFET

--
| JFET - model parameters (input-output) |
|---+
| njf N type JFET model |
| pjf P type JFET model |
| vt0 Threshold voltage |
vto (null)
beta Transconductance parameter
lambda Channel length modulation param.
rd Drain ohmic resistance
rs Source ohmic resistance
cgs G-S junction capacitance
continued
--

--
| JFET - model input-output parameters - continued
|---+
| cgd G-D junction cap |
| pb Gate junction potential |
| is Gate junction saturation current |
fc Forward bias junction fit param.
b Doping tail parameter
tnom parameter measurement temperature
kf Flicker Noise Coefficient
af Flicker Noise Exponent
--

130 NGSPICE User Manual

--
| JFET - model parameters (output-only) |
|---+
| type N-type or P-type JFET model |
| gd Drain conductance |
gs Source conductance

13.15 LTRA: Lossy transmission line

--
| LTRA - instance parameters (input-only) |
|---+
ic Initial condition vector:v1,i1,v2,i2

--
| LTRA - instance parameters (input-output) |
|---+
| v1 Initial voltage at end 1 |
| v2 Initial voltage at end 2 |
| i1 Initial current at end 1 |
i2 Initial current at end 2

--
| LTRA - instance parameters (output-only) |
|---+
| pos_node1 Positive node of end 1 of t-line |
| neg_node1 Negative node of end 1 of t.line |
| pos_node2 Positive node of end 2 of t-line |
neg_node2 Negative node of end 2 of t-line

--
| LTRA - model parameters (input-output) |
|---+
|ltra LTRA model |
|r Resistance per metre |
|l Inductance per metre |
g (null)
c Capacitance per metre

Chapter 13: Model and Device Parameters 131

|len length of line |
|nocontrol No timestep control |
|steplimit always limit timestep to 0.8*(delay of line)
continued

| LTRA - model input-output parameters - continued |
|---+
|nosteplimit don’t always limit timestep to 0.8*(delay of line) |
|lininterp use linear interpolation |
|quadinterp use quadratic interpolation |
|mixedinterp use linear interpolation if quadratic results |
look unacceptable
truncnr use N-R iterations for step calculation in LTRAtrunc
truncdontcut don’t limit timestep to keep impulse response
calculation errors low
compactrel special reltol for straight line checking
compactabs special abstol for straight line checking

--
| LTRA - model parameters (output-only) |
|---+
| rel Rel. rate of change of deriv. for bkpt |
abs Abs. rate of change of deriv. for bkpt

13.16 MES: GaAs MESFET model

--
| MES - instance parameters (input-output) |
|---+
| area Area factor |
| icvds Initial D-S voltage |
icvgs Initial G-S voltage

--
| MES - instance parameters (output-only) |
|---+
|off Device initially off |
|dnode Number of drain node |

132 NGSPICE User Manual

|gnode Number of gate node |
snode Number of source node
dprimenode Number of internal drain node
sprimenode Number of internal source node
vgs Gate-Source voltage
vgd Gate-Drain voltage
---+
cg Gate capacitance
cd Drain capacitance
cgd Gate-Drain capacitance
gm Transconductance
--
|gds Drain-Source conductance |
|ggs Gate-Source conductance |
|ggd Gate-Drain conductance |
|cqgs Capacitance due to gate-source charge storage
|---+
|cqgd Capacitance due to gate-drain charge storage|
|qgs Gate-Source charge storage |
|qgd Gate-Drain charge storage |
|is Source current |
continued

--
| MES - instance output-only parameters - continued
|---+
p Power dissipated by the mesfet
--
| MES - model parameters (input-only) |
|---+
| nmf N type MESfet model |
pmf P type MESfet model

--
| MES - model parameters (input-output) |
|---+
| vt0 Pinch-off voltage |
| vto (null) |
| alpha Saturation voltage parameter |
beta Transconductance parameter

Chapter 13: Model and Device Parameters 133

| lambda Channel length modulation param. |
| b Doping tail extending parameter |
| rd Drain ohmic resistance |
| rs Source ohmic resistance |
|---+
| cgs G-S junction capacitance |
| cgd G-D junction capacitance |
| pb Gate junction potential |
is Junction saturation current
fc Forward bias junction fit param.
kf Flicker noise coefficient
af Flicker noise exponent
--

--
| MES - model parameters (output-only) |
|---+
| type N-type or P-type MESfet model |
| gd Drain conductance |
| gs Source conductance |
| depl_cap Depletion capacitance |
vcrit Critical voltage

13.17 Mos1: Level 1 MOSfet model with Meyer capacitance
model

--
| Mos1 - instance parameters (input-only) |
|---+
| off Device initially off |
ic Vector of D-S, G-S, B-S voltages

--
| Mos1 - instance parameters (input-output) |
|---+
| m Multiplicity
| l Length |
| w Width |
| ad Drain area |
as Source area

134 NGSPICE User Manual

| pd Drain perimeter |
| ps Source perimeter |
| nrd Drain squares |
| nrs Source squares |
|---+
| icvds Initial D-S voltage |
| icvgs Initial G-S voltage |
| icvbs Initial B-S voltage |
temp Instance temperature

--
| Mos1 - instance parameters (output-only) |
|---+
| id Drain current |
| is Source current |
| ig Gate current |
ib Bulk current
ibd B-D junction current
ibs B-S junction current
vgs Gate-Source voltage
vds Drain-Source voltage
---+
vbs Bulk-Source voltage
vbd Bulk-Drain voltage
dnode Number of the drain node
gnode Number of the gate node
--
| snode Number of the source node |
| bnode Number of the node |
| dnodeprime Number of int. drain node |
| snodeprime Number of int. source node |
|---+
| von |
| vdsat Saturation drain voltage |
| sourcevcrit Critical source voltage |
| drainvcrit Critical drain voltage |
| rs Source resistance |
continued

--
| Mos1 - instance output-only parameters - continued
|---+

Chapter 13: Model and Device Parameters 135

|sourceconductanceConductance of source |
|rd Drain conductance |
|drainconductance Conductance of drain |
gm Transconductance
gds Drain-Source conductance
gmb Bulk-Source transconductance
gmbs
gbd Bulk-Drain conductance
---+
gbs Bulk-Source conductance
cbd Bulk-Drain capacitance
cbs Bulk-Source capacitance
cgs Gate-Source capacitance
--
|cgd Gate-Drain capacitance |
|cgb Gate-Bulk capacitance |
|cqgs Capacitance due to gate-source charge storage
|cqgd Capacitance due to gate-drain charge storage|
|---+
|cqgb Capacitance due to gate-bulk charge storage |
|cqbd Capacitance due to bulk-drain charge storage|
cqbs Capacitance due to bulk-source charge storage
cbd0 Zero-Bias B-D junction capacitance
cbdsw0
cbs0 Zero-Bias B-S junction capacitance
cbssw0
qgs Gate-Source charge storage
---+
qgd Gate-Drain charge storage
qgb Gate-Bulk charge storage
qbd Bulk-Drain charge storage
qbs Bulk-Source charge storage
p Instaneous power
--

--
| Mos1 - model parameters (input-only) |
|---+
| nmos N type MOSfet model |
pmos P type MOSfet model

--

136 NGSPICE User Manual

| Mos1 - model parameters (input-output) |
|---+
| vto Threshold voltage |
| vt0 (null) |
| kp Transconductance parameter |
gamma Bulk threshold parameter
phi Surface potential
lambda Channel length modulation
rd Drain ohmic resistance
continued
--

--
| Mos1 - model input-output parameters - continued
|---+
| rs Source ohmic resistance |
| cbd B-D junction capacitance |
| cbs B-S junction capacitance |
is Bulk junction sat. current
pb Bulk junction potential
cgso Gate-source overlap cap.
cgdo Gate-drain overlap cap.
cgbo Gate-bulk overlap cap.
---+
rsh Sheet resistance
cj Bottom junction cap per area
mj Bottom grading coefficient
cjsw Side junction cap per area
--
| mjsw Side grading coefficient |
| js Bulk jct. sat. current density |
| tox Oxide thickness |
| ld Lateral diffusion |
|---+
| u0 Surface mobility |
| uo (null) |
| fc Forward bias jct. fit param. |
nsub Substrate doping
tpg Gate type
nss Surface state density
tnom Parameter measurement temperature
kf Flicker noise coefficient
af Flicker noise exponent

Chapter 13: Model and Device Parameters 137

--

--
| Mos1 - model parameters (output-only) |
|---+
type N-channel or P-channel MOS

13.18 Mos2: Level 2 MOSfet model with Meyer capacitance
model

--
| Mos2 - instance parameters (input-only) |
|---+
| off Device initially off |
ic Vector of D-S, G-S, B-S voltages

--
| Mos2 - instance parameters (input-output) |
|---+
| m Multiplicity |
| l Length |
| w Width |
| ad Drain area |
as Source area
pd Drain perimeter
ps Source perimeter
nrd Drain squares
nrs Source squares
---+
icvds Initial D-S voltage
icvgs Initial G-S voltage
icvbs Initial B-S voltage
temp Instance operating temperature
--

--
| Mos2 - instance parameters (output-only) |
|---+
| id Drain current |
| cd |

138 NGSPICE User Manual

| ibd B-D junction current |
ibs B-S junction current
is Source current
ig Gate current
ib Bulk current
vgs Gate-Source voltage
---+
vds Drain-Source voltage
vbs Bulk-Source voltage
vbd Bulk-Drain voltage
dnode Number of drain node
--
| gnode Number of gate node |
| snode Number of source node |
| bnode Number of bulk node |
| dnodeprime Number of internal drain node |
|---+
| snodeprime Number of internal source node |
| von |
| vdsat Saturation drain voltage |
| sourcevcrit Critical source voltage |
| drainvcrit Critical drain voltage |
continued

--
| Mos2 - instance output-only parameters - continued
|---+
|rs Source resistance |
|sourceconductanceSource conductance |
|rd Drain resistance |
drainconductance Drain conductance
gm Transconductance
gds Drain-Source conductance
gmb Bulk-Source transconductance
gmbs
---+
gbd Bulk-Drain conductance
gbs Bulk-Source conductance
cbd Bulk-Drain capacitance
cbs Bulk-Source capacitance
--
|cgs Gate-Source capacitance |
|cgd Gate-Drain capacitance |

Chapter 13: Model and Device Parameters 139

|cgb Gate-Bulk capacitance |
|cbd0 Zero-Bias B-D junction capacitance |
|---+
|cbdsw0 |
|cbs0 Zero-Bias B-S junction capacitance |
|cbssw0 |
cqgs Capacitance due to gate-source charge storage
cqgd Capacitance due to gate-drain charge storage
cqgb Capacitance due to gate-bulk charge storage
cqbd Capacitance due to bulk-drain charge storage
cqbs Capacitance due to bulk-source charge storage
---+
qgs Gate-Source charge storage
qgd Gate-Drain charge storage
qgb Gate-Bulk charge storage
qbd Bulk-Drain charge storage
qbs Bulk-Source charge storage
p Instantaneous power
--

--
| Mos2 - model parameters (input-only) |
|---+
| nmos N type MOSfet model |
pmos P type MOSfet model

--
| Mos2 - model parameters (input-output) |
|---+
| vto Threshold voltage |
| vt0 (null) |
| kp Transconductance parameter |
gamma Bulk threshold parameter
phi Surface potential
lambda Channel length modulation
rd Drain ohmic resistance
rs Source ohmic resistance
---+
cbd B-D junction capacitance
cbs B-S junction capacitance
is Bulk junction sat. current

140 NGSPICE User Manual

pb Bulk junction potential
cgso Gate-source overlap cap.
cgdo Gate-drain overlap cap.
cgbo Gate-bulk overlap cap.
rsh Sheet resistance
---+
cj Bottom junction cap per area
mj Bottom grading coefficient
cjsw Side junction cap per area
mjsw Side grading coefficient
--
| js Bulk jct. sat. current density |
| tox Oxide thickness |
| ld Lateral diffusion |
| u0 Surface mobility |
|---+
| uo (null) |
| fc Forward bias jct. fit param. |
| nsub Substrate doping |
tpg Gate type
nss Surface state density
delta Width effect on threshold
uexp Crit. field exp for mob. deg.
ucrit Crit. field for mob. degradation
---+
vmax Maximum carrier drift velocity
xj Junction depth
neff Total channel charge coeff.
nfs Fast surface state density
--
| tnom Parameter measurement temperature |
| kf Flicker noise coefficient |
af Flicker noise exponent

--
| Mos2 - model parameters (output-only) |
|---+
type N-channel or P-channel MOS

Chapter 13: Model and Device Parameters 141

13.19 Mos3: Level 3 MOSfet model with Meyer capacitance
model

--
| Mos3 - instance parameters (input-only) |
|---+
off Device initially off

--
| Mos3 - instance parameters (input-output) |
|---+
| m Multiplicity |
| l Length |
| w Width |
| ad Drain area |
| as Source area |
--+
| pd Drain perimeter |
| ps Source perimeter |
| nrd Drain squares |
| nrs Source squares |
|---+
| icvds Initial D-S voltage |
| icvgs Initial G-S voltage |
| icvbs Initial B-S voltage |
| ic Vector of D-S, G-S, B-S voltages |
temp Instance operating temperature

--
| Mos3 - instance parameters (output-only) |
|---+
| id Drain current |
| cd Drain current |
| ibd B-D junction current |
ibs B-S junction current
is Source current
ig Gate current
ib Bulk current
vgs Gate-Source voltage
---+
vds Drain-Source voltage

142 NGSPICE User Manual

| vbs Bulk-Source voltage |
| vbd Bulk-Drain voltage |
dnode Number of drain node
gnode Number of gate node
snode Number of source node
bnode Number of bulk node
dnodeprime Number of internal drain node
snodeprime Number of internal source node
continued
--

--
| Mos3 - instance output-only parameters - continued
|---+
|von Turn-on voltage |
|vdsat Saturation drain voltage |
|sourcevcrit Critical source voltage |
drainvcrit Critical drain voltage
rs Source resistance
sourceconductanceSource conductance
rd Drain resistance
drainconductance Drain conductance
---+
gm Transconductance
gds Drain-Source conductance
gmb Bulk-Source transconductance
gmbs Bulk-Source transconductance
--
|gbd Bulk-Drain conductance |
|gbs Bulk-Source conductance |
|cbd Bulk-Drain capacitance |
|cbs Bulk-Source capacitance |
|---+
|cgs Gate-Source capacitance |
|cgd Gate-Drain capacitance |
|cgb Gate-Bulk capacitance |
cqgs Capacitance due to gate-source charge storage
cqgd Capacitance due to gate-drain charge storage
cqgb Capacitance due to gate-bulk charge storage
cqbd Capacitance due to bulk-drain charge storage
cqbs Capacitance due to bulk-source charge storage
---+

Chapter 13: Model and Device Parameters 143

|cbd0 Zero-Bias B-D junction capacitance |
|cbdsw0 Zero-Bias B-D sidewall capacitance |
|cbs0 Zero-Bias B-S junction capacitance |
cbssw0 Zero-Bias B-S sidewall capacitance
qbs Bulk-Source charge storage
qgs Gate-Source charge storage
qgd Gate-Drain charge storage
qgb Gate-Bulk charge storage
qbd Bulk-Drain charge storage
p Instantaneous power
--

--
| Mos3 - model parameters (input-only) |
|---+
| nmos N type MOSfet model |
pmos P type MOSfet model

--
| Mos3 - model parameters (input-output) |
|---+
| vto Threshold voltage |
| vt0 (null) |
| kp Transconductance parameter |
gamma Bulk threshold parameter
phi Surface potential
rd Drain ohmic resistance
rs Source ohmic resistance
cbd B-D junction capacitance
---+
cbs B-S junction capacitance
is Bulk junction sat. current
pb Bulk junction potential
cgso Gate-source overlap cap.
--
| cgdo Gate-drain overlap cap. |
| cgbo Gate-bulk overlap cap. |
| rsh Sheet resistance |
| cj Bottom junction cap per area |
|---+
| mj Bottom grading coefficient |
| cjsw Side junction cap per area |

144 NGSPICE User Manual

| mjsw Side grading coefficient |
js Bulk jct. sat. current density
tox Oxide thickness
xl Length mask adjustment
wd Width Narrowing (Diffusion)
xw Width mask adjustment
ld Lateral diffusion
u0 Surface mobility
uo (null)
---+
fc Forward bias jct. fit param.
nsub Substrate doping
tpg Gate type
nss Surface state density
--
| vmax Maximum carrier drift velocity |
| xj Junction depth |
| nfs Fast surface state density |
| xd Depletion layer width |
|---+
| alpha Alpha |
| eta Vds dependence of threshold voltage |
| delta Width effect on threshold |
input_delta (null)
theta Vgs dependence on mobility
kappa Kappa
tnom Parameter measurement temperature
kf Flicker noise coefficient
af Flicker noise exponent
--

--
| Mos3 - model parameters (output-only) |
|---+
type N-channel or P-channel MOS

13.20 Mos6: Level 6 MOSfet model with Meyer capacitance
model

--
| Mos6 - instance parameters (input-only) |

Chapter 13: Model and Device Parameters 145

|---+
| off Device initially off |
ic Vector of D-S, G-S, B-S voltages

--
| Mos6 - instance parameters (input-output) |
|---+
| l Length |
| w Width |
| ad Drain area |
as Source area
pd Drain perimeter
ps Source perimeter
nrd Drain squares
nrs Source squares
---+
icvds Initial D-S voltage
icvgs Initial G-S voltage
icvbs Initial B-S voltage
temp Instance temperature
--

--
| Mos6 - instance parameters (output-only) |
|---+
| id Drain current |
| cd Drain current |
| is Source current |
ig Gate current
ib Bulk current
ibs B-S junction capacitance
ibd B-D junction capacitance
vgs Gate-Source voltage
---+
vds Drain-Source voltage
vbs Bulk-Source voltage
vbd Bulk-Drain voltage
dnode Number of the drain node
--
| gnode Number of the gate node |
| snode Number of the source node |
| bnode Number of the node |

146 NGSPICE User Manual

| dnodeprime Number of int. drain node |
| snodeprime Number of int. source node |
continued

--
| Mos6 - instance output-only parameters - continued
|---+
|rs Source resistance |
|sourceconductanceSource conductance |
|rd Drain resistance |
drainconductance Drain conductance
von Turn-on voltage
vdsat Saturation drain voltage
sourcevcrit Critical source voltage
drainvcrit Critical drain voltage
---+
gmbs Bulk-Source transconductance
gm Transconductance
gds Drain-Source conductance
gbd Bulk-Drain conductance
--
|gbs Bulk-Source conductance |
|cgs Gate-Source capacitance |
|cgd Gate-Drain capacitance |
|cgb Gate-Bulk capacitance |
|---+
|cbd Bulk-Drain capacitance |
|cbs Bulk-Source capacitance |
|cbd0 Zero-Bias B-D junction capacitance |
cbdsw0
cbs0 Zero-Bias B-S junction capacitance
cbssw0
cqgs Capacitance due to gate-source charge storage
cqgd Capacitance due to gate-drain charge storage
---+
cqgb Capacitance due to gate-bulk charge storage
cqbd Capacitance due to bulk-drain charge storage
cqbs Capacitance due to bulk-source charge storage
qgs Gate-Source charge storage
--
|qgd Gate-Drain charge storage |
|qgb Gate-Bulk charge storage |
|qbd Bulk-Drain charge storage |

Chapter 13: Model and Device Parameters 147

|qbs Bulk-Source charge storage |
p Instantaneous power

--
| Mos6 - model parameters (input-only) |
|---+
| nmos N type MOSfet model |
pmos P type MOSfet model

--
| Mos6 - model parameters (input-output) |
|---+
| vto Threshold voltage |
| vt0 (null) |
| kv Saturation voltage factor |
nv Saturation voltage coeff.
kc Saturation current factor
nc Saturation current coeff.
nvth Threshold voltage coeff.
ps Sat. current modification par.
---+
gamma Bulk threshold parameter
gamma1 Bulk threshold parameter 1
sigma Static feedback effect par.
phi Surface potential
--
| lambda Channel length modulation param. |
| lambda0 Channel length modulation param. 0 |
| lambda1 Channel length modulation param. 1 |
| rd Drain ohmic resistance |
|---+
| rs Source ohmic resistance |
| cbd B-D junction capacitance |
| cbs B-S junction capacitance |
is Bulk junction sat. current
pb Bulk junction potential
cgso Gate-source overlap cap.
cgdo Gate-drain overlap cap.
cgbo Gate-bulk overlap cap.
---+
rsh Sheet resistance

148 NGSPICE User Manual

| cj Bottom junction cap per area |
| mj Bottom grading coefficient |
cjsw Side junction cap per area
mjsw Side grading coefficient
js Bulk jct. sat. current density
ld Lateral diffusion
tox Oxide thickness
---+
u0 Surface mobility
uo (null)
fc Forward bias jct. fit param.
tpg Gate type
--
| nsub Substrate doping |
| nss Surface state density |
tnom Parameter measurement temperature

--
| Mos6 - model parameters (output-only) |
|---+
type N-channel or P-channel MOS

13.21 Resistor: Simple linear resistor

--
| Resistor - instance parameters (input-output) |
|---+
| resistance Resistance |
| temp Instance operating temperature |
| l Length |
w Width

--
| Resistor - instance parameters (output-only) |
|---+
| i Current |
p Power

Chapter 13: Model and Device Parameters 149

--
| Resistor - model parameters (input-only) |
|---+
r Device is a resistor model

--
| Resistor - model parameters (input-output) |
|---+
| rsh Sheet resistance |
| narrow Narrowing of resistor |
| tc1 First order temp. coefficient |
| tc2 Second order temp. coefficient |
| defw Default device width |
tnom Parameter measurement temperature

13.22 Switch: Ideal voltage controlled switch

--
| Switch - instance parameters (input-only) |
|---+
| on Switch initially closed |
off Switch initially open

--
| Switch - instance parameters (input-output) |
|---+
| pos_node Positive node of switch |
neg_node Negative node of switch

--
| Switch - instance parameters (output-only) |
|---+
| cont_p_node Positive contr. node of switch |
| cont_n_node Positive contr. node of switch |
| i Switch current |
p Switch power

150 NGSPICE User Manual

--
| Switch - model parameters (input-output) |
|---+
| sw Switch model |
| vt Threshold voltage |
| vh Hysteresis voltage |
| ron Resistance when closed |
roff Resistance when open

--
| Switch - model parameters (output-only) |
|---+
| gon Conductance when closed |
goff Conductance when open

13.23 Tranline: Lossless transmission line

--
| Tranline - instance parameters (input-only) |
|---+
ic Initial condition vector:v1,i1,v2,i2

--
| Tranline - instance parameters (input-output) |
|---+
| z0 Characteristic impedance |
| zo (null) |
| f Frequency |
td Transmission delay
nl Normalized length at frequency given
v1 Initial voltage at end 1
v2 Initial voltage at end 2
i1 Initial current at end 1
i2 Initial current at end 2
--

--
| Tranline - instance parameters (output-only) |
|---+

Chapter 13: Model and Device Parameters 151

| rel Rel. rate of change of deriv. for bkpt |
| abs Abs. rate of change of deriv. for bkpt |
| pos_node1 Positive node of end 1 of t. line |
neg_node1 Negative node of end 1 of t. line
pos_node2 Positive node of end 2 of t. line
neg_node2 Negative node of end 2 of t. line
delays Delayed values of excitation
--

13.24 VCCS: Voltage controlled current source

--
| VCCS - instance parameters (input-only) |
|---+
ic Initial condition of controlling source

--
| VCCS - instance parameters (input-output) |
|---+
gain Transconductance of source (gain)

--
| VCCS - instance parameters (output-only) |
|---+
| pos_node Positive node of source |
| neg_node Negative node of source |
| cont_p_node Positive node of contr. source |
cont_n_node Negative node of contr. source
i Output current
v Voltage across output
p Power
--

13.25 VCVS: Voltage controlled voltage source

--
| VCVS - instance parameters (input-only) |
|---+
ic Initial condition of controlling source

152 NGSPICE User Manual

--
| VCVS - instance parameters (input-output) |
|---+
gain Voltage gain

--
| VCVS - instance parameters (output-only) |
|---+
| pos_node Positive node of source |
| neg_node Negative node of source |
| cont_p_node Positive node of contr. source |
cont_n_node Negative node of contr. source
--
| i Output current |
| v Output voltage |
p Power

13.26 Vsource: Independent voltage source

--
| Vsource - instance parameters (input-only) |
|---+
| pulse Pulse description |
| sine Sinusoidal source description |
| sin Sinusoidal source description |
exp Exponential source description
pwl Piecewise linear description
sffm Single freq. FM description
ac AC magnitude, phase vector
distof1 f1 input for distortion
distof2 f2 input for distortion
--

--
| Vsource - instance parameters (input-output) |
|---+
| dc D.C. source value |
| acmag A.C. Magnitude |
| acphase A.C. Phase |

Chapter 13: Model and Device Parameters 153

--

--
| Vsource - instance parameters (output-only) |
|---+
| pos_node Positive node of source |
| neg_node Negative node of source |
| function Function of the source |
order Order of the source function
coeffs Coefficients for the function
acreal AC real part
acimag AC imaginary part
i Voltage source current
p Instantaneous power
--

154 NGSPICE User Manual

Chapter 14: NGSPICE enhancements over Spice3 155

14 NGSPICE enhancements over Spice3

NGSPICE is the result of many hours of work spent in front of a screen trying to fix and
enhance the original Spice3 code. Most of the work done affects simulation results in some
way, so many users ask why the results obtained with Spice3 differ with the ones they get
from NGSPICE.

This chapter collects all the enhancements introduced into NGSPICE during its de-
velopment, ordered by categories. For each improvement described here, the file(s) and
function(s) affected are reported into a table, letting the experienced user to understand at
what extent such improvement affects his or her simulation.

14.1 Device models code

This section collects most of the enhancements made to the code that builds up device
models and device support routines. If you are concerned about discrepancies between the
results you get with NGSPICE and the ones you got with a clean Spice3f, look here to see
if they depend on a bug that has been fixed (or a new on introduced)

14.1.1 Resistor Model

The NGSPICE resistor model has been enhanced adding some useful features already
present in other simulators:

• Different resistance value for AC analysis (Serban Popescu).

• Device Multiplicity. The "M" parameter simulates "M" paralleled resistors (Serban
Popescu).

• "Short" model parameter to take into account resistor shortening due to side etching.
The original spice3 implementation had only the "narrow" parameter (Alan Gillespie).

• "scale" instance parameter to scale the AC or DC value (Paolo Nenzi).

Authors: Alan Gillespie, Paolo Nenzi, Serban Popescu

File: ‘spicelib/dev/res/*’

Function: All the functions that makes up the model.

Affects: The resistor model only.

14.1.2 Capacitor Model

In CAPask(), the power stored in a capacitor and current through it were not showed
correctly during transient analysis.

Author: Alan Gillespie

File: ‘spicelib/devices/cap/capask.c’

Function: CAPask()

Affects: The capacitor model only.

156 NGSPICE User Manual

14.1.3 Diode (D) model fixes

In the original implementation of the diode model, the parameter DIOtBrkdwnV was used
instead of the flag DIObreakdownVoltageGiven, in the DIOload() function. In the same
function the DIOjunctionPot was used instead of the temperature corrected version
DIOtJctPot.

In the DIOtemp() function, the DIOtVcrit was calculated without taking into account
the device area. This could cause floating point overflows, especially in device models
designed to be scaled by a small area, e.g. 2u by 2u diodes (area=4e-12).

The flawed code was:
here->DIOtVcrit=vte*log(vte/(CONSTroot2*here->DIOtSatCur));

here->DIOtVcrit=vte*
log(vte/(CONSTroot2*here->DIOtSatCur*here->DIOarea));

Enhancement Data:

Author: Alan Gillespie

Files: ‘spicelib/devices/dioload.c’ ‘spicelib/devices/diotemp.c’

Function: DIOload(), DIOtemp()

Affects: The pn junction diode model.

14.1.4 Level 1 MOS model

The Level 1 MOS model (MOS1)now accepts the "M" device parameter (multiplicity),
to simulate "M" paralleled identical devices. The "M" parameter affects the following
quantities:
• In the AC load routine (MOS1acLoad()), the value assigned to the "M"

(MOS1m) parameter multiplies the overlap capacitances: GateSourceOverlapCap,
GateDrainOverlapCap, GateBulkOverlapCap.

• In the instance parameters ask routine (MOS1ask()), the value of gate-source, gate-
drain and gate-bulk capacitances, corresponding to the parameters: MOS1_CAPGS, MOS1_
CAPGD, MOS1_CAPGB, are multiplied by the value of "M".

• In the distortion analysis setup routine (MOS1dset()), the overlap capcitances
(GateSourceOverlapCap, GateDrainOverlapCap, GateBulkOverlapCap), the
saturation currents (DrainSatCurr, SourceSatCurr), the "beta" (Beta) and the
oxide capacitance (OxideCap) are all mutiplied by the value of "M".

• In the main load routine (MOS1load()), the value of "M" paramter
multiplies:DrainSatCurr, SourceSatCurr, GateSourceOverlapCap,
GateDrainOverlapCap, GateBulkOverlapCap, Beta, OxideCap. The mean-
ing of the variables have been already explained above.

• In the noise analysis routine (in MOS1noi()), the noise densities, contained in the
noizDEns[] vector are multplied by the value of "M".

• In the load routine for Pole-Zero analysis, the following quantities are multiplied by the
value of "M": GateSourceOverlapCap, GateDrainOverlapCap, GateBulkOverlapCap.

• In the device "temp" routine (in MOS1temp()) the source and drain critical voltages
(MOS1sourceVcrit, MOS1drainVcrit) are multiplied by the value of "M", like the zero-
voltage bulk-drain and bulk-source capacitances: czbd, czbdsw, czbs, czbssw, where

Chapter 14: NGSPICE enhancements over Spice3 157

"sw" suffix stands for "sidewall" and means perimetral capacitsnces and the drain and
sources conductances (MOS1drainConductance. MOS1sourceConductance)

Other minor changes for "M" parameter support includes: MOS1sprt() prints the value
of "M", MOS1param() sets the value of "M" and MOS1ask() returns that value.

The "Gmin" implementation across the substrate diodes of MOS1 was incorrect, cor-
recting this dramatically improved DC convergence. The original code in MOS1load() was:

...

...
next1: if(vbs <= 0) {

here->MOS1gbs = SourceSatCur/vt;
here->MOS1cbs = here->MOS1gbs*vbs;
here->MOS1gbs += ckt->CKTgmin;

} else {
evbs = exp(MIN(MAX_EXP_ARG,vbs/vt));
here->MOS1gbs = SourceSatCur*evbs/vt + ckt->CKTgmin;
here->MOS1cbs = SourceSatCur * (evbs-1);

}
if(vbd <= 0) {

here->MOS1gbd = DrainSatCur/vt;
here->MOS1cbd = here->MOS1gbd *vbd;
here->MOS1gbd += ckt->CKTgmin;

} else {
evbd = exp(MIN(MAX_EXP_ARG,vbd/vt));
here->MOS1gbd = DrainSatCur*evbd/vt +ckt->CKTgmin;
here->MOS1cbd = DrainSatCur *(evbd-1);

}
...
...

and the new one is:

...

...
next1: if(vbs <= -3*vt) {

here->MOS1gbs = ckt->CKTgmin;
here->MOS1cbs = here->MOS1gbs*vbs-SourceSatCur;

} else {
evbs = exp(MIN(MAX_EXP_ARG,vbs/vt));
here->MOS1gbs = SourceSatCur*evbs/vt + ckt->CKTgmin;
here->MOS1cbs = SourceSatCur*(evbs-1) + ckt->CKTgmin*vbs;

}
if(vbd <= -3*vt) {

here->MOS1gbd = ckt->CKTgmin;
here->MOS1cbd = here->MOS1gbd*vbd-DrainSatCur;

} else {
evbd = exp(MIN(MAX_EXP_ARG,vbd/vt));
here->MOS1gbd = DrainSatCur*evbd/vt + ckt->CKTgmin;

158 NGSPICE User Manual

here->MOS1cbd = DrainSatCur*(evbd-1) + ckt->CKTgmin*vbd;
}

...

...

In the "load current vector" section of the MOS1load() routine, "Gmin" appeared in the
calculation of ceqbd and ceqbs:

/*
* load current vector
*/

ceqbs = model->MOS1type *
(here->MOS1cbs-(here->MOS1gbs-ckt->CKTgmin)*vbs);

ceqbd = model->MOS1type *
(here->MOS1cbd-(here->MOS1gbd-ckt->CKTgmin)*vbd);

The code has been corrected as follows:

/*
* load current vector
*/

ceqbs = model->MOS1type *
(here->MOS1cbs-(here->MOS1gbs)*vbs);

ceqbd = model->MOS1type *
(here->MOS1cbd-(here->MOS1gbd)*vbd);

MOS1 device reported only half of the Meyer capcitance without adding the overlap
capacitance contribution, when reporting to the .OP printout or in the rawfile. The routine
MOS1ask() was responsible for this:

...

...
case MOS1_CGS:

value->rValue = *(ckt->CKTstate0 + here->MOS1capgs);
return(OK);

case MOS1_CGD:
value->rValue = *(ckt->CKTstate0 + here->MOS1capgd);
return(OK);

...

...
case MOS1_CAPGS:

value->rValue = *(ckt->CKTstate0 + here->MOS1capgs);
return(OK);

...

...
case MOS1_CAPGD:

value->rValue = *(ckt->CKTstate0 + here->MOS1capgd);
return(OK);

...

Chapter 14: NGSPICE enhancements over Spice3 159

...
case MOS1_CAPGB:

value->rValue = *(ckt->CKTstate0 + here->MOS1capgb);
return(OK);

The new code is:

...

...
case MOS1_CGS:

value->rValue = 2* *(ckt->CKTstate0 + here->MOS1capgs);
return(OK);

case MOS1_CGD:
value->rValue = 2* *(ckt->CKTstate0 + here->MOS1capgd);
return(OK);

...

...
case MOS1_CAPGS:

value->rValue = 2* *(ckt->CKTstate0 + here->MOS1capgs);
/* add overlap capacitance */
value->rValue += (here->sMOS1modPtr->MOS1gateSourceOverlapCapFactor)

* here->MOS1m
* (here->MOS1w);

return(OK);
...
...
case MOS1_CAPGD:

value->rValue = 2* *(ckt->CKTstate0 + here->MOS1capgd);
/* add overlap capacitance */
value->rValue += (here->sMOS1modPtr->MOS1gateSourceOverlapCapFactor)

* here->MOS1m
* (here->MOS1w);

return(OK);
...
...
case MOS1_CAPGB:

value->rValue = 2* *(ckt->CKTstate0 + here->MOS1capgb);
/* add overlap capacitance */
value->rValue += (here->sMOS1modPtr->MOS1gateBulkOverlapCapFactor)

* here->MOS1m
* (here->MOS1l
-2*(here->sMOS1modPtr->MOS1latDiff));

return(OK);

14.1.5 Level 2 MOS Model

Level 2 mosfet model now accetps the "M" instance parameter (multiplicity) to simulate
M paralleled identical devices. The affected quantities are:

• In the AC load routine (MOS2acLoad(), the value assigned to the "M" (MOS2m)

160 NGSPICE User Manual

parameter, multiplies the overlap capacitance: GateSourceOverlapCap,
GateDrainOverlapCap, GateBulkOverlapCap.

• In the MOS2ask() routine (instance parameters reporting) the gate-source, gate-drain
and gate-bulk capacitances, corresponding to MOS2_CAPGS, MOS2_CAPGD, MOS2_CAPGB
parameters, are multiplied by the value of "M".

• In the MOS2dset() function (distortion analysis setup) the overlap capcitances
(GateSourceOverlapCap, GateDrainOverlapCap, GateBulkOverlapCap), the
saturation currents (DrainSatCurr, SourceSatCurr), the "beta" (Beta), the oxide
capacitance (OxideCap) and and the xn quantity are all mutiplied by the value of
"M".

• In the main load routine MOS2load(), the value of "M" parame-
ter multiplies:DrainSatCurr, SourceSatCurr, GateSourceOverlapCap,
GateDrainOverlapCap, GateBulkOverlapCap, Beta, OxideCap, xn. The meaning of
the variables have been already explained above.

• In the noise analysis routine MOS2noi(), the noise densities, contained in the
noizDEns[] vector are multplied by the value of "M".

• In the load routine for Pole-Zero analysis (MOS2pzLoad()), the following quantities
are multiplied by the value of "M": GateSourceOverlapCap, GateDrainOverlapCap,
GateBulkOverlapCap.

• In MOS2temp() routine the source and drain critical voltages (MOS2sourceVcrit,
MOS2drainVcrit) are multiplied by the value of "M", like the zero-voltage bulk-drain
and bulk-source capacitances: czbd, czbdsw, czbs, czbssw, where "sw" suffix
stands for "sidewall" and means perimetral capacitances and the drain and sources
conductances (MOS2drainConductance, MOS2sourceConductance).

Other minor changes for "M" parameter support includes: MOS2sprt() prints the value
of "M", MOS2param() sets the value of "M" and MOS2ask() returns that value.

The "Gmin" implementation across the substrate diodes of MOS2 was incorrect, cor-
recting this dramatically improved DC convergence. The original code in MOS2load() was:

...

...
/* bulk-source and bulk-drain diodes
* here we just evaluate the ideal diode current and the
* corresponding derivative (conductance).
*/

next1: if(vbs <= 0) {
here->MOS2gbs = SourceSatCur/vt;
here->MOS2cbs = here->MOS2gbs*vbs;
here->MOS2gbs += ckt->CKTgmin;

} else {
evbs = exp(vbs/vt);
here->MOS2gbs = SourceSatCur*evbs/vt + ckt->CKTgmin;
here->MOS2cbs = SourceSatCur * (evbs-1);

}
if(vbd <= 0) {

Chapter 14: NGSPICE enhancements over Spice3 161

here->MOS2gbd = DrainSatCur/vt;
here->MOS2cbd = here->MOS2gbd *vbd;
here->MOS2gbd += ckt->CKTgmin;

} else {
evbd = exp(vbd/vt);
here->MOS2gbd = DrainSatCur*evbd/vt +ckt->CKTgmin;
here->MOS2cbd = DrainSatCur *(evbd-1);

}

...

...

Then new code is:
...
...
/* bulk-source and bulk-drain diodes
* here we just evaluate the ideal diode current and the
* corresponding derivative (conductance).
*/

next1: if(vbs <= -3*vt) {
here->MOS2gbs = ckt->CKTgmin;
here->MOS2cbs = here->MOS2gbs*vbs-SourceSatCur;

} else {
evbs = exp(MIN(MAX_EXP_ARG,vbs/vt));
here->MOS2gbs = SourceSatCur*evbs/vt + ckt->CKTgmin;
here->MOS2cbs = SourceSatCur*(evbs-1) + ckt->CKTgmin*vbs;

}
if(vbd <= -3*vt) {

here->MOS2gbd = ckt->CKTgmin;
here->MOS2cbd = here->MOS2gbd*vbd-DrainSatCur;

} else {
evbd = exp(MIN(MAX_EXP_ARG,vbd/vt));
here->MOS2gbd = DrainSatCur*evbd/vt + ckt->CKTgmin;
here->MOS2cbd = DrainSatCur*(evbd-1) + ckt->CKTgmin*vbd;

}

In the "load current vector" section of the MOS2load() routine, "Gmin" appeared in the
calculation of ceqbd and ceqbs:

...

...
/*
* load current vector
*/

ceqbs = model->MOS2type *
(here->MOS2cbs-(here->MOS2gbs-ckt->CKTgmin)*vbs);

ceqbd = model->MOS2type *
(here->MOS2cbd-(here->MOS2gbd-ckt->CKTgmin)*vbd);

162 NGSPICE User Manual

...

...

The correct code is:

...

...
/*
* load current vector
*/

ceqbs = model->MOS2type *
(here->MOS2cbs-(here->MOS2gbs)*vbs);

ceqbd = model->MOS2type *
(here->MOS2cbd-(here->MOS2gbd)*vbd);

...

...

MOS2 device reported only half of the Meyer capacitance without adding the overlap
capacitance contribution, when reporting to the .OP printout or in the rawfile. The routine
MOS2ask() was responsible for this:

...

...
case MOS2_CGS:

value->rValue = *(ckt->CKTstate0 + here->MOS2capgs);
return(OK);

case MOS2_CGD:
value->rValue = *(ckt->CKTstate0 + here->MOS2capgd);
return(OK);

...

...
case MOS2_CAPGS:

value->rValue = *(ckt->CKTstate0 + here->MOS2capgs);
return(OK);

...

...
case MOS2_CAPGD:

value->rValue = *(ckt->CKTstate0 + here->MOS2capgd);
return(OK);

...

...
case MOS2_CAPGB:

value->rValue = *(ckt->CKTstate0 + here->MOS2capgb);
return(OK);

...

...

The new code is:

...

...

Chapter 14: NGSPICE enhancements over Spice3 163

case MOS2_CGS:
value->rValue = 2* *(ckt->CKTstate0 + here->MOS2capgs);
return(OK);

case MOS2_CGD:
value->rValue = 2* *(ckt->CKTstate0 + here->MOS2capgd);
return(OK);

...

...
case MOS2_CAPGS:

value->rValue = 2* *(ckt->CKTstate0 + here->MOS2capgs);
/* add overlap capacitance */
value->rValue +=

(here->MOS2modPtr->MOS2gateSourceOverlapCapFactor)
* here->MOS2m
* (here->MOS2w);

return(OK);
...
...
case MOS2_CAPGD:

value->rValue = 2* *(ckt->CKTstate0 + here->MOS2capgd);
/* add overlap capacitance */
value->rValue +=

(here->MOS2modPtr->MOS2gateSourceOverlapCapFactor)
* here->MOS2m
* (here->MOS2w);

return(OK);
...
...
case MOS2_CAPGB:

value->rValue = 2* *(ckt->CKTstate0 + here->MOS2capgb);
/* add overlap capacitance */
value->rValue +=

(here->MOS2modPtr->MOS2gateBulkOverlapCapFactor)
* here->MOS2m
* (here->MOS2l
-2*(here->MOS2modPtr->MOS2latDiff));

return(OK);
...
...

The level 2 MOSFET model seems to calculate Von and Vth values for the threshold
and subthreshold values respectively, but then uses Vbin to calculate the Vdsat voltage
used to find the drain current. However, a jump statement uses Von to decide that the
device is in the "cutoff" region, which means that when this jump allows the drain current
to be calculated, Vdsat can already be well above zero. This leads to a discontinuity of
drain current with respect to gate voltage. The code is now modified to use Vbin for the
jump decision. It looks like the code should actually use Vth as the threshold voltage, but

164 NGSPICE User Manual

since PSPICE and HSPICE both follow the original Berkeley code, this was left alone. The
affected code can be found in MOS2load():

...

...
if ((lvds-lvbs) >= 0) {

barg = sqrt(phiMinVbs+lvds);
dbrgdb = -0.5/barg;

...

...
vgst = lvgs-von;
if (lvgs <= von) {

/*
* cutoff region
*/

...

...
if (lvgs > von) goto line900;
/*
* subthreshold region
*/

...

...

and the corrected code is:

...

...
if ((lvbs-lvds) <= 0) {

barg = sqrt(phiMinVbs+lvds);
dbrgdb = -0.5/barg;

...

...

vgst = lvgs-von;
if (lvgs <= vbin) {

/*
* cutoff region
*/

...

...
if (model->MOS2fastSurfaceStateDensity != 0

&& OxideCap != 0) {
if (lvgs > von) goto line900;

} else {
if (lvgs > vbin) goto line900;
goto doneval;

}
/*

Chapter 14: NGSPICE enhancements over Spice3 165

* subthreshold region
*/

...

...

14.1.6 Level 3 Mos Model

The level 3 model has been extensively corrected since it is a de-facto standard for circuit
simulation.

The level 3 model supports the "M" parameter (multiplicity), which can be used to
simulate M identical paralleled devices. The "M" parameter affects the quantities described
in the following list:
• In the AC load routine (MOS3acld(), the value assigned to the "M" (MOS3m)

parameter, multiplies the overlap capacitance: GateSourceOverlapCap,
GateDrainOverlapCap, GateBulkOverlapCap.

• In the MOS3ask() function (instance parameters reporting) the gate-source, gate-drain
and gate-bulk capacitances, corresponding to MOS3_CAPGS, MOS3_CAPGD, MOS3_CAPGB
parameters, are multiplied by the value of "M".

• In the MOS3dset() function (distorsion analysis setup) the overlap capcitances
(GateSourceOverlapCap, GateDrainOverlapCap, GateBulkOverlapCap), the
saturation currents (DrainSatCurr, SourceSatCurr), the "beta" (Beta), the oxide
capacitance (OxideCap) and and the csonco quantity are all mutiplied by the value of
"M".

• In the main load routine MOS3load(), the value of "M" parame-
ter multiplies:DrainSatCurr, SourceSatCurr, GateSourceOverlapCap,
GateDrainOverlapCap, GateBulkOverlapCap, Beta, OxideCap, csonco. The meaning
of the variables have been already explained above.

• In the noise analysis routine MOS3noi(), the noise densities, contained in the
noizDEns[] vector are multplied by the value of "M".

• In the load routine for Pole-Zero analysis (MOS3pzLoad()), the following quantities
are multiplied by the value of "M": GateSourceOverlapCap, GateDrainOverlapCap,
GateBulkOverlapCap.

• In MOS3temp() routine the source and drain critical voltages (MOS3sourceVcrit,
MOS3drainVcrit) are multiplied by the value of "M", like the zero-voltage bulk-drain
and bulk-source capacitances: czbd, czbdsw, czbs, czbssw, where "sw" suffix
stands for "sidewall" and means perimetral capacitances and the drain and sources
conductances (MOS3drainConductance, MOS3sourceConductance).

Other minor changes for "M" parameter support includes: MOS3sprt() prints the value
of "M", MOS3param() sets the value of "M" and MOS3ask() returns that value.

Another important improvement over the original Spice3 code is the support for process
narrowing over drawn dimensions. The three model parameters added to level 3 model are:
xl, wd, xw. The changes in the code are described in depth as a reference for future model
development.

Adding new model parameters usually need the introduction of new variables (one for
each parameter) in the model structure: sMOS3model, which can be found in ‘mos3defs.h’.
In this case the new variables are:

166 NGSPICE User Manual

...

...
double MOS3lengthAdjust; /* New param: mask adjustment to length */
double MOS3widthNarrow; /* New param to reduce effective width */
double MOS3widthAdjust; /* New param: mask adjustment to width */
...
...
unsigned MOS3lengthAdjustGiven :1;
unsigned MOS3widthNarrowGiven :1;
unsigned MOS3widthAdjustGiven :1;
...
...
#define MOS3_MOD_XL 145
#define MOS3_MOD_WD 146
#define MOS3_MOD_XW 147
...
...

The single bit field that ends in "Given" are used to indicate whether the parameter has
been supplied by the user or must be defaulted. The last three #define are needed as a
mean to identify the parameters throughout the model, since comparing integers is faster
than comparing stings. As you may have already imagined, those numbers must be unique.
The association between parameter name and numerical code appears in MOS3mPTable[]
in ‘mos3.c’:

...

...
IFparm MOS3mPTable[] = { /* model parameters */
OP("type", MOS3_MOD_TYPE, IF_STRING ,"N-channel or P-channel MOS"),
IP("nmos", MOS3_MOD_NMOS, IF_FLAG ,"N type MOSfet model"),
IP("pmos", MOS3_MOD_PMOS, IF_FLAG ,"P type MOSfet model"),
...
...
IOP("xl", MOS3_MOD_XL, IF_REAL ,"Length mask adjustment"),
IOP("wd", MOS3_MOD_WD, IF_REAL ,"Width Narrowing (Diffusion)"),
IOP("xw", MOS3_MOD_XW, IF_REAL ,"Width mask adjustment"),
...
...

The keyword IOP before the three parameters sets them as input/output parameters
(that can be set and queried). The function used to set parameters values is MOS3mParam(),
which contains the following code:

...

...
case MOS3_MOD_XL:

model->MOS3lengthAdjust = value->rValue;
model->MOS3lengthAdjustGiven = TRUE;
break;

case MOS3_MOD_WD:

Chapter 14: NGSPICE enhancements over Spice3 167

model->MOS3widthNarrow = value->rValue;
model->MOS3widthNarrowGiven = TRUE;
break;

case MOS3_MOD_XW:
model->MOS3widthAdjust = value->rValue;
model->MOS3widthAdjustGiven = TRUE;
break;

...

...

The function used to query those parameters is MOS3mAsk() and the specific code is:

...

...
case MOS3_MOD_XL:

value->rValue = here->MOS3lengthAdjust;
return(OK);

case MOS3_MOD_WD:
value->rValue = here->MOS3widthNarrow;
return(OK);

case MOS3_MOD_XW:
value->rValue = here->MOS3widthAdjust;
return(OK);

...

...

The code above describes the interface to the new parameters, their influence on the
model behaviour is contained in the following functions: MOS3acLoad(), MOS3load(),
MOS3noise(), MOS3pzLoad(), MOS3setup(), MOS3sLoad() and MOS3temp().

The MOS3acLoad() function contains the code used to represent the model for AC (small
signal) analysis. The original code was:

...

...
EffectiveLength=here->MOS3l - 2*model->MOS3latDiff;
GateSourceOverlapCap = model->MOS3gateSourceOverlapCapFactor *

here->MOS3w;
GateDrainOverlapCap = model->MOS3gateDrainOverlapCapFactor *

here->MOS3w;
GateBulkOverlapCap = model->MOS3gateBulkOverlapCapFactor *

EffectiveLength;
...
...

And the new one:

...

...
double EffectiveWidth;

...

168 NGSPICE User Manual

...
EffectiveWidth = here->MOS3w - 2*model->MOS3widthNarrow

+ model->MOS3widthAdjust;
EffectiveLength = here->MOS3l - 2*model->MOS3latDiff

+ model->MOS3lengthAdjust;
GateSourceOverlapCap = model->MOS3gateSourceOverlapCapFactor *

here->MOS3m * EffectiveWidth;
GateDrainOverlapCap = model->MOS3gateDrainOverlapCapFactor *

here->MOS3m * EffectiveWidth;
GateBulkOverlapCap = model->MOS3gateBulkOverlapCapFactor *

here->MOS3m * EffectiveLength;
...
...

A brief look at the new code shows that a new variable EffectiveWidth appears and its
value depends on the newly introduced parameters wd and xw, through MOS3widthNarrow
and MOS3widthAdjust, respectively. The values of EffectiveLength is trimmed with
the value of xl through MOS3lengthAdjust. The overlap capacitances are multiplied by
EffectiveWidth instead of MOS3w. The MOS3m value has been discussed above.

The MOS3pzLoad() function is very similar to MOS3acLoad() and the code affected is
almost identical to the one above.

The MOS3load() function describes the model for large signals analyses. The old code
is:

...

...
EffectiveLength = here->MOS3l - 2*model->MOS3latDiff;

if((here->MOS3tSatCurDens == 0)
|| (here->MOS3drainArea == 0)
|| (here->MOS3sourceArea == 0)) {

DrainSatCur = here->MOS3tSatCur;
SourceSatCur = here->MOS3tSatCur;

} else {
DrainSatCur = here->MOS3tSatCurDens *

here->MOS3drainArea;
SourceSatCur = here->MOS3tSatCurDens *

here->MOS3sourceArea;
}
GateSourceOverlapCap = model->MOS3gateSourceOverlapCapFactor

* here->MOS3w;
GateDrainOverlapCap = model->MOS3gateDrainOverlapCapFactor

* here->MOS3w;
GateBulkOverlapCap = model->MOS3gateBulkOverlapCapFactor

* EffectiveLength;
Beta = here->MOS3tTransconductance * here->MOS3w/EffectiveLength;
OxideCap = model->MOS3oxideCapFactor * EffectiveLength

* here->MOS3w;
...

Chapter 14: NGSPICE enhancements over Spice3 169

...
/*
*.....body effect
*/
gammas = model->MOS3gamma*fshort;
fbodys = 0.5*gammas/(sqphbs+sqphbs);
fbody = fbodys+model->MOS3narrowFactor/here->MOS3w;
onfbdy = 1.0/(1.0+fbody);
dfbdvb = -fbodys*dsqdvb/sqphbs+fbodys*dfsdvb/fshort;
qbonco =gammas*sqphbs+model->MOS3narrowFactor*phibs/here->MOS3w;
dqbdvb = gammas*dsqdvb+model->MOS3gamma*dfsdvb*sqphbs-

model->MOS3narrowFactor/here->MOS3w;
...
...

/*
*.....joint weak inversion and strong inversion
*/
von = vth;
if (model->MOS3fastSurfaceStateDensity != 0.0) {

csonco = CHARGE*model->MOS3fastSurfaceStateDensity
* 1e4 /*(cm**2/m**2)*/
* EffectiveLength*here->MOS3w/OxideCap;

...

...

And the new code is:

...

...
double EffectiveWidth;
...
...
EffectiveWidth = here->MOS3w - 2*model->MOS3widthNarrow

+ model->MOS3widthAdjust;
EffectiveLength = here->MOS3l - 2*model->MOS3latDiff

+ model->MOS3lengthAdjust;
if((here->MOS3tSatCurDens == 0)

|| (here->MOS3drainArea == 0)
|| (here->MOS3sourceArea == 0)) {
DrainSatCur = here->MOS3m * here->MOS3tSatCur;
SourceSatCur = here->MOS3m * here->MOS3tSatCur;

} else {
DrainSatCur = here->MOS3m * here->MOS3tSatCurDens

* here->MOS3drainArea;
SourceSatCur = here->MOS3m * here->MOS3tSatCurDens

* here->MOS3sourceArea;
}

170 NGSPICE User Manual

GateSourceOverlapCap = model->MOS3gateSourceOverlapCapFactor
* here->MOS3m * EffectiveWidth;

GateDrainOverlapCap = model->MOS3gateDrainOverlapCapFactor
* here->MOS3m * EffectiveWidth;

GateBulkOverlapCap = model->MOS3gateBulkOverlapCapFactor
* here->MOS3m * EffectiveLength;

Beta = here->MOS3tTransconductance
* here->MOS3m * EffectiveWidth/EffectiveLength;

OxideCap = model->MOS3oxideCapFactor * EffectiveLength
* here->MOS3m * EffectiveWidth;

...

...
/*
*.....body effect
*/
gammas = model->MOS3gamma*fshort;
fbodys = 0.5*gammas/(sqphbs+sqphbs);
fbody = fbodys+model->MOS3narrowFactor/EffectiveWidth;
onfbdy = 1.0/(1.0+fbody);
dfbdvb = -fbodys*dsqdvb/sqphbs+fbodys*dfsdvb/fshort;
qbonco = gammas*sqphbs+model->MOS3narrowFactor

* phibs/EffectiveWidth;
dqbdvb = gammas*dsqdvb+model->MOS3gamma*dfsdvb*sqphbs

- model->MOS3narrowFactor/EffectiveWidth;
...
...

/*
*.....joint weak inversion and strong inversion
*/
von = vth;
if (model->MOS3fastSurfaceStateDensity != 0.0) {

csonco = CHARGE * model->MOS3fastSurfaceStateDensity *
1e4 /*(cm**2/m**2)*/
* EffectiveLength*EffectiveWidth
* here->MOS3m/OxideCap;

...

...

The "trick" is to substitute the MOS3w with the effective width taking into account device
multiplicity. Another point where device width matters is the noise routine:MOS3noise().
The oginal code computes noise densities as follows:

...

...
noizDens[MOS3FLNOIZ] *= model->MOS3fNcoef *
exp(model->MOS3fNexp *
log(MAX(FABS(inst->MOS3cd),N_MINLOG))) /

Chapter 14: NGSPICE enhancements over Spice3 171

(data->freq * inst->MOS3w *
(inst->MOS3l - 2*model->MOS3latDiff) *
model->MOS3oxideCapFactor * model->MOS3oxideCapFactor);
...
...

The new code adds width narrowing and and multiplicity:
...
...
noizDens[MOS3FLNOIZ] *= model->MOS3fNcoef *
exp(model->MOS3fNexp *
log(MAX(FABS(inst->MOS3cd),N_MINLOG))) /
(data->freq *
(inst->MOS3w - 2*model->MOS3widthNarrow) *

inst->MOS3m *
(inst->MOS3l - 2*model->MOS3latDiff) *
model->MOS3oxideCapFactor * model->MOS3oxideCapFactor);
...
...

Another place in the code that needs changes is the device setup routine MOS3setup().
The followig code adds support for the new parameters:

...

...
if(!model->MOS3lengthAdjustGiven) {

model->MOS3lengthAdjust = 0;
}
if(!model->MOS3widthNarrowGiven) {

model->MOS3widthNarrow = 0;
}
if(!model->MOS3widthAdjustGiven) {

model->MOS3widthAdjust = 0;
}

...

...

This code sets up the default values when the parameters are not supplied by the user
(since they are optional).

Another function modified to support the new parameters is the MOS3temp(). The old
code is:

if(here->MOS3l - 2 * model->MOS3latDiff <=0) {
(*(SPfrontEnd->IFerror))(ERR_FATAL,

"%s: effective channel length less than zero",
&(here->MOS3name));

return(E_BADPARM);
}

And the new one:
...

172 NGSPICE User Manual

...
if(here->MOS3l - 2 * model->MOS3latDiff +

model->MOS3lengthAdjust <1e-6) {
(*(SPfrontEnd->IFerror))(ERR_FATAL,

"%s: effective channel length less than zero",
&(here->MOS3name));

return(E_PARMVAL);
}

if(here->MOS3w - 2 * model->MOS3widthNarrow +
model->MOS3widthAdjust <1e-6) {

(*(SPfrontEnd->IFerror))(ERR_FATAL,
"%s: effective channel width less than zero",
&(here->MOS3name));

return(E_PARMVAL);
}

...

...

The changes add a check over device width that was not present in the original code and
rise an error if the result is less than one micrometer, while the old code checked against
zero.

The last (but not least) function that needed some care is the sensitivity load routine:
MOS3sLoad(). The original code was:

...

...

EffectiveLength = here->MOS3l
- 2*model->MOS3latDiff;

if(EffectiveLength == 0) {
DqgsDp = 0;
DqgdDp = 0;
DqgbDp = 0;

}
else {

DqgsDp = model->MOS3type * qgs0 / EffectiveLength;
DqgdDp = model->MOS3type * qgd0 / EffectiveLength;
DqgbDp = model->MOS3type * qgb0 / EffectiveLength;

}
}
else {

DqgsDp = model->MOS3type * qgs0 / here->MOS3w;
DqgdDp = model->MOS3type * qgd0 / here->MOS3w;
DqgbDp = model->MOS3type * qgb0 / here->MOS3w;

}
...

Chapter 14: NGSPICE enhancements over Spice3 173

...

And the modified code is:

...

...
double EffectiveWidth;

...

...
EffectiveLength = here->MOS3l

- 2*model->MOS3latDiff + model->MOS3lengthAdjust;
if(EffectiveLength == 0) {

DqgsDp = 0;
DqgdDp = 0;
DqgbDp = 0;

}
else {

DqgsDp = model->MOS3type * qgs0 / EffectiveLength;
DqgdDp = model->MOS3type * qgd0 / EffectiveLength;
DqgbDp = model->MOS3type * qgb0 / EffectiveLength;

}
}
else {

EffectiveWidth = here->MOS3w
- 2*model->MOS3widthNarrow + model->MOS3widthAdjust;

DqgsDp = model->MOS3type * qgs0 / EffectiveWidth;
DqgdDp = model->MOS3type * qgd0 / EffectiveWidth;
DqgbDp = model->MOS3type * qgb0 / EffectiveWidth;

}
...
...

There was an error in the original implementation that did not take into account lateral
diffusion MOS3LatDiff. The other changes take into account the effective (against drawn)
device width.

That’s all folks! The changes needed to support the new parameters are (shortly and
badly) described. This section on MOS3 continues with other fixes.

MOS3 device reported only half of the Meyer capacitance without adding the overlap
capacitance contribution, when reporting to the .OP printout or in the rawfile. The routine
MOS3ask() was responsible for this:

...

...
case MOS3_CGS:

value->rValue = *(ckt->CKTstate0 + here->MOS3capgs);
return(OK);

case MOS3_CGD:
value->rValue = *(ckt->CKTstate0 + here->MOS3capgd);
return(OK);

174 NGSPICE User Manual

...

...
case MOS3_CAPGS:

value->rValue = *(ckt->CKTstate0 + here->MOS3capgs);
return(OK);

...

...
case MOS3_CAPGD:

value->rValue = *(ckt->CKTstate0 + here->MOS3capgd);
return(OK);

...

...
case MOS3_CAPGB:

value->rValue = *(ckt->CKTstate0 + here->MOS3capgb);
return(OK);

...

...

The new code is:

...

...
case MOS3_CGS:

value->rValue = 2* *(ckt->CKTstate0 + here->MOS3capgs);
return(OK);

case MOS3_CGD:
value->rValue = 2* *(ckt->CKTstate0 + here->MOS3capgd);
return(OK);

...

...
case MOS3_CAPGS:

value->rValue = 2* *(ckt->CKTstate0 + here->MOS3capgs);
/* add overlap capacitance */

value->rValue +=
(here->MOS3modPtr->MOS3gateSourceOverlapCapFactor)
* here->MOS3m
* (here->MOS3w

+here->MOS3modPtr->MOS3widthAdjust
-2*(here->MOS3modPtr->MOS3widthNarrow));

return(OK);
...
...

case MOS3_CAPGD:
value->rValue = 2* *(ckt->CKTstate0 + here->MOS3capgd);

/* add overlap capacitance */
value->rValue +=

(here->MOS3modPtr->MOS3gateDrainOverlapCapFactor)
* here->MOS3m

Chapter 14: NGSPICE enhancements over Spice3 175

* (here->MOS3w
+here->MOS3modPtr->MOS3widthAdjust
-2*(here->MOS3modPtr->MOS3widthNarrow));

return(OK);
...
...

case MOS3_CAPGB:
value->rValue = 2* *(ckt->CKTstate0 + here->MOS3capgb);

/* add overlap capacitance */
value->rValue +=

(here->MOS3modPtr->MOS3gateBulkOverlapCapFactor)
* here->MOS3m
* (here->MOS3l

+here->MOS3modPtr->MOS3lengthAdjust
-2*(here->MOS3modPtr->MOS3latDiff));

return(OK);
...
...

The "Gmin" implementation across the substrate diodes of MOS3 was incorrect, cor-
recting this dramatically improved DC convergence. The original code in MOS3load() was:

/*
* bulk-source and bulk-drain diodes
* here we just evaluate the ideal diode current and the
* corresponding derivative (conductance).
*/

next1: if(vbs <= 0) {
here->MOS3gbs = SourceSatCur/vt;
here->MOS3cbs = here->MOS3gbs*vbs;
here->MOS3gbs += ckt->CKTgmin;

} else {
evbs = exp(MIN(MAX_EXP_ARG,vbs/vt));
here->MOS3gbs = SourceSatCur*evbs/vt + ckt->CKTgmin;
here->MOS3cbs = SourceSatCur * (evbs-1);

}
if(vbd <= 0) {

here->MOS3gbd = DrainSatCur/vt;
here->MOS3cbd = here->MOS3gbd *vbd;
here->MOS3gbd += ckt->CKTgmin;

} else {
evbd = exp(MIN(MAX_EXP_ARG,vbd/vt));
here->MOS3gbd = DrainSatCur*evbd/vt +ckt->CKTgmin;
here->MOS3cbd = DrainSatCur *(evbd-1);

}

The new corrected code is:

176 NGSPICE User Manual

/*
* bulk-source and bulk-drain diodes
* here we just evaluate the ideal diode current and the
* corresponding derivative (conductance).
*/

next1: if(vbs <= -3*vt) {
here->MOS3gbs = ckt->CKTgmin;
here->MOS3cbs = here->MOS3gbs*vbs-SourceSatCur;

} else {
evbs = exp(MIN(MAX_EXP_ARG,vbs/vt));
here->MOS3gbs = SourceSatCur*evbs/vt + ckt->CKTgmin;
here->MOS3cbs = SourceSatCur*(evbs-1) + ckt->CKTgmin*vbs;

}
if(vbd <= -3*vt) {

here->MOS3gbd = ckt->CKTgmin;
here->MOS3cbd = here->MOS3gbd*vbd-DrainSatCur;

} else {
evbd = exp(MIN(MAX_EXP_ARG,vbd/vt));
here->MOS3gbd = DrainSatCur*evbd/vt + ckt->CKTgmin;
here->MOS3cbd = DrainSatCur*(evbd-1) + ckt->CKTgmin*vbd;

}

In the "load current vector" section of the MOS3load() routine, "Gmin" appeared in the
calculation of ceqbd and ceqbs:

/*
* load current vector
*/
ceqbs = model->MOS3type *

(here->MOS3cbs-(here->MOS3gbs-ckt->CKTgmin)*vbs);
ceqbd = model->MOS3type *

(here->MOS3cbd-(here->MOS3gbd-ckt->CKTgmin)*vbd);

The new code is:

/*
* load current vector
*/
ceqbs = model->MOS3type *

(here->MOS3cbs-(here->MOS3gbs)*vbs);
ceqbd = model->MOS3type *

(here->MOS3cbd-(here->MOS3gbd)*vbd);

The gm, gmb and gs calculations in them MOS3 model (in MOD3load() were all wrong:

...

...
/*
*.....normalized drain current
*/

Chapter 14: NGSPICE enhancements over Spice3 177

cdnorm = cdo*vdsx;
here->MOS3gm = vdsx;
here->MOS3gds = vgsx-vth-(1.0+fbody+dvtdvd)*vdsx;
here->MOS3gmbs = dcodvb*vdsx;
/*
*.....drain current without velocity saturation effect
*/
cd1 = Beta*cdnorm;
Beta = Beta*fgate;
cdrain = Beta*cdnorm;
here->MOS3gm = Beta*here->MOS3gm+dfgdvg*cd1;
here->MOS3gds = Beta*here->MOS3gds+dfgdvd*cd1;
here->MOS3gmbs = Beta*here->MOS3gmbs;

...

...
cdrain = cdrain*xlfact;
diddl = cdrain/(EffectiveLength-delxl);
here->MOS3gm = here->MOS3gm*xlfact+diddl*ddldvg;
gds0 = here->MOS3gds*xlfact+diddl*ddldvd;
here->MOS3gmbs = here->MOS3gmbs*xlfact+diddl*ddldvb;
here->MOS3gm = here->MOS3gm+gds0*dvsdvg;
here->MOS3gmbs = here->MOS3gmbs+gds0*dvsdvb;
here->MOS3gds = gds0*dvsdvd+diddl*dldvd;

...

...

The code has been corrected as follows leading to much improved convergence:

...

...
/*
*.....normalized drain current
*/
cdnorm = cdo*vdsx;
here->MOS3gm = vdsx;
if ((here->MOS3mode*vds) > vdsat) here->MOS3gds = -dvtdvd*vdsx;
else here->MOS3gds = vgsx-vth-(1.0+fbody+dvtdvd)*vdsx;
here->MOS3gmbs = dcodvb*vdsx;
/*
*.....drain current without velocity saturation effect
*/
cd1 = Beta*cdnorm;
Beta = Beta*fgate;
cdrain = Beta*cdnorm;
here->MOS3gm = Beta*here->MOS3gm+dfgdvg*cd1;
here->MOS3gds = Beta*here->MOS3gds+dfgdvd*cd1;
here->MOS3gmbs = Beta*here->MOS3gmbs+dfgdvb*cd1;

...

178 NGSPICE User Manual

...
cd1 = cdrain;
cdrain = cdrain*xlfact;
diddl = cdrain/(EffectiveLength-delxl);
here->MOS3gm = here->MOS3gm*xlfact+diddl*ddldvg;
here->MOS3gmbs = here->MOS3gmbs*xlfact+diddl*ddldvb;
gds0 = diddl*ddldvd;
here->MOS3gm = here->MOS3gm+gds0*dvsdvg;
here->MOS3gmbs = here->MOS3gmbs+gds0*dvsdvb;
here->MOS3gds = here->MOS3gds*xlfact+diddl*dldvd+gds0*dvsdvd;

/*
here->MOS3gds = (here->MOS3gds*xlfact)+gds0*dvsdvd-
(cd1*ddldvd/(EffectiveLength*(1-2*dlonxl+dlonxl*dlonxl)));
*/
...
...

The Spice3 "fix" for the MOS3 gds discontinuity between the linear and saturated regions
works only if VMAX parameter is set to a non-zero value. A tweak has been added for the
zero case. The Spice3 code (in MOS3load()) was:

...

...
/*
*.....velocity saturation factor
*/

if (model->MOS3maxDriftVel != 0.0) {
fdrain = 1.0/(1.0+vdsx*onvdsc);
fd2 = fdrain*fdrain;
arga = fd2*vdsx*onvdsc*onfg;
dfddvg = -dfgdvg*arga;
dfddvd = -dfgdvd*arga-fd2*onvdsc;
dfddvb = -dfgdvb*arga;

...

...

The code in NGSPICE is:
...
...

/*
*.....velocity saturation factor
*/

if (model->MOS3maxDriftVel > 0.0) {
fdrain = 1.0/(1.0+vdsx*onvdsc);
fd2 = fdrain*fdrain;
arga = fd2*vdsx*onvdsc*onfg;
dfddvg = -dfgdvg*arga;
if ((here->MOS3mode*vds) > vdsat) dfddvd = -dfgdvd*arga;

Chapter 14: NGSPICE enhancements over Spice3 179

else dfddvd = -dfgdvd*arga-fd2*onvdsc;
dfddvb = -dfgdvb*arga;

...

...

The critical voltages in MOS3Temp() were calculated without using temperature corrected
saturation current:

...

...
vt*log(vt/(CONSTroot2*model->MOS3jctSatCur));

} else {
here->MOS3drainVcrit =

vt * log(vt / (CONSTroot2 *
model->MOS3jctSatCurDensity * here->MOS3drainArea));

here->MOS3sourceVcrit =
vt * log(vt / (CONSTroot2 *
model->MOS3jctSatCurDensity * here->MOS3sourceArea));

}
...
...

This have been fixed as follows:

...

...
vt*log(vt/(CONSTroot2*here->MOS3m*here->MOS3tSatCur));

} else {
here->MOS3drainVcrit =

vt * log(vt / (CONSTroot2 *
here->MOS3m *
here->MOS3tSatCurDens * here->MOS3drainArea));

here->MOS3sourceVcrit =
vt * log(vt / (CONSTroot2 *
here->MOS3m *
here->MOS3tSatCurDens * here->MOS3sourceArea));

}
...
...

In MOS3temp() some parameters were computed without taking into account temperature
corrected parameters:

...

...
here->MOS3f3d = czbd * model->MOS3bulkJctBotGradingCoeff

* sarg/ arg / model->MOS3bulkJctPotential
+ czbdsw * model->MOS3bulkJctSideGradingCoeff
* sargsw/ arg /model->MOS3bulkJctPotential;

here->MOS3f4d = czbd*model->MOS3bulkJctPotential*(1-arg*sarg)/
(1-model->MOS3bulkJctBotGradingCoeff)

180 NGSPICE User Manual

+ czbdsw*model->MOS3bulkJctPotential*(1-arg*sargsw)/
(1-model->MOS3bulkJctSideGradingCoeff)
-here->MOS3f3d/2*
(here->MOS3tDepCap*here->MOS3tDepCap)
-here->MOS3tDepCap * here->MOS3f2d;

if(model->MOS3capBSGiven) {
czbs=here->MOS3tCbs;

} else {
if(model->MOS3bulkCapFactorGiven) {

czbs=here->MOS3tCj*here->MOS3sourceArea;
} else {

czbs=0;
}

}
...
...
here->MOS3f3s = czbs * model->MOS3bulkJctBotGradingCoeff

* sarg/ arg / model->MOS3bulkJctPotential
+ czbssw * model->MOS3bulkJctSideGradingCoeff
* sargsw/ arg / model->MOS3bulkJctPotential;

here->MOS3f4s = czbs*model->MOS3bulkJctPotential*(1-arg*sarg)/
(1-model->MOS3bulkJctBotGradingCoeff)

+ czbssw*model->MOS3bulkJctPotential*(1-arg*sargsw)/
(1-model->MOS3bulkJctSideGradingCoeff)

-here->MOS3f3s/2*
(here->MOS3tBulkPot*here->MOS3tBulkPot)

-here->MOS3tBulkPot * here->MOS3f2s;
}

}
...
...

The corrected code is:

...

...
here->MOS3f3d = czbd * model->MOS3bulkJctBotGradingCoeff

* sarg/ arg / here->MOS3tBulkPot
+ czbdsw * model->MOS3bulkJctSideGradingCoeff
* sargsw/ arg / here->MOS3tBulkPot;

here->MOS3f4d = czbd*here->MOS3tBulkPot*(1-arg*sarg)/
(1-model->MOS3bulkJctBotGradingCoeff)
+ czbdsw*here->MOS3tBulkPot*(1-arg*sargsw)/
(1-model->MOS3bulkJctSideGradingCoeff)
-here->MOS3f3d/2*
(here->MOS3tDepCap*here->MOS3tDepCap)
-here->MOS3tDepCap * here->MOS3f2d;

if(model->MOS3capBSGiven) {

Chapter 14: NGSPICE enhancements over Spice3 181

czbs = here->MOS3tCbs * here->MOS3m;
} else {

if(model->MOS3bulkCapFactorGiven) {
czbs=here->MOS3tCj*here->MOS3sourceArea * here->MOS3m;

} else {
czbs=0;

}
}
...
...
here->MOS3f3s = czbs * model->MOS3bulkJctBotGradingCoeff

* sarg/ arg / here->MOS3tBulkPot
+ czbssw * model->MOS3bulkJctSideGradingCoeff
* sargsw/ arg /here->MOS3tBulkPot;

here->MOS3f4s = czbs*here->MOS3tBulkPot*(1-arg*sarg)/
(1-model->MOS3bulkJctBotGradingCoeff)
+ czbssw*here->MOS3tBulkPot*(1-arg*sargsw)/
(1-model->MOS3bulkJctSideGradingCoeff)
-here->MOS3f3s/2*
(here->MOS3tDepCap*here->MOS3tDepCap)
-here->MOS3tDepCap * here->MOS3f2s;

}
}

14.1.7 switch model

14.1.8 current switch model

14.1.9 boh

14.1.10 PN diode voltage limiting

Spice3f voltage limiting across PN junctions did not perform limiting on negative voltages,
resulting in convergence problems. In NGSPICE voltage limiting for PN diodes have been
modified to work for negative voltages too, improving convergence on calculations that rely
on this code.
Enhancement Data:

Author: Alan Gillespie

File: ‘spicelib/devices/devsup.c’

Function: DEVpnjlim()

Affects: All devices model that uses that function: BJT1-2, BSIM3-4, DIO, EKV, HFET2,
JFET1-2, MES, MESA, MOS1-9.

14.1.11 FET voltage limiting

In NGSPICE the calculation of vtstlo is done according to the formula:

182 NGSPICE User Manual

vtstlo = fabs(vold - vto) + 1;

While in spice3f the formula was:
vtstlo = vtsthi/2 + 2;

Enhancement Data:

Author: Alan Gillespie

File: ‘spicelib/devices/devsup.c’

Function: DEVfetlim()

Affects: All devices model that uses that function: BSIM1-4,HFET1-2, JFET1-2, MES,
MESA, MOS1-9, STAG, EKV.

14.1.12 Meyer model improvement

The calculation of active gate capacitance in ‘devsup.c’ has been improved to achieve better
convergence.
Enhacement Data:

Author: Alan Gillespie

File: ‘spicelib/devices/devsup.c’

Function: DEVqmeyer()

Affects: All devices model that uses that function: MOS1-9.

Chapter 15: The BSIM3 Model Integration 183

15 The BSIM3 Model Integration

BSIM3 compact model is a de-facto standard in the circuit simulation world and is exten-
sively supported in the NGSPICE simulator. The original model dates back to the end
of 1995. After almost ten years, three major revisions have been released by the Berkeley
Device Group. NGSPICE supports all BSIM3 model revisions.

We dedicated an entire chapter to the BSIM3 model since the procedure followed to
integrate it into NGSPICE equally applies to other models from Berkeley’s Device Group
like BSIM4 and BSIMSOI. Most of the content of this chapter is devoted to the latest release
of BSIM3 available at the time of writing: version 3.2 and its minor revisions 3.2.2, 3.2.3
and 3.2.4. It is trivial to apply the same concepts to the older ones (3.0 and 3.1).

The BSIM3 integration into NGSPICE is the result of the merging of three different
sources: the original Berkeley’s code and two enhanced version, one supplied by Alan
Gillespie and the other by Serban Popescu. Both Alan and Serban enhanced the basic
model adding multiplicity support, though using two different approaches. Serban added
another enhancement, the "hdif" parameter.

NGSPICE provides Berkeley’s, Alan’s and Serban’s models, using Alan’s approach fot
multiplicity support in Berkeley’s code.

15.1 BSIM3 Revisions

As previously said, due to the importance of BSIM3, NGSPICE includes all its revisions.
We have decide to assign different levels only to major revisions and use the "version"
model parameter to switch among minors. The only exceptions to this rule are Serban’s
and Alan’s model, they are a special kind of BSIM3 version 3.1 and they are kept separate
from the Berkeley’s model.

NGSPICE has five different levels for BSIM3:
Major Revision Minor Revisions Level Notes
BSIM3v3.2 3.2, 3.2.2, 3.2.3, 3.2.4 8 The latest release
BSIM3v1S 3.1 49 Serban’s code
BSIM3v1 3.1 50 Berkeley’s code
BSIM3v1A 3.1 51 Alan’s code
BSIM3v0 3.0 52 Berkeley’s code

As you may see from the table above, level 8, the one officially assigned by Berkeley
Device Group,is reserved to the most recent major revision of the code. All BSIM3 models
support the "m" parameter (multiplicity) but only Serban’s one has the support for "hdif".

15.2 The integration process

This section briefly describes how we integrated the BSIM3 model into NGSPICE. The
integration process of BSIM3 model started with the download of the original code from
Berkeley web site (device group). We devoted much of the work on release 3.2 and back-
ported changes to the older ones. Our work on the BSIM model can be summarized in the
following points:
• Restructuring code for spice3f interface.
• Adding minor releases switches (where necessary).

184 NGSPICE User Manual

• Adding support for parallel simulation (CIDER).
• Adding support for "m" parameter.
• Restructuring code for NGSPICE integration.

The first item is a necessary step for older models, since the device interface changed
between spice3e (the original interface for BSIM3 model) and spice3f and NGSPICE device
interface is based on spice3f. Changes consists is a shift in the position of BSIM3states in
‘bsim3def.h’ and in the addition of the BSIM3unsetup() function in ‘b3set.c’.

The next step is the inclusion of runtime switches to select code for the different minor
revisions that a release can have (well, this is necessary only for release 3.2).

The result of the two steps is a multirevision BSIM3 model with a spice3f4/5 interface.
Now we are ready to make the necessary enhancements and the changes for integrating the
model into NGSPICE.

The third and fourth items in the list are the model enhancements: the "parallel simula-
tion support" is a feature inherited from the CIDER simulator (built on top of NGSPICE)
that allow the simulator to use multiple processor elements to evaluate device code (making
the simulation faster). The parallel simulation is not yet enabled in NGSPICE, but it will
probably in the future. The "parallelization" code basically consists in a series of switches
that skip device evaluation code if local processor (machine) has not been assigned to that
particular device instance.

Device "multiplicity" is a feature often found in commercial simulators, used to simulate
many identical devices connected in parallel. This feature is important because reduces the
number of nodes and equations in a circuit and makes the netlist more readable.

Now we are ready to restructure the code to make it compatible with the NGSPICE
device interface, which is an extended version of the spice3f4/5 one.

15.3 The multirevision code

BSIM3 release 3.2 has three minor revisions: 3.2.2, 3.2.3 and 3.2.4. Reserving a different
level for each is not a good solution, it will be a waste of space and memory. The four
(including 3.2) revisions differs for a few lines of code only, so the ideai is to merge the
code and isolate revision dependent parts with runtime switches (the switch statement).
The modifications needed are minimal, but some work is needed to avoid slow comparison
between strings.

As written before, the magic of revision selection is done via the "version" model param-
eter, which appears on the model card. In BSIM3 version 3.2 this parameter is a floating
point value, since earlier releases were 3.0 and 3.1 and was easy to code revision into a
real number. With the release of 3.2.2 it changed to a string, for obvious reasons (3.2.2 is
not a real number). Since the "version" parameter was used only for model checking, that
was not a problem. In the multirevision model, comparisons based on it appears in the
device evaluation code, where speed is critical, so we added a parameter BSIM3intVersion,
defined in ‘bsim3def.h’ as follows:

...

...
char *BSIM3version;

Chapter 15: The BSIM3 Model Integration 185

/* The following field is an integer coding
* of BSIM3version.
*/

int BSIM3intVersion;
#define BSIM3V324 324 /* BSIM3 V3.2.4 */
#define BSIM3V323 323 /* BSIM3 V3.2.3 */
#define BSIM3V322 322 /* BSIM3 V3.2.2 */
#define BSIM3V32 32 /* BSIM3 V3.2 */
#define BSIM3V3OLD 0 /* Old model */

double BSIM3tox;
...
...

The BSIM3intVersion will be used as argument to the switch statement, because integer
comparison is faster than string’s one. The correct value of the parameter is assigned in
BSIM3setup() by the code below:

...

...
/* If the user does not provide the model revision,
* we always choose the most recent.
*/
if (!model->BSIM3versionGiven)
model->BSIM3version = "3.2.4";

/* I have added below the code that translate model string
* into an integer. This trick is meant to speed up the
* revision testing instruction, since comparing integer
* is faster than comparing strings.
* Paolo Nenzi 2002
*/
if (!strcmp (model->BSIM3version, "3.2.4"))
model->BSIM3intVersion = BSIM3V324;
else if (!strcmp (model->BSIM3version, "3.2.3"))
model->BSIM3intVersion = BSIM3V323;
else if (!strcmp (model->BSIM3version, "3.2.2"))
model->BSIM3intVersion = BSIM3V322;
else if (!strcmp (model->BSIM3version, "3.2"))
model->BSIM3intVersion = BSIM3V32;
else
model->BSIM3intVersion = BSIM3V3OLD;
/* BSIM3V3OLD is a placeholder for pre 3.2 revision
* This model should not be used for pre 3.2 models.
*/
...
...

When we need to switch the code we use a switch statement like the following:

186 NGSPICE User Manual

/* Added revision dependent code */
switch (model->BSIM3intVersion)
{
case BSIM3V324:

/* BSIM3v3.2.4 specific code */
break;

case BSIM3V323:
/* BSIM3v3.2.3 specific code */
break;

case BSIM3V322:
/* BSIM3v3.2.2 specific code */
break;

case BSIM3V32:
/* BSIM3v3.2 specific code */
break;

default:
/* Old code */
}

The differences between minor revision fall in two categories: modification in the evalu-
ation code and bug fixes. The idea followed in the merging was to leave out of the revision
dependent code what was a mere bug fix.

15.4 Device Multiplicity

Spice3 (and thus NGSPICE) uses an approach called MNA (Modified Nodal Analysis) to
solve electrical circuits. MNA represents an electrical circuits using a matrix containing
devices’ conductances and constraint equations (if you need to know more, get a good
book on circuit theory). This matrix is built by summing the contribution of each instance
(another name for "element") in the circuit. The contribution of each instance to the circuit
matrix is called a "matrix stamp", which is itself a matrix containing non zero elements
only at positions occupied by the device. It is very important to understand that row and
column index of the stamp must be consistent with the overall circuit matrix, the elements
of the stamp have the same indexes they will have in the circuit matrix. Note that all stamps
are each other independent, and this property can be exploited to add parallelization to the
simulator (this is not new, CIDER uses this method).

All the code in the model (every spice3 model) is needed to build the matrix stamp for
that particular instance of the device and for the analysis type requested.

If we add many (let’s say "m") device in parallel, "m" identical stamp are added to
the circuit matrix. When we write "identical" we mean that the stamps contain identical
values but at different locations. Each device has "external" and "internal" nodes, the
former are connected to devices’ terminals and the latter are internal to the device. It
should be clear that nodes corresponding to terminals must have the same node number
and the same indexes in the matrix, since devices appear in parallel, while other must be
different because those nodes are private to each instance.

Chapter 15: The BSIM3 Model Integration 187

If we want to simulate "m" identical devices in parallel with a single instance, its stamp
must have an impact to the overall circuit matrix equal to the "superposition" of the single
instances’ "m" stamps. The term "superposition" is used instead of "sum" since we are
interested in the external behaviour of the parallel, not in its internals. The matrix stamp
of the "multiple" device is a stamp of a single device whose conductances are "adjusted"
to represent the parallel situation. Doing this we discard the internal complexity of the
single instance while leaving intact the influence of the parallel to the circuit. Reducing the
complexity affects simulation speed, which is increased because there are less equations (not
useful to our purposes) to solve and imposes less stress to simulator algorithms, resulting
in less convergence problems.

We may say that a "multiple" device is an external representation of many identical
device connected in parallel.

There are basically two approaches to build the equivalent stamp, both based on scaling
the conductances of the model by the multiplicity value (the number of device to connect
in parallel). The first approach (used in NGSPICE BSIM3) scales the conductances in
the matrix stamp, when it is loaded into the overall matrix, and the other one scales the
conductances in the entire model code. Both approaches have advantages and drawbacks,
let’s examine some of them.

The first approach, i.e. scaling the conductances at loading time, is advantageous be-
cause the stamp "loading" code is easy to spot and because the modification consists simply
in multiplying each line by the multiplicity factor "m". Another advantage is that this ap-
proach does not require a full analysis of the device code to isolate the variables (they may
be currents, resistances, etc., not only conductances) that need to be scaled. The most
important drawback is that the evaluation code does not know anything about "multiplic-
ity" and then all internal computations are made for the "single" device. To correct this,
without interfering with the evaluation code, you need to correct the routine that exports
internal values (it is the so called DEVask, where DEV is a placeholder for device’s name).

The second approach, i.e. scaling the variables in the evaluation code, does not have the
drawback of the previous one but require a full code analysis which, in turn, means more
time to complete.

15.4.1 Adding the "m" parameter

The multiplicity parameter is an instance parameter. The first step is to modify the code
adding space for it in the various structures. The structure BSIM3instance in bsim3def.h
needs an entry for the new parameter, its "given" flag and a numerical ID for the entry in
the BSIM3pTable:

...

...
double BSIM3w;
double BSIM3m;
double BSIM3drainArea;

...

...
unsigned BSIM3wGiven :1;
unsigned BSIM3mGiven :1;
unsigned BSIM3drainAreaGiven :1;

188 NGSPICE User Manual

...

...
#define BSIM3_L 2
#define BSIM3_M 15
#define BSIM3_AS 3
...
...

The BSIM3pTable structure in ‘b3.c’ needs an entry too:

...

...
IOP("w", BSIM3_W, IF_REAL , "Width"),
IOP("m", BSIM3_M, IF_REAL , "Parallel multiplier"),
IOP("ad", BSIM3_AD, IF_REAL , "Drain area"),
...
...

Once the entries are created, it is necessary to set up the bureaucracy needed to set and
query the new parameter. In the setup routine BSIM3setup() the following code should be
added:

if (!here->BSIM3mGiven)
here->BSIM3m = 1;

This states that if multiplicity is not given in the netlist, it must be defaulted to one.
To set the "given" flag the following code should be added to BSIM3param():

case BSIM3_M:
here->BSIM3m = value->rValue;
here->BSIM3mGiven = TRUE;
break;

The last modification nedeed by model bureaucracy must be done in BSIM3ask().

The following code should be added:

case BSIM3_M:
value->rValue = here->BSIM3m;
return(OK);

Now the model is ready to set, query, default and use the new parameter. As discussed
before, this model use the "first" approach, thus only matrix loading code is affected by
the new parameter. In the BSIM3load routine the "Load Current Vector" and "Load Y
Matrix" section should become:

...

...
(*(ckt->CKTrhs + here->BSIM3gNode) -= m*ceqqg);
(*(ckt->CKTrhs + here->BSIM3bNode) -= m*(ceqbs + ceqbd + ceqqb));
(*(ckt->CKTrhs + here->BSIM3dNodePrime) +=m*(ceqbd - cdreq - ceqqd));
(*(ckt->CKTrhs + here->BSIM3sNodePrime) += m*(cdreq + ceqbs + ceqqg

+ ceqqb + ceqqd));
if (here->BSIM3nqsMod)
(ckt->CKTrhs + here->BSIM3qNode) += m(cqcheq - cqdef);

Chapter 15: The BSIM3 Model Integration 189

/*
* load y matrix
*/

T1 = qdef * here->BSIM3gtau;
(*(here->BSIM3DdPtr) += m*here->BSIM3drainConductance);
(*(here->BSIM3GgPtr) += m*(gcggb - ggtg));

...

...
(here->BSIM3QspPtr) += m(ggts - gcqsb);
(here->BSIM3QbPtr) += m(ggtb - gcqbb);

...

...

The "load y matrix" is not completely shown, each line is multiplied by "m". The same
method has been applied to BSIM3acLoad() routine:

...

...
m = here->BSIM3m;

*(here->BSIM3GgPtr +1) += m * xcggb;
*(here->BSIM3BbPtr +1) -= M * (xcbgb + xcbdb + xcbsb);

...

...
*(here->BSIM3QspPtr) += m * xgts;
*(here->BSIM3QbPtr) += m * xgtb;

}
...
...

The pole-zero analysis uses a load routine (BSIM3pzLoad()) very similar to the one used
by the AC analysis:

...

...
m = here->BSIM3m;

*(here->BSIM3GgPtr) += m * (xcggb * s->real);
*(here->BSIM3GgPtr + 1) += m * (xcggb * s->imag);
...
...

*(here->BSIM3QbPtr) += m * xgtb;
*(here->BSIM3QspPtr) += m * xgts;
}
...
...

The noise analysis needs special attention, since it does not directly uses a matrix load
routine. In this case was necessary to study the noise models used by BSIM3 and to scale the

190 NGSPICE User Manual

parameters affected by multiplicity. The following parameters were multiplied by the value
of BSIM3m: BSIM3cd (drain current), BSIM3weff (effective width), BSIM3drainConductance,
BSIM3sourceConductance, BSIM3gm (transconductance), BSIM3gds (drain to source con-
ductance), BSIM3gmbs (body source transconductance), BSIM3qinv (charge in the channel).

In 3.2.4 BSIM3 revision, a bugfix introduced the BSIM3rds (drain to source resistance)
parameter. Since this is a resistance it has been divided by the value of BSIM3m.

Now that we dealt with analyses code, the last piece of code to modify is the BSIM3ask()
routine. Again we have to identify what parameters need to be scaled and multiply them
by the multiplicity. If you look at the code you will clearly see the affected parameters.

15.5 BSIM3 TNOM patch

All BSIM3 models, when implemented into Spice3f (NGSPICE), shows a bug that affects
simulations when the modelcard contains the TNOM keyword. If you run consecutive times
a netlist without reloading the deck, you will get different answers with each run. Mike
Smith discovered that the bug hides in the functions BSIM3mparam() and BSIM3setup().
The solutions (as extracted from Mike’s post to comp.lsi.cad):

In b3mpar.c look for the following code:-

case BSIM3_MOD_TNOM :
mod->BSIM3tnom = value->rValue;
mod->BSIM3tnomGiven = TRUE;
break;

Change the second line so the code reads:-

case BSIM3_MOD_TNOM :
mod->BSIM3tnom = value->rValue + 273.15;
mod->BSIM3tnomGiven = TRUE;
break;

In b3set.c, look for the following code:-

if (!model->BSIM3tnomGiven)
model->BSIM3tnom = ckt->CKTnomTemp;

else
model->BSIM3tnom = model->BSIM3tnom + 273.15;

Delete the second and third lines to read:-

if (!model->BSIM3tnomGiven)
model->BSIM3tnom = ckt->CKTnomTemp;

comp.lsi.cad

Chapter 15: The BSIM3 Model Integration 191

15.6 References for BSIM3 model

BSIM3 model is developed by the UC Berkeley Device Group, which maintains a web site
at the URL: http://www-device.eecs.berkeley.edu/ for all the model they develop.
• BSIM3 home page:

http://www-device.eecs.berkeley.edu/~bsim3/latenews.html

• BSIM3 introduction:
http://www-device.eecs.berkeley.edu/~bsim3/intro.html

• BSIM3 contact page:
http://www-device.eecs.berkeley.edu/~bsim3/contact.html

http://www-device.eecs.berkeley.edu/
http://www-device.eecs.berkeley.edu/~bsim3/latenews.html
http://www-device.eecs.berkeley.edu/~bsim3/intro.html
http://www-device.eecs.berkeley.edu/~bsim3/contact.html

192 NGSPICE User Manual

Chapter 16: EKV Model 193

16 EKV Model

da scrivere

194 NGSPICE User Manual

	Preface
	Acknowledgements
	Release Notes
	Reporting a bug

	Introduction
	NGSPICE Compilation
	Extracting the archive
	Configuring NGSPICE
	Compiling NGSPICE
	Supported systems
	Platform specific issues

	Supported Analyses
	Types of Analysis
	DC Analysis
	AC Small-Signal Analysis
	Transient Analysis
	Pole-Zero Analysis
	Small-Signal Distortion Analysis
	Sensitivity Analysis
	Noise Analysis

	Analysis at Different Temperatures
	Convergence

	Circuit Description
	General Structure and Conventions
	Basics: Title Line, Comment Lines and .END Line
	Title Line
	.END Line
	Comments

	Device Models
	Subcircuits
	.SUBCKT Line
	ENDS Line
	Subcircuit Calls

	INCLUDE

	Circuit Elements and Models
	General options and information
	Simulating more devices in parallel
	Technology scaling
	Model binning

	Elementary Devices
	Resistors
	Semiconductor Resistors
	Semiconductor Resistor Model (R)
	Capacitors
	Semiconductor Capacitors
	Semiconductor Capacitor Model (C)
	Inductors
	Inductor model
	Coupled (Mutual) Inductors
	Switches
	Switch Model (SW/CSW)

	Voltage and Current Sources
	Independent Sources
	Pulse
	Sinusoidal
	Exponential
	Piece-Wise Linear
	Single-Frequency FM

	Linear Dependent Sources
	Linear Voltage-Controlled Current Sources
	Linear Voltage-Controlled Voltage Sources
	Linear Current-Controlled Current Sources
	Linear Current-Controlled Voltage Sources

	Non-linear Dependent Sources

	Transmission Lines
	Lossless Transmission Lines
	Lossy Transmission Lines
	Lossy Transmission Line Model (LTRA)
	Uniform Distributed RC Lines (Lossy)
	Uniform Distributed RC Model (URC)

	Transistors and Diodes
	Junction Diodes
	Diode Model (D)
	Diode Equations
	Bipolar Junction Transistors (BJTs)
	BJT Models (NPN/PNP)
	Junction Field-Effect Transistors (JFETs)
	JFET Models (NJF/PJF)
	MOSFETs
	MOSFET Models (NMOS/PMOS)
	MESFETs
	MESFET Models (NMF/PMF)

	Analyses and Output Control
	Simulator Variables (.OPTIONS)
	Initial Conditions
	.NODESET: Specify Initial Node Voltage Guesses
	.IC: Set Initial Conditions

	Analyses
	.AC: Small-Signal AC Analysis
	.DC: DC Transfer Function
	.DISTO: Distortion Analysis
	.NOISE: Noise Analysis
	.OP: Operating Point Analysis
	.PZ: Pole-Zero Analysis
	.SENS: DC or Small-Signal AC Sensitivity Analysis
	.TF: Transfer Function Analysis
	.TRAN: Transient Analysis

	Batch Output
	.SAVE Lines
	.PRINT Lines
	.PLOT Lines
	.FOUR: Fourier Analysis of Transient Analysis Output

	Interactive Interpreter
	Expressions, Functions, and Constants
	Command Interpretation
	Commands
	Ac*: Perform an AC, small-signal frequency response analysis
	Alias: Create an alias for a command
	Alter*: Change a device or model parameter
	Asciiplot: Plot values using old-style character plots
	Aspice: Asynchronous ngspice run
	Bug: Mail a bug report
	Cd: Change directory
	Destroy: Delete a data set
	Dc*: Perform a DC-sweep analysis
	Define: Define a function
	Delete*: Remove a trace or breakpoint
	Diff: Compare vectors
	Display: List known vectors and types
	Echo: Print text
	Edit*: Edit the current circuit
	Fourier: Perform a fourier transform
	Hardcopy: Save a plot to a file for printing
	Help: Print summaries of Ngspice commands
	History: Review previous commands
	Iplot*: Incremental plot
	Jobs: List active asynchronous ngspice runs
	Let: Assign a value to a vector
	Linearize*: Interpolate to a linear scale
	Listing*: Print a listing of the current circuit
	Load: Load rawfile data
	Op*: Perform an operating point analysis
	Plot: Plot values on the display
	Print: Print values
	Quit: Leave Ngspice or Nutmeg
	Rehash: Reset internal hash tables
	Reset*: Reset an analysis
	Reshape: Alter the dimensionality or dimensions of
	Resume*: Continue a simulation after a stop
	Rspice: Remote ngspice submission
	Run*: Run analysis from the input file
	Rusage: Resource usage
	Save*: Save a set of outputs
	Sens*: Run a sensitivity analysis
	Set: Set the value of a variable
	Setcirc*: Change the current circuit
	Setplot: Switch the current set of vectors
	Settype: Set the type of a vector
	Shell: Call the command interpreter
	Shift: Alter a list variable
	Show*: List device state
	Showmod*: List model parameter values
	Source: Read a Ngspice input file
	Status*: Display breakpoint information
	Step*: Run a fixed number of timepoints
	Stop*: Set a breakpoint
	Sysinfo: Print system information
	Tf*: Run a Transfer Function analysis
	Trace*: Trace nodes
	Tran*: Perform a transient analysis
	Transpose: Swap the elements in a multi-dimensional data set
	Unalias: Retract an alias
	Undefine: Retract a definition
	Unset: Clear a variable
	Version: Print the version of ngspice
	Where: Identify troublesome node or device
	Write: Write data to a file
	Xgraph: use the xgraph(1) program for plotting.

	Control Structures
	While - End
	Repeat - End
	Dowhile - End
	Foreach - End
	If - Then - Else
	Label
	Goto
	Continue
	Break

	Variables
	MISCELLANEOUS
	Bugs

	Bibliography
	Example Circuits
	Differential Pair
	MOSFET Characterization
	RTL Inverter
	Four-Bit Binary Adder
	Transmission-Line Inverter

	Model and Device Parameters
	URC: Uniform R.C. line
	ASRC: Arbitrary Source
	BJT: Bipolar Junction Transistor
	BSIM1: Berkeley Short Channel IGFET Model
	BSIM2: Berkeley Short Channel IGFET Model
	Capacitor: Fixed capacitor
	CCCS: Current controlled current source
	CCVS: Linear current controlled current source
	CSwitch: Current controlled ideal switch
	Diode: Junction Diode model
	Inductor: Inductors
	mutual: Mutual inductors
	Isource: Independent current source
	JFET: Junction Field effect transistor
	LTRA: Lossy transmission line
	MES: GaAs MESFET model
	Mos1: Level 1 MOSfet model with Meyer capacitance model
	Mos2: Level 2 MOSfet model with Meyer capacitance model
	Mos3: Level 3 MOSfet model with Meyer capacitance model
	Mos6: Level 6 MOSfet model with Meyer capacitance model
	Resistor: Simple linear resistor
	Switch: Ideal voltage controlled switch
	Tranline: Lossless transmission line
	VCCS: Voltage controlled current source
	VCVS: Voltage controlled voltage source
	Vsource: Independent voltage source

	NGSPICE enhancements over Spice3
	Device models code
	Resistor Model
	Capacitor Model
	Diode (D) model fixes
	Level 1 MOS model
	Level 2 MOS Model
	Level 3 Mos Model
	switch model
	current switch model
	boh
	PN diode voltage limiting
	FET voltage limiting
	Meyer model improvement

	The BSIM3 Model Integration
	BSIM3 Revisions
	The integration process
	The multirevision code
	Device Multiplicity
	Adding the "m" parameter

	BSIM3 TNOM patch
	References for BSIM3 model

	EKV Model

