Chapter 13

Introduction to Data Types and Structures

Abstract Data Types and the Java Collections Framework

Outline

Abstract data types

Implementing an ADT

Java Collections Framework (JCF)

Col | ecti on<E> and Set <E> interfaces
Set implementations and examples

Li st <E>andLi st |t erat or <E>interfaces
List implementations and examples

Map data type

Map<K, V> interface

Map implementations and examples
Recursion examples using maps

Col | ect i ons utility class

Sorting examples

723

724 Introduction to Data Types and Structures

13.1 Introduction

In this chapter we consider abstract data types and thelemgntations. Simple examples include
a fixed size bag ADT, a dynamic size bag ADT and a dynamic simeyakDT. In each case
simple versions of these ADTs are designed using Java actsfand implemented using array
data structures.

Next we give an overview of some of the important ADTs sucheds, dists and maps that are
part of the Java Collections Framework (JCF). Here we canagnon using the ADTs and not on
how they are implemented, which is left for a course on datesires.

13.2 Abstract data types

A data typeis a set of values (the data) and a set of operations defindteatata. Aimplemen-
tation of a data type is an expression of the data and operationswms & a specific programming
language such as Java or C++. Alpstract data type (ADT) is a specification of a data type in a
formal sense without regard to any particular implemeatatir programming language. Finally,
arealization of an ADT involves two parts

e the interface, specification, or documentation of the ADMawis the purpose of each oper-
ation and what is the syntax for using it.

e the implementation of the ADT: how is each operation exmésssing thalata structures
and statements of a programming language.

The ADT itself is concerned only with the specification oeiriice details, not the implementation
details. This separation is important. In order to use an AfiElclient or user needs to know only
what the operations do, not how they do it. Ideally this methas the implementation can be
changed, to be more efficient for example, and the user ddeserd to modify programs that use
the ADT since the interface has not changed.

With object-oriented programming languages such as Jad&Car there is a natural corre-
spondence between a data type and a class. The class dediises ¢ operations that are permis-
sible: they are the public methods of the class. The dataiesented by the instance data fields.
Each object (instance of the class) encapsulates a partgtalte: set of values of the data fields.

In Java the separation of specification and implementadaild can easily be obtained using
the Javadoc program which produces the specification (@uiikrface) for each class. The user
can simply read this documenation to find out how to use thescldt is also possible to use
a Java interface for the specification of an ADT since thisriace contains no implementation
details, only method prototypes: any class that implemd#rgsinterface provides a particular
implementation of the ADT.

13.2.1 Classification of ADT operations

The various operations (methods) that are defined by an ADTbeagrouped into several cate-
gories, depending on how they affect the data of an object:

13.2 Abstract data types 725

Create operation

It is always necessary to create an object before it can ke Uisdava this is done using the class
constructors.

Copy operation

The availability of this operation depends on the particAAT. In many cases it is not needed or
desired. If present, the meaning (semantics) of the operatso depends on the particular ADT.
In some cases copy means make a true copy of the object ansl @ddita fields, and all their data
fields, and so on, and in other cases it may mean to simply malesvareference to an object.
In other words, the reference to the object is being copietlthre object itself. In this case there
is only one object and it is shared among all the referencés tBhis makes sense for objects
that occupy large amounts of memory and in many other caseglasBoth types of operation
can even be included in the same ADT. In some languages theam®yation can have explicit
and implicit versions. In Java the implicit operation, defirby assignment or method argument
passing, always copies references but it is possible to mder kinds of explicit copies using a
copy constructor or by overriding thé one method inherited from thébj ect class.

Destroy operation

Since objects take up space in memory it is necessary tamettés space when an object is no
longer needed. This operation is often called destroy operation. In Java there is no explicit
destroy operation since the built-in garbage collectoesabn this responsibility: when there are
no more references to an object it is eventually garbageated.

Modification operations

Every object of an ADT encapsulates data and for some ADTsae&d nperations that can modify
this data. These operations act on objects and change onererafitheir data fields. Sometimes
they are callednutator operations. If an ADT has no mutator operations then the stahnot
be changed after an object has been created and the ADT imda@dmmutable, otherwise it is
mutable.

Inquiry operations

An inquiry operation inspects or retrieves the value of aadald without modification. It is
possible to completely hide all or part of the internal stidtan object simply by not providing the
corresponding inquiry operations.

13.2.2 Pre- and post-conditions

To document the operations of an ADT pre-conditions and-postlitions can be used.

726 Introduction to Data Types and Structures

Pre-conditions They are the conditions that must be true before an operegiexe-
cuted in order that the operation is guaranteed to compleieessfully. These condi-
tions can be expressed in terms of the state of the objeatdstife operation is applied
to the object. A pre-condition may or may not be needed.

Post-conditions They are the conditions that will be true after an operatmmpgletes
successfully. These conditions can be expressed in terthe sfate of the object after
the operation has been applied to the object.

Together the pre- and post-conditions form a contract batviee implementer of the method and
the user of the method.

13.2.3 Simple ADT examples

The simplest examples of ADTs are the numeric, charactdibaalean types. Most programming
languages have realizations of them as fundamental typehwahe used to build more complex
structured ADTs. Some typical types in these categories are

Aninteger ADT

Mathematically the data values here can be chosen as geirstesuch that-co < n < . Another
possibility is to consider only non-negative integeisatisfying 0< n < co.

A typical set of operations might be the standard arithmatierationsadd, subtract, multiply,
integer quotient andinteger remainder, boolean valued operations suchegsial, notEqual, and
the relational operators, <, >,>. An assignment operation would also be needed.

These are infinite data types since there are an infinite nuwib@tegers. Therefore any
realization would need to restrict the data values to a fisileset. Some common possibilities
are 8-bit, 16-bit, 32-bit, or 64-bit representations whicly be signed or unsigned (non-negative
values).

For example, in Java there is an 84jt e type with range-27 < n <27 —1, a 16-bitshor t
type with range-21° < n < 21— 1, a 32-biti nt type with range-231 < n< 2311, and a 64-bit
| ong type with range-283 <n< 2631,

A floating point ADT

Here the data values are floating point numbers. In sciemtdtation a floating point number
would have the fornx = m x 10° wheremis the mantissa anglis the exponent.

A typical set of operations would be similar to those for gees except the divide operation is
now a floating point division. An assignment operation waalkb be needed.

For example, in Java there is a single precision 324at type and a double precision 64-bit
doubl e type. The standard IEEE representation is complicateddnéssary to ensure that floating
point arithmetic is portable. Most processors supportstaadard. A single precision numbeis
either 0,—3.40x 1038 < x < —1.40x 10~%°0r 1.40x 10~*° < x < 3.40x 10%8. A double precision
numberx is either 0,~1.80x 10398 < x < —4.94x 1073?24 0r 494 x 107324 < x < 1.80x 10°%,

13.2 Abstract data types 727

A character ADT

Here the data is the set of characters from some charact®rdeas ASCII or Unicode. Internally
each character is represented by an unsigned inteigeihe range 6< n < N for someN.

A typical set of operations might include operations to @hirom upper case to lower case
and vice versa, operations to compare two characters td gesyiare equal or to see if one pre-
cedes another in the lexicographical ordering defined oatibeacters, or an assignment operation.

For example, in Java thehar type is an unsigned 16-bit integer type with Unicode charact
coden satisfying 0< n < 65535.

A boolean ADT

Here there are only two data values which can be denoted &y &aid true. Other possibilities are
to use O for false and 1 for true, or O for false and any non-marober for true.

A typical set of operations would be an assignment operasioperation to test for false and
one to test for true.

13.2.4 Some common structured ADTSs

A structured ADT is one that is defined in terms of another ARINg to some data structure. For
example, an array of integers would be defined in terms oftagér ADT and a string ADT would
be defined in terms of a character ADT. These two structuredisg\@e the most common and are
available in most programming languages.

The array ADT

An array consists ofi elementdag, ay, ...,ay—1]. Here the data consists of these arrays and each
array elemengy belongs to some other ADT. The subsckjps called the array index. The starting
index may be 0, 1, or user defined. In C++ and Java array inbegis at index 0.

The basic array operations areget the value of th&k-th element andet a new value for the
k-th element. In C++ and Java tiget operation is denoted by = a[k] and theset operation is
denoted bya[k] = x. This also means that an array is a mutable ADT.

The standard array ADT is of fixed size: once created its @in@at be changed. The standard
arrays in C++ and Java are of this type. However we will seeitha easy to create a dynamic
array ADT (resizable) which can be expanded in size if neéd@dcommodate more elements.

The string ADT

Strings are like arrays of characters but the operationbeajuite different. Both mutable and im-
mutable string ADTs are common. For example, in Javéthéng class represents an immutable
fixed size ADT and thé&t ri ngBui | der class represents a dynamic mutable ADT.

Some immutable string operations argébthek-th character, construct a substring, construct
upper case or lower case versions, and compare two strimggthe lexicographical order defined
on the underlying character set.

728 Introduction to Data Types and Structures

Some mutable operations ares# the k-th character to a new value, aadpend a character
or string to the end of a string.

13.2.5 User defined ADT examples

We are not limited to the standard ADTs that have implementatalready available in a computer
language or a system defined library of ADTs. We can write oun specifications for an ADT
and implement it in any language. Here we give two exampleswh show how to implement
them in Java.

A dynamic array ADT

Here the data elements are arrggs as, ..., a,-1]. This is a mutable ADT and the basic oper-
ations would beget, to get thek-th array element, anskt, to set a new value for thieth array
element. Also the array size can be increased automatesiheeded (doubled in size when full,
for example) or by applying some expand operation that asee the array size by a specified
amount.

A bag ADT

Here the data elements are bags. Each bag is a containerttatahcollection of elements of
some type. There is no defined order on the bag elements asiteeior arrays. In mathematics a
bag is often called a multi-set (no order, but duplicate eletsm are allowed) in contrast to sets for
which there can be no duplicates.

Bags are usually designed to be mutable and dynamic so ad®€ operations aradd, to
add another element to a bagmove, to remove a specified element from a bag, aoctains
which tests if a specified element is in a bag.

13.3 Implementing an ADT

We now show how to implement the bag and dynamic array ADT<e first step is to write a
specification or design of the data type, indicating whahegaeration does. This could be done
with a Java interface followed by the design of the class @m@nting the interface, indicating
each constructor and method body{by. }.

Whether an interface is being used or not the class designdhtways include constructor
prototypes since they are never included in an interface.

Once the design is finished it is possible to write some stamesithat use the ADT to ‘try out’
the syntax of the operations as given by the instance mettaidtppes. Finally, the implemen-
tation must be written (data fields, constructor and mettamtids). This involves choosing some
data structure to represent the data encapsulated by tbetebj

In Java all data types except for the eight primitive orteg €, short, i nt, | ong, fl oat,
doubl e, bool ean, char) are expressed as objects from some class. This preserblarmrin the
design of a generic type since generic types must be objeestireference types) and we cannot

13.3 Implementing an ADT 729

directly use the nt type as a generic type. To allow primitive types to be usedects there are
wrapper classes in Java for each primitive type. For exathglent eger class can be used as an
object version of thént type. In Java 5 auto boxing and unboxing make this easy.

Finally, when the implementation is complete, its operagimust be tested.

13.3.1 Implementation of theBag<E> ADT

First we write a fixed size implementation of the bag ADT chfexedBag<E> using the generic
type E for the elements in the bag. This means that once constrimtedgiven maximum size
(number of elements) this size cannot be changed. Then wenake a simple modification to
obtain a dynamic version call&ynam cBag<E>.

Designing theBag<E> ADT

Here we illustrate the use of an interface to specify thegiesf an ADT. Both the fixed size and
dynamic versions of the ADT will implement the following erface.

Interface Bag<E>

book- proj ect/ chapt er 13/ bags

package chapter13. bags;

/**

* A sinple nutable generic bag ADT.

* @aram <E> type of elements in the bag
*/

public interface Bag<kE>

{

/**

* Return current nunber of elenments in this bag.
* @eturn current nunber of elements in this bag
*/

int size();

/**

* Return true if this bag is enpty el se false.
* @eturn true if this bag is enpty else false
*/

bool ean i sEnpty();

/~k~k

* Add another element to this bag if there is room
* @aram el ement the elenent to add

* @eturn true if add was successful else false.

*|

bool ean add(E el enent);

/**

* Rermove a given elenent fromthis bag.
* @aram el enent the elenent to renove

730 Introduction to Data Types and Structures

* @eturn true if the element was renoved.

* A false return value occurs if elenent was
* not in this bag.

x|

bool ean renove(E el ement);

/**

* Check if a given elenent is in this bag.

* @aram el ement the elenent to check

* @eturn true if element is in this bag else false
*/

bool ean contai ns(E el ement);

}

We have not included theubl i ¢ modifier on the method prototypes in the interface. It is redu
dant since all methods in an interface are public.

Designing a fixed size implementation
The fixed size bag implementation has the form

public class FixedBag<E> inpl ements Bag<E>

{

Il instance data fields will go here

public FixedBag(int bagSize) {...}
public FixedBag() {...}
public FixedBag(Fi xedBag<E> b) {...}

public int size() {...}

public boolean isEmty() {...}

public bool ean add(E elenent) {...}
public bool ean renove(E elenent) {...}
public bool ean contains(E elenment) {...}

public String toString() {...}
}

Javadoc comments have been omitted. They are shown latex fmal version of the class. Here
we have three constructors. The first specifies the maximunbeuof elements that can be added
to the bag and the no-arg constructor gives a bag with a mawisize of 10 elements. The third
constructor is called eopy constructor. Its purpose is to construct a copy of the bag given by the
argumenb.

Thet oSt ri ng method is used to return a string representation of the elese the bag. We
didn’t need to include theoSt ri ng prototype in theBag<E> interface since every class inherits a
t oSt ri ng method.

Also, for this fixed size implementation thdd method would return false if the bag is already
full.

13.3 Implementing an ADT 731

According to this design we can construct a bag containinggimmum of 5 integers and add
the integers 1, 2, and 3 to it using the statements

Bag<I nteger> b = new Fi xedBag<I nt eger>(5);
b.add(1); b.add(2); b.add(3);
Systemout. println(b);

Autoboxing is being used here: the compiler understand$ttzad(1) means to replackby the
wrapper class objeckew | nt eger (1) and usev. add(new I nteger(1)).

It is important to use the interface type on the left side ef¢bnstructor statement. This makes
it easier to switch to another implementation class, such dgnamic one in this case. This is
sometimes called “programming to an interface”.

Our bag design is minimal. For example it is not possible hils design to take a bag of
integers and remove all even integers or display the bageglenone per line. This would require
an iterator and will be discussed later.

m|ExampLE 13.1] (Filling a fixed size bag) The statements

Bag<I nteger> bag = new Fi xedBag<I nt eger>(10);
for (int k = 1; k <= 10; k++)
bag. add(k);

construct a fixed bag of size 10 and fill it with the numbers 1Go 1 n

m|ExampLE 13.2] (Filling a fixed size bag) The statements

Bag<I nteger> bag = new Fi xedBag<I nt eger>(10);

int k=1
whil e (bag. add(k))
K++:

construct a fixed bag of size 10 and fill it with the numbers 1Ga4&ing theadd method to detect
when the bag is full. []

Choosing a data structure

The next step is to choose a data structure to hold the bageetemHere we choose a fixed
size array calledlat a such that if the number of elements currently in the bagiise then
these elements are storeddiat a[0] , data[1], ...,dat a[si ze- 1] and the remaining array ele-
mentsdat a[si ze] , ...,dat a[dat a. | engt h- 1] are free for storing more elements. Therefore we
choose the following instance data fields for the bag data.

private E[] data;
private int size;

As elements are added to the bag they are stored in the nebtldealace in the array. Thus at
any stage the array consists of two parts: the useddpad] 0] to dat a[si ze- 1] and the unused
partdat a[si ze] todat a[dat a. | engt h-1].

732 Introduction to Data Types and Structures

Implementing the constructors
The first constructor implementation is

public FixedBag(int bagSize)

{
data = (E[]) new Qbject[bagSi ze];
size = 0;

}

and the second constructor calls this one. When constguatimrray of generic type itis necessary
to use the actudhbj ect type for the array elements and typecast it to the tgpEor various
technical reasons related to the way generic types weradadddke Java language the statement

data = (E[]) new E[bagSi ze];

is illegal.
Finally, the copy constructor is given by

public FixedBag(Fi xedBag<E> b)
{
size = b.size();
data = (E[]) new Qbject[b.data.length];
for (int k = 0; k < size; k++)
data[k] = b.data[Kk];

}

Here we first construct an array of the same maximumisizat a. | engt h of the arrayb. Then
the bag elements imare copied into this array.

Implementing the methods

The add method first checks if there is room for the new element. Sma@e represents the
number of elements currently in thlat a array then the new element can ulse a[si ze] . The
implementation is

public bool ean add(E el enent)

{
if (size == data.length) // full bag

return false;
data[size] = elenent;
size = size + 1;
return true;

}

Theremve method needs to use a loop to search for the element to rentiotree element is
found at positiork in the array then the obvious way to remove it is to use a foplto copy
the array elementsat a[k+1] , ...,dat a[si ze- 1] down one location to overwrite the element at
positionk. This requires another loop.

13.3 Implementing an ADT 733

A more efficient way is to realize that a bag is not an orderedacsire so the array ordering
does not need to be preserved. Therefore we can just overwatelement at positidnwith the
last array element at positian ze- 1. This effectively removes the element at positlonThis
gives the implementation

public bool ean renove(E el enent)

{
for (int k =0; k < size; k++)
{
if (data[k].equal s(el enent))
{
data[k] = data[size-1];
size = size - 1;
return true;

}
}

return false; // not found

}

It is necessary to use tlegual s method defined for element tyjieto properly test for element
equality. The testlat a[k] == el enent will not work. A class that does not have a properly
definedequal s method can not be used as the element type. The wrapperchlsse¢hesSt ri ng
class all havequal s methods.

The remaining methods are easily implemented and the coenpi@lementation class is

ClassFi xedBag<E>

book- proj ect/ chapt er 13/ bags

package chapter 13. bags;

/**

* Asinple fixed size bag inplenentation.
* @aram <E> type of elements in the bag
*/

public class FixedBag<E> inpl ements Bag<kE>
{

Il This version uses a fixed array for the bag

private E] data;
private int size;

/**
* Create a bag for a given nmaxi nm nunber of el enents.
* @aram bagSi ze the maxi num nunber of el enents
*/
public FixedBag(int bagSize)

{

data
si ze

(E[1) new oject[bagSi ze];
0;

734 Introduction to Data Types and Structures

/**

* Create a default bag for a maxi num of 10 el ements

*/
public FixedBag()
{
t hi s(10);
}
/**

* Construct a bag that is a copy of a given bag.
* The copy has the same maxi mum size as bag b
* @aramb the bag to copy
*/
public Fi xedBag(Fi xedBag<E> h)
{
size = b.size();
data = (E[]) new bject[b.data.length];

for (int k = 0; k < size; ktt)
data[k] = b.data[k];
}
public int size()
{
return size
}
public bool ean i sEmpty()
{
return size ==
}

public bool ean add(E el enent)
{
if (size == data.length)
return fal se
data[si ze] = el enent;
size =size +1
return true;

}
public bool ean renmove(E el enent)
{
for (int k =0; k <size; k++)
{

if (data[k].equal s(element))
{
/1 nice trick
data[k] = data[size-1];
size = size - 1;
return true;

13.3 Implementing an ADT 735

}

return false; // not found

}

public bool ean contains(E el enent)

{
for (int k =0; k < size; k++)
if (data[k].equal s(elenment))
return true;
return false; // not found

}

/**

* Return a string representation of this bag
* @eturn a string representation of this bag.
*/

public String toString()

{
StringBuilder sb = new StringBuilder();

sb. append("[");
if (size !=0)

{
sh. append(data[0]);

for (int k =1, k < size; k++)

{
sb. append(",");
sb. append(data[k]);

}

}
sh. append("]");
return sh.toString();

}
}

We have not included comments for the interface methodsdiney are already given in the
Bag<E> interface.

Converting to a dynamic implementation

We now convert the fixed size implementation to a dynamic ohkis can easily be done by
modifying theadd method to automatically expand thet a array whenever it it is full. The new
version ofadd is

public bool ean add(E el enent)
{
if (size == data.length)
resize();
data[size] = elenent;
Size = size + 1;
return true;

736 Introduction to Data Types and Structures

Here we call & esi ze method that increases the capacity as follows: (1) make ada¢avarray
twice the size of the current one, (2) copy the current datayap the beginning of the new one,
(3) reassign thdat a reference to the new array (the old one will be garbage dedc

This gives the following private method.

private void resize()

{
int newCapacity = 2 * data.length;
E[] newData = (E[]) new bject[newCapacity]; // step 1
for (int k = 0; k < data.length;, k+t) // step 2
newDat a[k] = data[k];
data = newData; // step 3
}

Here is the complete implementation.

| ClassDynani cBag<E>

book- proj ect/ chapt er 13/ bags

package chapter 13. bags;
/**
* A sinple dynanmic bag inplenentation.
* @aram <E> the type of elenents in the bag
*/
public class Dynam cBag<E> inpl enents Bag<E>
{
private E[] data;
private int size;

/**
* Create a bag with a given initial capacity.
* @araminitial Capacity the initial capacity of this bag
*/
public Dynam cBag(int initial Capacity)
{
data
si ze

(E[]1) new oject[initial Capacity];
0;

}

/**

* Create a default bag with an initial capacity of 10 el enents.
*/

public Dynani cBag()

{

}

/**

* Construct a bag that is a copy of a given bag.
* The copy has the same current naxi mum size as bag b.

this(10);

13.3 Implementing an ADT 737

* @aramb the bag to copy
*/
publ i c Dynani cBag(Dynani cBag<E> b)
{
size = b.size();
data = (E[]) new bject[b.data.length];
for (int k =0; k < size; k++)
dat a[k] b. dat a[k] ;

}

public int size() {...} // sane as for FixedBag
public bool ean isEmpty() {...} // sane as for FixedBag

public bool ean add(E el enent)

{
if (size == data.length)
resize();
dat a[size] = el enent;
size = size + 1;
return true;

}

public bool ean remove(E elenment) {...} // same as for FixedBag
public bool ean contains(E elenment) {...} // same as for FixedBag

private void resize()

{

/1 NMake a new array twice as big as current one,
/1 copy data to it and make data reference the new one.

int newCapacity = 2 * data.length;
E[] newData = (E[]) new Object[newCapacity];
for (int k =0; k < data.length; k++)
newDat a[k] = data[Kk];
data = newDat a;
}

public String toString() {...} // sane as for FixedBag

13.3.2 Implementation of theDynam cArray ADT

We have written &i xedBag<E> ADT but we will not consider &i xedAr ray<E> ADT since the
built-in ar r ay type is a fixed size implementation.

Unlike a bag, an array is an ordered ADT. There is a first elénaesecond element, and so on
so there is an index associated with each array element.

Designing theAr r ay ADT

As for the Bag ADT we can use the following interface to desaigsimple array ADT

738 Introduction to Data Types and Structures

Interface Ar r ay<E>

book- proj ect/ chapter 13/ arrays

package chapter13.arrays;

/**

* A sinple generic array ADI.

* @aram <E> type of elements in the array

*/

public interface Array<e>

{
/**
* Return current nunmber of elenments in this array.
* @eturn current nunber of elements in this array
*/
int size();
/**
* Return true if this array is enpty else false.
* @eturn true if this array is enpty else false
*/
bool ean i sEnpty();
/**
* Add another elenent to end of this array.
* @aramelenent the elenent to add to end at position size().
* @eturn true if add was successful else false.
*/
bool ean add(E el enent);
/**
* Get the element at a given index (0,1,...).
* @aramindex the index of the el ement
* @eturn the el ement at the index
* @hrows Arrayl ndexQut Of BoundsException if the
* index is out of the range 0 <= index < size()
*/
E get(int index);
/**
* Set a new value for a given array elenent.
* @aramindex the index of the array el ement
* @aram el enent the new val ue of the el enment
* @hrows Arrayl ndexQut Of BoundsException if the
* index is out of the range 0 <= index < size()
*/
void set(int index, E elenent);

}

Here we have aadd method that adds an element at the end of the array (posita()). It is
important that we specify that the element be added at thef&the array. This was not necessary
for the bag ADT.

13.3 Implementing an ADT 739

The element at positiok can be obtained using thlyet method and theet method can be
used to give a new value to the object associated with padititf an indexk is outside the range
0 <= k < size() then arArrayl ndexQut Of Bounds exception is thrown.

The operations defined for an array ADT are quite differeantthose for a bag ADT since the
array ADT is an ordered collection of elements and there iagsumed order for the elements in
the bag. Theget andset methods were not part of the bag ADT since there is no condegot o
index for the elements in a bag.

This is a minimal array interface and there are many othehaust such as eenmove method
that removes the element at a given index, amtexCf that returns the index of a given elememt.

Designing a dynamic implementation

The dynamic array implementation has the form

public class Dynam cArray<E> inplements Array<e>
{

private E[] data;

private int size;

public Dynam cArray(int initial Capacity) {...}
public Dynam cArray() {...}
public Dynam cArray(Dynam cArray<e> a) {...}

public int size() {...}

public boolean isEmty() {...}

public bool ean add(E elenent) {...}

public E get(int index) {...}

public void set(int index, E elenment) {...}
public String toString() {...}

}

Here we use the same data structure, a fixed array, as forghmpsementations. The constructors
are very similar to th®ynani cBag constructors.

Using the design

Now we can try out some statements for our dynamic array desig

m|ExampLE 13.3 (Resizing a dynamic array) The following statements test that an array is
resized when it becomes full. Autoboxing is used to conveggers to thént eger object type.

Array<Integer> a = new Dynam cArray<Integer>(3);
a.add(1); a.add(2); a.add(3); a.add(4);
Systemout.printin("Array size is " + a.size());
Systemout.printin(a);

Here the initial capacity is 3. When we add the 4-th numberctpacity is doubled to 6 and the
number 4 is added to the array, which now has size 4 and rootwéomore elements. n

740 Introduction to Data Types and Structures

m|ExamPLE 13.4] (Summing the elements in a dynamic array) Unlike the bag we can loop
over the elements in the array by using tfe@ method. Here we construct an integer array and
sum its elements using the following statements.

Array<Integer> a = new Dynam cArray<Integer>(3);
a.add(1); a.add(2); a.add(3); a.add(4);
int sum= 0;
for (int k =0; k < a.size(); k++)
sum = sum + a. get (k);
Systemout.printIn("The sumof the elenents is " + sunj;

Compare these statements with the following ones that deahe thing with a standard array:

int[] a =newint[4];

a[0] =1; a[l] =2; a[2] =3; a[3] = 4

int sum = 0;

for (int k =0; k <a.length; k++)
sum = sum + a[k];

Here we need to use the exact size of 4. m

m|ExAMPLE 13.5 (Swapping two elements of an array) Assuming thatstr is an array of
strings, the statements

String tenp = str.get(i);
str.set (i, str.get(j));
str.set(j, temp);

swap the strings at positionsand] . [

Implementing the constructors and methods

This is the same as fdynan cBag<E> and the implementation of thget andset methods are
simple so we have the following class.

|ClassDynanmi cArr ay<E>|

book- proj ect/ chapter 13/ arrays

package chapter13.arrays;
/**
* A sinple dynanmic array inplenentation.
* @aram <E> type of elements in the array
*|
public class Dynam cArray<E> inplenents Array<E>
{
private E[] data;
private int size;

13.3 Implementing an ADT 741

/**

* Create an array for a given initial capacity.
* @araminitial Capacity the initial capacity

*/

public Dynam cArray(int initial Capacity)

{
data = (E[]) new Qoject[initial Capacity];
size = 0;

}

/**

* Create a default array for an initial capacity of 10 el ements.

*/
public Dynani cArray()
{
t hi s(10);
}
/**

* Construct an array that is a copy of a given array.
* The copy has the same capacity as array a.
* @arama the array to copy
*/
public Dynani cArray(Dynami cArray<E> a)
{

size = a.size();

data = (E[]) new bject[a.data.length];

for (int k =0; k < size; k++)

data[k] = a.data[k];

}

public int size()

{ return size;

}

public bool ean i sEnpty()
{ return size ==

}

public bool ean add(E elenent) {...} // sane as for Dynam cBag

public E get(int index)
{
if (0 <= index && index < size)
return data[index];
el se
throw new Arrayl ndexQut Of BoundsException("index out of bounds");

}

public void set(int index, E elenent)

742 Introduction to Data Types and Structures

I terabl e<E>

T

Col | ecti on<E>

Set <E> Li st <E> | terator Map<kK, V>
Sor t edSet <E> Listlterator Sor t edMap<K, V>

Figure 13.1: JCF related interface hierarchy

{
if (0 <= index & index < size)
data[index] = el enent;
el se
throw new Arrayl ndexQut Of BoundsException("index out of bounds");

}

private void resize() {...} // sane as for Dynam cBag
public String toString() {...} // sane as for FixedBag

}

13.4 Java Collections Framework (JCF)

Many ADTs collect together elements of some data type. Timpleist examples we have con-
sidered are the bag ADT and the array ADT. We defimeléection as a data type that organizes
a group of related objects called the elements of the cadieetnd provides operations on them.
There are often restrictions on the elements that belongfeeific kind of collection and on the

way the elements can be accessed.

13.4.1 Interface hierarchy

In Java collections are represented by classes that impleiveCol | ect i on<E> interface or one
of its extended interfaces such®e <E> or Li st <E>. These interfaces and others make up what is
called the JCF (Java Collections Framework) and theirioglahip is shown in Figure 13.1. Here
the arrow means “extends”. For example 8ee<E> interface extend€ol | ecti on<E>.

A set is an example of a collection whose elements have th@iolg two properties: (1) no
defined order and (2) duplicate elements are not alloweds ddvresponds to the mathematical
definition of a set.

13.4 Java Collections Framework (JCF)

{

public interface Col |l ecti on<E> extends Iterabl e<E>

Il Query operations

int size();

bool ean i sEnpty();

bool ean contai ns(Chj ect ohj);
[terator<E> iterator();

oj ect[] toArray();

<T> T[] toArray(T[] a);

/'l Modification Operations
bool ean add(E el enment); // optional
bool ean remove(Chject obj); // optional

Il Bulk Operations
bool ean contai nsAl | (Col | ecti on<?> ¢);

bool ean addAl | (Col | ection<? extends E> c¢); // optional
bool ean removeAl | (Col I ection<?> c); // optional
bool ean retainAll (Col I ection<?> c); // optional

void clear(); // optional

/'l Conparison and hashi ng
bool ean equal s(Chj ect ohj);
i nt hashCode();

A bag is another example of a collection that, like a set, isgsano defined order on its ele-
ments but does allow duplicate elements. In mathematicg &slzalled a multi-set. The bag is the

Figure 13.2: The&ol | ect i on<E> interface

743

simplest kind of collection class since it imposes no re8amns or structure on its elements.

Arrays and lists are collections in which the elements deetadefined order. There is a first
element, a second element, and so on, and duplicates anedlltn mathematics an array or list

is often called a sequence.
We shall give a survey of the most important classes in tha Callections Framework (JCF).

Our goal is not to understand the implementation of theseseks, which is left to a data structures
course, but to learn how to use them. Of course, we shoulde®st to understand implementation

details in order to use a class.

The most important interface in the JCF is @a | ect i on<E> interface which represents the
basic design and methods any collection class should haetasA that implements this interface
“is @” collection. A summary of this interface is given in kig 13.2. It also extends another

interface called t er abl e<E>, given in Figure 13.3 and this interface contains one mettadieéd
i t erat or which returns an object from a class that implements ttee at or <E> interface shown
in Figure 13.4. We now discuss these three interfaces.

744 Introduction to Data Types and Structures

public interface Iterabl e<E>

{
}

Iterator<BE> iterator();

Figure 13.3: Thet er abl e<E> interface

public interface Iterator<BE>
{

bool ean hasNext () ;

E next();

void renove(); // optiona

}

Figure 13.4: Thet er at or <E> interface

13.4.2 Traversing a collection with an iterator

An important operation on a collection is to be able to tragetr. This means to examine or process
elements in the collection one at a time using some kind gf.|ddis is the purpose of aterator .

Our simpleBag<E> interface did not define an iterator so for classes suéh asiBag<E> and
Dynam cBag<E> there was no way to process the elements one by one in sonre\Wieleould do
this for theDynanmi cAr r ay<E> class only because we had an indexed collection so we coald us
standard for-loop to traverse an array as shown in Exampie 13

In the JCF an iterator is an object of some class that implésrtéel t er at or <E> interface
shown in Figure 13.4. A collection class will normally notptament this interface directly. In-
stead it will provide anterator () method that returns an object of some class that implements
thel t er at or <E> interface. This is the case for t@el | ect i on<E> interface shown in Figure 13.2
(under query operations).

In thel t er at or <E> interface théhasNext () method is used to stop the iteration process and
thenext () method returns the current element in the collection andmcks to the next one. This
means that we can caléxt () repeatedly as long dssNext () returns true.

m|ExAMPLE 13.6 (Using an iterator to traverse a collection) We can use statements such as
the following to process the elements.

Col l ection<E> ¢ = new ACol | ectiond ass(...);
c.add(el); c.add(e2); c.add(e3); // ...
Iterator<E> iter = c.iterator();
while(iter.hasNext())
{

E elenent = iter.next();

/1 do something here with el enent

13.4 Java Collections Framework (JCF) 745
HereACol | ecti onC ass is any class that implements tBel | ect i on<E> interface. n

Thel t erat or <E> interface also containsrenove operation which is listed as optional. If
an implementing class does not support the removal of elerfeom the collection then an
Unsupport edQper at i onExcept i on will be thrown. Such an iterator is said to be immutable.

m|ExamPLE 13.7] (Using an iterator as a filter) The following statements show how an iterator
can be used asfdter by removing elements from the collection that satisfy soomdion.

Col l ection<E> ¢ = new ACol | ectiond ass<E>(...);
c.add(el); c.add(e2); c.add(e3); // ...
Iterator<E> iter = c.iterator();
while(iter.hasNext())

{
E element = iter.next();
if (removal condition is true)
{
iter.remve();
}
}
Here it is important that theenove() method is used after a call bext (). n

m|ExampLE 13.8 (Using an iterator as a filter without remove) If removal is not supported
then a filter can be written by creating a new collection ciminig only the elements that were not
removed:

Col l ection<E> ¢ = new ACol | ectiond ass<E>(...);
c.add(el); c.add(e2); c.add(e3); // ...

Il create a new enpty collection

Col | ection<E> newCol | ection = new ACol | ectiond ass<E>();
Iterator<E> iter = c.iterator();

while(iter.hasNext())

{
E elenent = iter.next();
if (removal condition is NOT true)
newCol | ecti on. add(el enent);
}
Here the original collection is not changed. [

An important property of an iterator is that it does not expasy internal details of the collec-
tion and the data structures used in the implementatiors iElimportant since it means that the
implementation of the collection class can be changed witbbanging the iterator.

746 Introduction to Data Types and Structures

13.4.3 |t erabl e<E> interface

Thel t er abl e<E> interface is related to the for-each loop introduced in JavH a class imple-
ments this interface then it provides arer at or () method defining an iterator and the for-each
loop can be applied as follows

m|ExampLE 13.9 (Using a for-each loop as an immutable iterator) The for-each loop has the
syntax

for (E element : c)

{
}

Herec is any object from a class that implements ther abl e<E> interface. In particular it can
be of typeCol | ecti on<E>. The for-each loop cannot access tleeove() method so it can only
be used for immutable traversals. [

/1 do something here with el enent

m|ExAmPLE 13.1((Using an iterator with a standard array type) The built-in array type also
implementd t er abl e<E> so it is possible to process an array using statements such as

String[] s = new String[3];

s[0] = "one"; s[1] = "two"; s[2] = "three";
for (String str : s)

{

}

This is useful as a replacement for the standard for-loopdbes not actually use its index in the
body of the loop. The for-each loop requires no index. [

/1 do something here with the string str

13.5 Col | ecti on<E> and Set <E> interfaces

13.5.1 Col | ecti on<E> interface

We now summarize the methods in t&@ | ect i on<E> interface in Figure 13.2. For more com-
plete descriptions see the Java APl documentation. As showe figure the operations can be
divided into four categories: (1) Query operations, (2) Micdtion operations, (3) Bulk opera-
tions, and (4) Comparison and hashing.

Some methods are optional. If a class does not want to impieare optional method the
method must throw abinsuppor t edQper at i onExcepti on if it is called. Note that the optional
operations are precisely the ones which may modify thisectithn, so if a class implements
none of these methods then it is implementing immutableecbtins. Here is a summary of the
Col | ect i on<E> methods.

Note that thecont ai ns andr enove methods have an argument of typg ect instead ofE.
This is conventional since these methods do not add new alsrteethe collection. However, the

13.5Col | ect i on<E> andSet <E> interfaces 747

add method must have an argument of typéo guarantee that the collection will only contain
elements of typé&.

e int size()
Return the number of elementstimi s collection.

e bool ean i seEnpty()
Returns true if there are no elements imi s collection else returns false.

e bool ean contai ns(Cbj ect obj)
Returns true it hi s collection contains elemepbj else returns false.

e lterator<E> iterator()
Return an iterator of typet er at or <E> for t hi s collection. This is the method that is
necessary to implement the er abl e<E> interface.
e bject[] toArray()
Convert the elements inhi s collection to an array ofbj ect type.
For example, it is a collection of strings then the statement

bject[] s = c.toArray();

converts the collection of strings to the arrayf objectss[0], ...,s[s.length-1]. To
recover the strings it is necessary to use a typecast on eaghonent such as

String str = (String) s[k];

e <T> T[] toArray(T[] a)
This is a parametrized method for typehat returns an array[] of typeT.

If the parametrized type of the collectionliss indicated by the argumemthen this method
converts the elements bhi s collection to an array of typ& which is the run-time type of
the array. If the collection does not contain elements oéflyan exception is thrown.

For example, it is a collection of strings then the statement
String[] s = c.toArray(new String[c.size()]);
converts the collection of strings to the arsagf stringss[0], ...,s[s. | ength-1].

e bool ean add(E el enent)
Returns true it hi s collection was change@(enent was added) after calling the method
else returns false. This is an optional operation.

e bool ean renove(bj ect obj

Returns true it hi s collection was change@bj was found and removed) after calling the
method else returns false. This is an optional operation.

748 Introduction to Data Types and Structures

public interface Set<E> extends Collection<E>

/I The Collection<E> interface methods can go here
/1 The Set<E> interface introduces no new nethods

}

Figure 13.5: Théet <E> interface

e bool ean contai nsAll (Col | ection<?> c)
Returns true it hi s collection contains all the elements in collectiorlse returns false.
The notatiorCol | ect i on<?> means a collection of any typ@ (s a wild card).

e bool ean addAll (Col | ecti on<? extends E> c)

Adds all of the elements aftot hi s collection. Returns true ifhi s collection was mod-
ified after calling the method else returns false. The nateibl | ecti on<? ext ends
E> means a collection of any type that extends or implementsyiheE. In this context
ext ends means “extends or implements”. This is an optional opematio

e bool ean renoveAl |l (Col | ection<?> ¢)
Returns true it hi s collection was modified (one or more elements @fere removed from
t hi s collection) after calling the method else returns falsasThan optional operation.
e bool ean retai nAl'l (Col | ection<?> c)
Retains only the elementstirhi s collection that are also io. Returns true if this collection
was modified after calling the method else returns falses &&n optional operation.
e void clear()
Remove all elements dfhi s collection to give an empty collection. This is an optional
operation.
e bool ean equal s(Obj ect obj)
i nt hashCode()

These are methods in ti@@j ect class that can be overridden. Téqual s method tests
if two collections have the same elements.

13.5.2 Set <E> interface

TheCol | ect i on<E> interface describes what is called a bag or multi-set simeeetis no structure
imposed on the elements in the collection.

TheSet <E> interface is given in Figure 13.5. It exten@d | ect i on<E> but does not introduce
any new methods. However the documentation of some of thBadstchanges since a set is a
collection that does not contain duplicates. For examplecont ai ns method will return false

13.6 Set Implementations and examples 749

if the elemenbbj is already int hi s set and thedd method will not change the collection if the
elemenbbj is already int hi s set.

Similarly theaddAl | method will only add td hi s set the elements of the collectiorthat are
not already irt hi s set.

Set theory interpretation of the bulk set methods

The bulkSet <E> methods can be used to implement the basic set theory apesati subset, set
difference, intersection, and union.

subset/supersetf a andb are two sets thea C b (or equivalentlyb O a) means thaa is a
subset ob (or equivalentlyb is a superset). In other words every element &is also an
element ob.

This can be expressed usiognt ai nsAl | . If a andb are two sets (objects from a class that
implementsSet <E>) thena. cont ai nsAl | (b) returns true only ifa © b, socont ai nsAl |
is the superset operation.

set differencelf aandb are two sets thea— b is the difference: set of all elementsarthat
are not inb. A destructive version is representeddy enmoveAl | (b), which replaces by
a—b.

set unionIf a andb are two sets theaUb is their union: set of all elements mor b or
both. A destructive version is representedabgddAl | (b) , which replaces by aub.

set intersectionlf aandb are two sets theanbis their intersection: set of all elements that
are inaand inb. A destructive version is representeddy et ai nAl | (b) , which replaces
abyanhb.

To obtain non-destructive versioresié not changed) it is necessary to make a copy afid apply
the operation to the copy.

13.6 SetImplementations and examples

The JCF includes several implementations of $ae<E> interface. We will consider three of
them: HashSet <E>, Li nkedHashSet <E>, andTr eeSet <E>. TheHashSet <E> implementation is
the fastest but if a total order can be defined on the elemétiie set thedr eeSet <E> can be used
to maintain the set in sorted order unlikeshSet <E> which maintains no order. If the element
order is not important usdashSet <E>. ThelLi nkedHashSet <E> class maintains the elements in
the order they were added to the set.

13.6.1 HashSet <E> implementation of Set <E>

A summary of theHashSet <E> implementation is given in Figure 13.6. We will not discusy a
implementation details. There are four constructors. Tis fionstructor with no arguments

750 Introduction to Data Types and Structures

public class HashSet<E> extends Abstract Set <E>
inpl ements Set<E> Cl oneable, Serializable
{

) {..}

int initial Capacity) {...}

Col I ection<? extends E>c) {...}

int initial Capacity, float |oadFactor) {...}

public HashSet
public HashSet
public HashSet
public HashSet

—_~ o~ o~ —~

public Qoject clone() {...}

[l inplenentations of Set interface methods go here

Figure 13.6: ThedashSet <E> class

public class LinkedHashSet <E> extends HashSet <E>
i npl ements Set<E>, Coneable, Serializable

{
public LinkedHashSet() {...}
int initialCapacity) {...}

public Li nkedHashSet
Col I ection<? extends E>c) {...}

public Li nkedHashSet
public LinkedHashSet(int initialCapacity, float loadFactor) {...}

Py

public Object clone() {...}

Il inplenentations of Set interface nmethods go here

Figure 13.7: The.i nkedHashSet <E> class

constructs an empty set with a default initial capacity ofel€ments. The second constructor
specifies a given initial capacity.

The third one is called eonversion constructorand is very useful. It creates a set of element
typeE from any given collectior which may have any element type which extends or implements
the typeE. This constructor can also be used as a copy construatdras typek.

We will not use the fourth constructor. It is used to optimize hash table implementation.

13.6.2 Li nkedHashSet <E>implementation of Set <E>

A summary of theLi nkedHashSet <E> implementation is given in Figure 13.7. The constructors
are identical to the ones HashSet <E>.

13.6.3 Tr eeSet <E> implementation of Sor t edSet <E> and Set <E>

A summary of thelr eeSet <E> implementation is given in Figure 13.8. Note tiaeeSet <E>

13.6 Set Implementations and examples 751

public class TreeSet<E> extends Abstract Set <E>
i npl ements SortedSet<E> C oneable, Serializable

{
public TreeSet() {...}
public TreeSet(Coll ection<? extends E>c) {...}
Conparator<? super E>c) {...}

public TreeSet
public TreeSet(SortedSet<E> s){...}

—_~ o~ o~ —~

public Qoject clone() {...}

[l inplenmentations of SortedSet interface nmethods go here
/] SortedSet extends the Set interface

Figure 13.8: Thdr eeSet <E> class

implements thé&or t edSet <E> interface which extends tHget <E> interface sdr eeSet <E> also
extendsSet <E>. We will not need the extra methods provided by $oet edSet <E> interface.

There are four constructors. The first provides an emptyA®elements are added they will
sorted according to the natural order of the elements off{genust implemen€onpar abl e<E>).

The second is aonversion constructorsimilar to the one irHashSet <E>. It creates a sorted
set of element typE from any given collectios which may have typ& or any element type which
extends or implements the tyge

The third constructor provides@npar at or argument which has type or any type that is
a super type okt. It's purpose is to define the total order to be usedTbyeSet <E>. If this
constructor is not used then the natural ordering definetidglement typé& is used. In this case
the typeE must implement th€onpar abl e<E> interface.

The last constructor is a copy constructor which makes a obpyy sorted set.

13.6.4 Simple set examples

m|ExampLE 13.11 (Removing duplicates from a collection) Suppose we have a collection
of strings and we want to obtain a new collection that vgith duplicates removed. The following
statement does this

Set <String> noDups = new HashSet <String>(c)

using the conversion constructor. [

mExAamPLE 13.13 (Random sets of elements)he following statements create a set of 10 inte-
gers generated randomly in the range h teheren > 9.

Random random = new Randomn()
Set <l nteger> randonBSet = new TreeSet<Integer>();
whil e (randontet.size() < 10)

{

752 Introduction to Data Types and Structures

randonBet . add(random nextInt(n) + 1);

}

Here we simply try to add elements until the set has size 1@s ihportant to havean > 9 or
the loop will be infinite since there are no sets of size 10 @ioitig only numbers in the range
1<k<09. m

m|ExampPLE 13.13 (Using HashSet to compute set union)The statements

Set<String> sl = new HashSet <String>()
sl.add("one"); sl.add("two"); sl.add("three")
Set<String> s2 = new HashSet <String>()
s2.add("four"); s2.add("five"); s2.add("six")

define two sets of strings and the statements

Set<String> union = new HashSet <String>(sl)
uni on. addAl | (s2);
System out. println(union);

create a copy a$1 and useaddAl | to compute the union of the two sets without modifying either
sl ors2. The result displayed is

[one, two, five, four, three, six]

The output shows there is no specific order.
If you replaceHashSet by Li nkedHashSet everywhere the result displayed is

[one, two, three, four, five, siXx]

Now the order is the same as the order in which the strings aduled to the set.
If you replaceHashSet by Tr eeSet everywhere the result displayed is

[five, four, one, six, three, two]

Now the elements appear in alphabetical order. n

m|ExAMPLE 13.14 (Using an iterator as a filter) The statements

Set<lnteger> s = new HashSet <l nt eger>();

s.add(1); s.add(2); s.add(3); s.add(3); s.add(4); /I [1,2,3,4]
[terator<integer> iter = s.iterator(); // ask s for an iterator
while (iter.hasNext())

{
int k =iter.next();
it (k %2 == 0)
iter.renove();
}

Systemout. println(s);

13.6 Set Implementations and examples 753

use an iterator to remove all the even integers from thes stintegers. The print statement
displayq 1, 3] . n

m|ExAaMPLE 13.15 (Use an iterator as a filter) The following statements

Set <l nteger> s = new HashSet <l nt eger>();

s.add(1); s.add(2); s.add(3); s.add(3); s.add(4); // [1,2,3,4]
Iterator<integer> iter = s.iterator(); // ask s for an iterator
Set <l nteger> evenSet = new HashSet <I nteger>();

Set <l nt eger> oddSet = new HashSet <I nteger>();

while (iter.hasNext())

{
int k =iter.next();
if (k%2 ==0)
evenSet . add(k);
el se
oddSet . add(k);
}

Systemout. println(evenSet);
Systemout. println(oddSet);

use an iterator to create two new sets frenone containing the even integerssirand the other
containing the odd integers y1 The print statements displgy, 4] and[1, 3] [

13.6.5 Removing duplicates from a list of words

Using sets we can easily write a program that removes duehgards in a list of words. Simply
read the words and add them to a set. Any duplicates will neidoed.

ClassRenoveDupl i cat eWbr ds

book- proj ect/chapter13/sets

package chapter13.sets;

inport java.io.File;

inport java.io.FileNot FoundException;
inport java.util.HashSet;

inport java.util.lterator;

inport java.util.Scanner;

inport java.util.Set;

/**
* Renove duplicate words froma file of words.
*
/

public class RemoveDuplicateWrds

{

public void doTest() throws FileNotFoundException
{

Scanner input = new Scanner(new File("files/words.txt"));

754 Introduction to Data Types and Structures

Set <String> uni queSet
Iterator<String> iter
whi | e(iter.hasNext())

{

new HashSet <String>();
i nput ;

uni queSet . add(iter.next());

i nput. close();
System out . println(uniqueSet.size() + " unique words found:")
System out . println(uniqueSet);

}
public static void main(String[] args) throws FileNotFoundException
{
new RenoveDupl i cat eWords().doTest();
}

}

Here we use the fact that tBeanner class implements the er at or <St ri ng> interface. As each
word is read an attempt is made to add it to the set. You cahigyptogram using a file such as

all all
wor ds wor ds
are are duplicated duplicated

The output is

4 uni que words found:
[words, all, duplicated, are]

You may get a different order since we are usingaahSet . For output in alphabetic order use
TreeSet . For a related problem see Exercise 13.10.

13.7 List<E>andLi stlterator<E>interfaces

A list is a collection of elements arranged in some lineareardt has a first element, a second
element and so on. According to Figure 13.1 thet <E> interface extend§ol | ecti on<E> so
you can think of a list as an ordered collection of elemenk&eLT st <E> interface is summarized in
Figure 13.9. As for th€ol | ect i on<E> interface the operations that can modify a list are inditate
as optional so an implementation for immutable lists woudtimplement these operations.

For traversing lists thet er at or <E> interface has been extended to provide a two way iterator
calledLi st 1t erat or <E> summarized in Figure 13.10.

13.7.1 Li st <E> interface

The methods from thé€ol | ecti on<E> class have basically the same meaning inlthgt <E>
interface except that thedd andaddAl | methods now specify that these operations append the
elements to the end of the list and themove method specifically removes the first occurrence of
the element.

13.7Li st <E> andLi st | t er at or <E> interfaces

{

public interface List<E> extends Collection<E>

/I The Collection<E> interface nethods can go here

/1 Positional Access QOperations

E get(int index);

E set(int index, E element); // optional

voi d add(int index, E element); // optional

E renove(int index); // optional

bool ean addAl | (int index, Collection<? extends E> c); // optional

/'l Search Qperations
int indexCf (Chject ohj);
int |astlndexOf(Qoject obj);

/] List Iterators
Listlterator<E> listlterator();
Listlterator<E> listlterator(int index);

Il View
Li st<E> subList(int from ndex, int tolndex);

Figure 13.9: The.i st <E> interface

public interface Listlterator<E> extends |terator<E>
{
/1 Query Qperations
bool ean hasNext ();
E next();
bool ean hasPrevi ous();
E previous();

int nextlndex();
int previouslndex();

/1 Modification Operations
void remove(); // optional
voi d set(E element); // optional
void add(E element); // optional

Figure 13.10: Thei st |t erat or <E> interface

755

756 Introduction to Data Types and Structures

We now summarize the extra methods introduced bylitst <E> interface of Figure 13.9.
The additional methods fall into four categories: (1) posial access operations that locate list
elements using an index, (2) search operations that find @lésnent given its index, (3) list
iterators that begin at the start of a list or at some otheitipos and (4) a view operation that
returns a sublist.

e E get(int index)
Return the element inhi s list at position given by ndex. If i ndex < Oori ndex >=
si ze() anindex out of bounds exception is thrown.

e E set(int index, E elenent)

Replace the element at positiondex by the given element. The element being replaced
is returned. Ifi ndex < O orindex >= size() anlndexQut Of BoundsExceptionis
thrown. This is an optional operation.

e void add(int index, E elenent)

Add a new element td hi s list at positioni ndex. The elements originally beginning
at positioni ndex are moved up to higher indices to accommodate the new elentent

i ndex < Oorindex > size() anindex out of bounds exception is thrown. Note that
i ndex = size() is allowed here, corresponding to adding after the last etenThis is
an optional operation.

e bool ean addAl | (int index, Collection<? extends E> c)

Add all the elements in the given collectionto t hi s list beginning at the given position
i ndex. The elements originally beginning at positiondex are moved up to higher in-
dices to accommodate the new elements. The restrictionsdex are the same as for the
add method. This is an optional operation.

e int indexOr(Cbject obj)
Return the index of the first occurrence of the given obgdgt int hi s list. If obj was
not found then-1 is returned.

e int lastlndexOr(Object obj)
Return the index of the last occurrence of the given olgégtin t hi s list. If obj was not
found then—1 is returned.

e Listlterator<E> listlterator()
Listlterator<BE> listlterator(int index)

Returns a.i st |t er at or <E> object. For the no-arg version the iterator will start at the
beginning oft hi s list. The second version will start at positiomdex int hi s list. The
restrictions on ndex are the same as fget .

e List<E> subList(int from ndex, int tolndex)

Returns a sublist afhi s list beginning and ending at the given indices. If the indieee
not in range amndexQut Of BoundsExcept i on is thrown.

13.8Li st <E> implementations and examples 757

T T ! . !

0 1 2 3 n n+1

Figure 13.11: Indices for the li$ty, €1, €, ..., €] lie between elements.

13.7.2 Listlterator<E>interface

As shown in Figure 13.10 thig st | t er at or <E> interface extendst er at or <E> so that the list
can be traversed in either direction. Theer at or <E> part provides iteration in the forward direc-
tion usinghasNext () andnext () and the new methods provide iteration in the backward doect
usinghasPr evi ous() andprevi ous() .

During iteration theadd, r enove, andset methods are available. They operate on the current
element of the list (last element returned gkt () or previous()). Foradd the element is
inserted immediately before the next element that wouldebemed bynext (), if any, and after
the next element that would be returnedgogvi ous() .

When using a list iterator it is helpful to think of list indis as lying between the list elements
as shown in Figure 13.11. Thus, a calhixt () returns the element to the right of the index and
advances to the next higher index. Similarly, a calptevi ous() returns the element to the left
of the index and advances to the next lower index.

13.8 Li st <E> implementations and examples

The JCF includes two general purpose implementations dfitbie<E> interface:Ar r ayLi st <E>
andLi nkedLi st <E>.

13.8.1 ArraylLi st <E>implementation of Li st <E>

TheArrayLi st <E> class implements a dynamic array ADT and is the best impléatien if you
need positional access to the list using a 0-based indexes&arg an element given its index
is anO(1) operation. Thus this is a random access structure like titeibar ray class. The
Arrayli st <E> class is summarized in Figure 13.12.

There are three constructors. The no-arg constructor gies\a resizable list with initial space
for 10 elements and the second constructor provides a bdsiliat with the specified initial ca-
pacity.

The third constructor is a conversion constructor thatteeanAr r ayLi st <E> from the given
collectionc in the order defined by the collection’s iterator.

The dynamic increase in the size of the list occurs automlatias needed. Two methods are

758 Introduction to Data Types and Structures

public class ArrayList<E> extends AbstractList<E>

i npl ements List<E> RandomAccess, C oneable, Serializable
{

/] Constructors

public ArrayList() {...}

public ArrayList(int initialCapacity) {...}

public ArrayList(Collection<? extends E>c) {...}

/1 Inplenmentation of List<E> interface nethods go here

Il Extra methods

public Qoject clone() {...}

public void ensureCapacity(int minCapacity) {...}
public void trinfoSize() {...}

Figure 13.12: Thér rayLi st <E> class

supplied for resizing the list under program control. Bmeur eCapaci ty method can be used
to expand the size to a specified amount if necessary and tmdoSi ze method can be used to
downsize the list so that its capacity is the same as its size.

OurDynam cArray<E> class (see page 740) is a very simple versiofArofyLi st <E>.

13.8.2 Li nkedLi st <E> implementation of Li st <E>

The Li nkedLi st <E> implementation uses a linked list data structure (disaigse data struc-
tures course). For random access (using an index) this mgpitation is inefficient@(n)). If
you mostly want to add and remove elements using the listtiie{access relative to the current
element) then this implementation is efficie®(()) whereas thér rayLi st <E> implementation
would be inefficient. Th&i nkedLi st <E> class is summarized in Figure 13.13.

There are two constructors. The no-arg constructor createsnpty list. There is no need to
specify a capacity since one of the properties of a linkeddgishat it can grow and shrink one
element at a time in a very efficient manner.

The second constructor is a conversion constructor thatesea linked list from the given
collectionc in the order defined by the collection’s iterator.

13.8.3 Simple list examples

m|ExAMPLE 13.14 (Converting a collection to a list) The statement

List<String> list = new ArrayList<String>(c);

uses the conversion constructor to convert any colleatiohstrings to amrrayLi st of strings
in the order given by the collection’s iterator. n

m|ExampLE 13.17 (Appending to a list) The statement

13.8Li st <E> implementations and examples 759

public class LinkedList<E> extends AbstractSequenti al Li st <E>
i npl ements List<E> Qeue<E> Coneable, Serializable
{
/] Constructors
public LinkedList() {...}
public LinkedList(Collection<? extends E>c) {...}

/1 Inplenmentation of List<E> interface nethods go here
/1 Queue<E> related nethods go here

Il Extra methods

public hject clone() {...}

public void addFirst(E elenment) {...}
public void addLast (E elenent) {...}
public E getFirst() {...}

public E getLast() {...}

public E renoveFirst() {...}

public E removelast() {...}

Figure 13.13: The&i nkedLi st <E> class

listl. addAll (list2);

appendsi st 2 to the end of i st 1.
The statements

List<String> list3 = new ArrayList<String>(list1)
list3. addAll (list2);

append two lists to create a new list without modifying eithiest 1 or | i st 2. n

m|ExampLE 13.1g (Swapping (exchanging) two list elements)Given a list of strings the fol-
lowing statements

String tenp = list.get(i); [/ String temp = list[i];
list.set(i, list.get(j)); [/ list[i] =Tlist[j];
list.set(j, tenp); Il Tist[j] = tenp

use the indexed list operatiogst andset to swap the elements at positiangndj . The com-
ments show the statements that would be usedsf were an array instead of a list.

The polymorphic static method

public static <E> void swap(List<E> list, int i, int j)
{

Etenp = list.get(i);

list.set(i, list.get(j));

list.set(j, tenp);

760 Introduction to Data Types and Structures

}

can be used to swap two elements of any list. [

13.8.4 Book inventory example

Here we create a simple book inventory system. Each bookissented as an object fronBaok
class and the books in the store are represented as a ligteArtyayLi st <Book>,

Each book has data fields for a title, author, price, and timeloeu of books in stock. We want
to process a list of books and remove books that are not ilk.stde books removed can be stored
in another reorder list. ThBook class is given by

book- proj ect/chapter13/1lists

package chapter13.lists;
/**
* Book objects have a title, author, price, quantity in stock.
* Books can al so be ordered by increasing order of title.
*/
public final class Book inplenments Conparabl e<Book>
{
private String title;
private String author;
private double price;
private int inStock;

/**
* Construct a book from given data.
* @aramtitle the title of the book.
* @aram aut hor the author of the book.
* @aramprice the retail price of the book.
* @araminStock the nunber of books in stock.
*/
public Book(String title, String author, double price, int inStock)
{
this.title =title;
this.author = author;
this.price = price;
this.inStock = inStock;
}

/**

* Return the author of the book.
* @eturn the author of the book.
x|

public String getAuthor()

{

}

return author;

13.8Li st <E> implementations and examples 761

/**

* Return the nunber of books in stock.
* @eturn the number of books in stock.

*/
public int getlnStock()
{
return inStock;
}
/**

* Return the retail price of the book.
* @eturn the retail price of the book.

*|
public double getPrice()
{
return price;
}
/**

* Return the title of the book.
* @eturn the title of the book.

*/
public String getTitle()
{
return title;
}
/**

* Return a string representation of a book.
* @eturn a string representation of a book.

*/
public String toString()
{
return "Book[" + title + "," +
author + "," + price +"," + inStock + "]";
}
/**

* Conpare this book to another book using the title.
* @aramb the book to conpare with this book
* @eturn negative, zero, positive results
*|
public int conpareTo(Book b)
{

}

/**
* Return true if this book has the sane title as obj.

* @aram obj the book to conpare with this book
* @eturn true if this book has sanme title as obj

return title.conpareTo(b.title);

762 Introduction to Data Types and Structures

*|
public bool ean equal s(Object obj)

{
if (obj == null || getCass() !'= obj.getd ass())
return fal se;
return title.equal s(((Book) obj).title);

}

public int hashCode()

{
return title.hashCode();

}
}
We have implemented th@npar abl e<Book> interface that defines the natural order with the
conpar eTo method to be alphabetical order by title. Agual s method has also been provided
and the correspondirftashCode is obtained using the hash code of the title string. Chodsasip
codes is best left to a course on data structures. Here wdesmsh code already defined in the
String class.

The following static method can be used to produce the tvi®. lis

public static List<Book> reQrderBooks(List<Book> |ist)

{

Li st <Book> reOrderList = new LinkedLi st <Book>();
terator<Book> iter = list.iterator();
while (iter.hasNext())

{

Book b = iter.next();
if (b.getInStock() == 0)
{
reQrderList.add(b);
iter.renmove();
}
}

return reOrderlist;

}

Herel i st is the given list to split. AreOrderlLi st is created and the iteratot er is used to
traverse the given list, removing elements with an in staake of 0. Each element removed is
added ta eOr der Li st which is returned by the method. Note that we have usedat or <Book>
instead ofLi st |t erat or <Book> since the extra methods in st | t er at or <Book> are not used
here.

We have usedi nkedLi st here instead ofirrayLi st since we access the list only relatively
using the iterator'sdd andr enove methods which are efficient.

Here is a short program that can be used to test the method.

| ClassBookLi st |

book- proj ect/chapter13/lists

13.8Li st <E> implementations and examples

package chapter13.lists;
inport java.util.LinkedList;
inport java.util.lterator;
inport java.util.List;

public class BookLi st
{

/**

* Mdify original list so it contains only books

* in stock and create a new |ist that contains books
* which are out of stock.

*/

public void processBookLi st ()

{
Li st <Book> |ist = new Li nkedLi st <Book>();
|ist.add(new Book("Dead Souls", "lan Rankin", 25.95 ,10));
|'ist.add(new Book("Stranger House", "Reginald HII", 29.50 ,0));
I'ist.add(new Book("Not Safe After Dark", "Peter Robinson", 32.99 ,10));
l'ist.add(new Book("Criginal Sin", "P. D Janes", 39.95 ,0));
|'ist.add(new Book("Fl eshmarket C ose", "lan Rankin", 25.00 ,0));
Li st <Book> reOrderList = reQ derBooks(list);
Systemout.printIn("Re-order list:");
di spl ayLi st (reOrderList);
Systemout.printIn("List in stock:");
di splayList(list);

}

/**

* Create lists of books in stock and reorder list.

* @aram|list the book |ist

* @eturn the list of books to be ordered.

* The original list now contains only books that are instock.
*/

public static List<Book> reOr derBooks(List<Book> |ist)

{
Li st <Book> reOrderList = new LinkedLi st <Book>();
Iterator<Book> iter = list.iterator();
while (iter.hasNext())
{
Book b = iter.next();
if (b.getlnStock() == 0)
{
reQrderList. add(b);
iter.remve();
}
}
return reCrderlList;
}

public static <E> void displayList(List<E> list)
{

763

764 Introduction to Data Types and Structures

for (E elenent : list)
Systemout. println(el enent);
}

public static void main(String[] args)

{
BookLi st books = new BookLi st ();

books. processBookLi st () ;

}
}

A for-each loop is used to display the books, one per line hadutput is

Re-order |ist:

Book[Stranger House, Reginald Hll, 29.5, 0]

Book[Original Sin,P. D Janes, 39.95,0]
Book[FI eshmar ket O ose, | an Ranki n, 25. 0, 0]

List in stock:

Book[Dead Soul s, I an Ranki n, 25. 95, 10]

Book[Not Safe After Dark, Peter Robinson, 32.99, 10]

13.8.5 Insertion in a sorted list

An easy way to maintain a list in some sorted order is to stélt an empty list and as elements
are added to the list put them in the correct position so tiatist remains sorted. In this way we
avoid sorting altogether.

To develop the algorithm suppose that €1, . .., &) is a list that is sorted in some order. If we
want to add an elemeetto the list in its proper sorted position then we need to teetlarough the
list and compare with eache,. The iteration continues until we arrive at an elemgrguch that
e < &. Then the proper place faris beforee,. There are two special cases: (1) list is empty so
create a one-element list, (2) we never find that e so the elemeng must be added at the end
of the list.

Let us assume that we have a sorted list of integers. Then weviGte the following method
to do the insertion.

public static void
insertlnSortedl ntegerList(List<Integer> list, Integer newkl ement)

{

Listlterator<integer> iter = list.listlterator()

if (liter.hasNext()) // enpty list so nake a 1-element |ist

{
i ter.add(newkl ement);

return;

}

whi | e(iter.hasNext())
{

13.8Li st <E> implementations and examples 765

int ek = iter.next();
if (newkl ement <= ek)

{
iter.previous(); // backup
i ter.add(newkl ement);
return;

}

}
iter.add(newkl enent); // add after end of I|ist

}

It is important to note thatr evi ous() is needed since to find the correct position usiegt ()

we need to add the element at the position to its lefirsvi ous() backs up the iterator. If we

come out of the while loop then we need to add the new elemehetend of the list.
Statements such as the following can be used to test the thetho

List<Integer> |list = new ArrayLi st<lnteger>()
list.add(4); list.add(6); list.add(8);
Systemout. printin(list);
insertlnSortedlntegerList(list,9);
Systemout. printin(list);

The resultis the list4, 6, 8, 9] .
We can convert this method to the following polymorphic genene with typek.

public static <E extends Conparabl e<E>>
void insertinSortedList(List<E> list, E newEl enent)

{

Listlterator<E> iter = list.listlterator();

if (liter.hasNext()) // enpty list so nake a 1-element |ist

{
i ter.add(newkl ement);
return;
}
whil e(iter.hasNext())
{
E element = iter.next();
i f (newkl enent. conpareTo(el ement) <= 0)
{
iter.previous(); // backup
i ter.add(newkl ement);
return;
}
}

iter.add(newkl enent); // add after end of Iist

766 Introduction to Data Types and Structures

Here we specify that the generic type must extend or implerteConpar abl e<E> interface.
Then instead of using= we use theonpar eTo method of theConpar abl e<E> interface.

This example can also be done usinlg akedLi st <E>, which may be more efficient than an
ArrayLi st <E> in this case, since any modifications to the input list areedasing only relative
access and the list iterator operations@().

Here is a short program that can be used to test the methodt®bf typeSt ri ng andBook
both of which implement th€onpar abl e interface.

ClassSort edLi st Exanpl e

book- proj ect/chapter13/lists

package chapter13.lists;
inport java.util.ArraylList;
inport java.util.List;

inport java.util.Listlterator;

public class SortedListExanpl e

{
public void doTest()

{

[/ Try it on a list of strings

List<String> strlList = new ArrayList<String>();
strList.add("Fred"); strList.add("Jane"); strList.add("Mke");
Systemout . println(strList);
insertlnSortedList(strList, "Gord");
Systemout . println(strList);
insertlnSortedList(strList,"Carol");
Systemout. println(strList);
insertlnSortedList(strlList,"Bob");
Systemout.println(strList);
insertlnSortedList(strlList,"Susan");
Systemout.println(strList);

[l Try it on a list of books

Li st <Book> list = new ArrayLi st <Book>();
insertinSortedList(list, new Book("Dead Souls", "lan Rankin", 25.95 ,10));
insertInSortedList(list, new Book("Stranger House", "Reginald HII", 29.50 ,0));
insertlinSortedList(list,

new Book("Not Safe After Dark", "Peter Robinson", 32.99 ,10));
insertlnSortedList(list, new Book("Original Sin", "P. D. James", 39.95 ,0));
insertlnSortedList(list, new Book("Fl eshmarket Cose", "lan Rankin", 25.00 ,0));
di splayList(list);

}

public static <E extends Conparabl e<E>>
voi d insertInSortedList(List<E> list, E newkl ement)

{

Listlterator<E> iter = list.listlterator();

13.8Li st <E> implementations and examples 767

if (liter.hasNext()) // enpty list so nake a 1-element |ist
{
i ter.add(newEl enent);
return
}
/1 Note: when we know where to insert
/] the new el ement we have gone one
/1 position too far so previous is needed.
whi | e(iter.hasNext())

{
E element = iter.next();
i f (newkl enent. conpareTo(el enent) <= 0)
{
iter.previous(); // backup
i ter.add(newEl enent);
return;
}
}
iter.add(newkl enent); // add after end of I|ist
}
public static <E> void displayList(List<E> list)
{
for (E elenent : list)
Systemout. println(el enent);
}
public static void main(String[] args)
{
Sort edLi st Exanpl e exanpl e = new Sort edLi st Exanpl e() ;
exanpl e. doTest ();
}

}

The sorted output is

[Fred, Jane, M ke]

[Fred, Gord, Jane, M ke]

[Carol, Fred, CGord, Jane, M Kke]

[Bob, Carol, Fred, Gord, Jane, M ke]

[Bob, Carol, Fred, Gord, Jane, MKke, Susan]
Book[Dead Soul s, I an Ranki n, 25. 95, 10]

Book[FI eshmar ket O ose, | an Ranki n, 25. 0, 0]

Book[Not Safe After Dark, Peter Robinson, 32.99, 10]
Book[Original Sin,P. D Janes, 39.95, 0]

Book[Stranger House, Reginald Hill,29.5,0]

768 Introduction to Data Types and Structures

13.9 Map data type

Maps are one of the most important data types. A map is a fum€tthat associates elements of
one seK called the domain of the map to elements of anothe¥sedlled the range of the map.
Each element of the domain is often calleley and the corresponding element of the range is
often called thevalue.

A map can be denoted bly: K — V or as a set okey-value pairs (k,v) denoted in the finite
case by the set

f = {(kg,v1), (k2,Vv2),...,(Kn,Vn)}.

of n pairs. We can also denote the péirv) by v which looks like array notation except the
subscripts do not need to be integers.

The keys themselves form the $et= {ky, ko, ..., kn} since no two keys can be the same. Since
two or more keys can be associated with the same value, thes/éb not form a set, they form a
collection.

13.9.1 Name-age example

As a simple example consider a set of names as the domain@gdttbf ages as the range. Then
the following map associates names of people with their age.

age= {(Janel2), (Fred 10), (Mary, 15), (Bob,10)}.

Then, for example, using standard function notation() = 10 and agéMary) = 15. A map
can be visualized as a two-column table as shown in Figurk4l3ere the keys go in the first

Name Age
Jane 12
Fred 10
Mary 15
Bob 10

Figure 13.14: A two-column representation of the name-age m

column and the corresponding values go in the second column.

13.9.2 Basic map operations
The basic operations on a map are

add Add a new key-value pair to the map (a map should be resizable)
delete Remove a key-value pair given its key.

13.9 Map data type 769

replace Replace the value in a key-value pair with a new value givehkay.
search Search for (“look up”) the value associated with a given key.

The most important operation on a map is to be able to effigiéloiok up” the value associated
with a given key. A naive approach to this would be to use aayadata structure to store the
key-value pairs and, given a key, use a linear search to fendrithered pair containing this key and
hence the value. This searching method woul®be).

A much better approach is to use a data structure called athbkhthat uses a hash code to
make lookup much more efficient than linear search. In faadt lgp is normally arD(1) operation.

13.9.3 Hash tables and codes

We consider a very simple case of a hash table which is theemmghtation data structure for a
map. In our case the keys and values are both integers. Supmokave an array with indices 0
to 10 as shown in Figure 13.15 that can hold the key-values pkiere we assume that each array

V132 Vio2 | Vis Vs V257 V558 V32

0 1 2 3 4 5 6 7 8 9 10

Figure 13.15: A simple hash table of size 11 udifig) = k mod 11. Herey is the value associated
with keyk.

location can hold one key-value pair and the notatipindicates that the value associated with
keyk is v and we assume that the values are non-negative integen® iShheom for 11 pairs and
some of them are shown in the figure. Empty array locationsiansed.

For each key we need a function to transform the key into amyandex which can then be
used to obtain the value associated with this key.

In general the range of values (hon-negative integers sciise) is much greater than the size
of the array so we cannot just store the pair with ke the location with indeX. To be specific
let us assume that each Kegatisfies 6< k < 1000. What we need is a functitiik) called a hash
function that produces an integer hash code for eactkkéyis code can then be converted to an
array index in the range 6< i < 10 usingi = h(k) mod 11. We consider only the simplest case
which ish(k) = k so that the array index of kdyisi = k mod 11.

Suppose we start with an empty array and begin inserting patin keys 15, 558, 32, 132, 102,
and 5. Then the corresponding array indices are 15 maed4,1558 mod 1% 8, 32 mod 1% 10,
132 mod 11=0, 102 mod 1%t 3, and 5 mod 1% 5, as shown in Figure 13.15.

No problems are encountered since all the remainders dezatfif. However when we try to
insert a pair with key 257 then 257 mod %14 and location 4 is already occupied by the pay
having key 15. This is inevitable as we insert new pairs siheee are many more keys than array
indices. This situation is called @llision and we need aollision resolution policy to decide
where to store the pair. The simplest policy is to find the ihéythest empty location and store the

770

Introduction to Data Types and Structures

pair there. In our example this means that pag;, which would have gone in the location with
index 4, now goes in the location with index 6, as shown in FgLB8.15. In general we would
assume that the array indices wrap around with index 0 fatigvindex 10. If there is no free
location this means that the array is full and would need texgmnded by doubling its size for
example.

13.10 TheMap<K, V> interface

The JCF has abp<K, V> interface that defines the basic operations on maps. Thegface is
parametrized with two generic types. The typis the key type and the typeéis the value type.
They can be any object type. The methods inNae<K, V> interface are shown in Figure 13.16.
An interesting feature of this interface is that it contaamsinner interface to represent the entries
(pairs) in the map. Detailed descriptions of these opeamnatare given in the Java API documenta-
tion which is summarized here.

e int size();

Return the number of pairs (entries) currently storetlhins map.

bool ean i senpty();
Return true ift hi s map is empty (contains no entries).

bool ean cont ai nsKey(Obj ect key);
Return true if an entry with the giverey is int hi s map.

bool ean cont ai nsVal ue(Gbj ect val ue);
Return true if an entry with the giveral ue isint hi s map.

V get (Obj ect key);

Return the value associated with the giwagy. This is the “look up” operation. A return
value ofnul | either indicates that there is no entry with this key or thsran entry but its
value isnul | .

V put (K key, V value);

Add a new pair (entry) to the map with givéeey andval ue. If the entry was already in

t hi s map then the old value is replaced\bgl ue and the old value is returned. Otherwise
a new entry is added tiohi s map anchul | is returned. This is an optional operation.

V renove(Qbj ect key);

If the entry with the giverkey is int hi s map then it is removed and its value is returned.
Otherwisenul | is returned. This is an optional operation.

voi d put Al l (Map<? extends K, ? extends V> t);

All the entries in the map are put intat hi s map. The types of the mapcan beK andV
or any types that extend or implemafandV. This is an optional operation.

13.10 Thavap<K, V> interface

{

public interface Map<K, V>

Il Query QCperations

int size();

bool ean i sEmpty();

bool ean cont ai nsKey(Chj ect key);
bool ean cont ai nsVal ue(hj ect val ue);
V get (Cbj ect key);

/1 Modification Qperations
V put (K key, V value); // optional
V remove(Qhj ect key); // optional

Il Bulk Operations

voi d put All (Map<? extends K, ? extends V> t);

void clear(); // optiona

interface Entry<kK, V>
{
K getKey();
V get Val ue();
V setVal ue(V value); // optional
bool ean equal s(Chj ect ohj);
i nt hashCode();

}

11 Views

Set <K> keySet ();

Col I ection<V> val ues();

Set <Map. Entry<K, V>> entrySet();

/'l Conparison and hashi ng
bool ean equal s(Chj ect obj);
i nt hashCode();

/1 optional

Figure 13.16Map interface

771

772

Introduction to Data Types and Structures

voi d clear();

Remove all the entries fromhi s map. The result is the empty map. This is an optional
operation.

interface Entry<kK V>

This is an inner interface that defines a map entry (pair).€ferrto such an entry use the
typeMap. Ent ry<K V>.

— K getKey();
Return the key of hi s entry.

—V get Val ue();
Return the value of hi s entry.

—V set Val ue(V val ue);
Set a new value farhi s entry. This is an optional operation.

— bool ean equal s(Obj ect obj);
Return true ifobj is equal tat hi s entry.

—int hashCode()
Return the hash code bhi s entry.

Set <K> keySet () ;
Return the keys im hi s map as a set.

Col | ecti on<V> val ues();

Return the values ihhi s map as a collection.

Set <Map. Entry<K, V>> entrySet ();

Return the entries dfhi s map as a set of elements of tylglap. Ent r y<K, V>.

bool ean equal s(Obj ect obj);
Return true ifobj is a map equal tohi s map.

i nt hashCode()

Return the hash code bhi s map.

13.11 Map implementations and examples

The JCF has several implementations of Map<K, V> interface. We will consider three of them
that are similar to the corresponding ones for seshMap<K, V>, Li nkedHashMap<K, V>, and
TreeMap<kK, V>.

13.11 Map implementations and examples

public class HashMap<K, V> extends Abstract Map<K, V>
i npl ements Map<K, V>, O oneable, Serializable
{
public Hashvap() {...}
public HashMap(int initial Capacity) {...}
publ i c HashMap(Map<? extends K, ? extends V> nm {...}
public HashMap(int initial Capacity, float |oadFactor) {...}
public Qoject clone() {...}
/1 Inplenmentations of Map interface methods go here
}

Figure 13.17: ThélashMap<K, V> class

773

public class LinkedHashMap<E> extends HashMap<kK, V>
i npl ements Map<K, V>, C oneable, Serializable
{

public LinkedHashMap() {...}

public LinkedHashMap(int initial Capacity) {...}

public LinkedHashMap(int initial Capacity, float |oadFactor) {...}
(i

public LinkedHashMap(Map<? extends K, ? extends V> nm {...}

public Coject clone() {...}

/1 Inplenentations of Map interface nethods go here
/1 Qher nethods go here

public LinkedHashMap(int initial Capacity, float |oadFactor, boolean accessOrder) {...

}

Figure 13.18: Thei nkedHashMap<K, V> class

13.11.1 HashMap<K, V> implementation of Map<K, V>

TheHashMap<K, V> implementation is the fastest but it does not maintain adgioto the entries

in the map. A class summary is shown in Figure 13.17.

There are four constructors. The first constructor with ruarents constructs an empty map
with a default initial capacity of 16 elements. The secondstactor specifies a given initial
capacity. The third one is called a conversion construatdraan be used as a copy constructor.
We will not use the fourth constructor. It is used to optimize hash table implementation.

13.11.2 Li nkedHashMap<K, V>implementation of Map<K, V>

The Li nkedHashMap<K, V> implementation maintains the order in which keys are addeithe

map. A class summary is shown in Figure 13.18.

774 Introduction to Data Types and Structures

public class TreeMap<K, V> extends Abstract Map<K, V>
i mpl ements SortedMap<K, V>, C oneable, Serializable

{
public TreeMap() {...}
public TreeMap(Conparator<? super K>c) {...}
Map<? extends K, ? extends V> { ..}

public TreeMap
public TreeMap(SortedMap<K,? extends V>m {...}

P-4

public Coject clone() {...}

/1 inplenentations of SortedMap interface go here
/1 SortedMap extends the Map interface

Figure 13.19: Thd@r eeMap<K, V> class

13.11.3 Tr eeMap<K, V> implementation of Map<K, V>

The Tr eeMap<K, V> implementation provides a sorted order based on the naitotating of the
keys as given by th€onpar abl e<K> interface implemented bi. A class summary is shown in
Figure 13.19. Theort edMap<K, V> interface extends thiap<kK, V> interface to provide extra
methods related to the sort order (See Java APl documemyatio

13.11.4 Simple map examples

Here we give some simple examples to illustrate map op@stising the name-age example.

m|ExampLE 13.19 (Constructing a name-age map)The statements

Map<String, | nteger> age = new HashMap<String, I nteger>();
age. put ("Jane", 12);

age. put (" Fred", 10);

age. put ("Mary", 15);

age. put ("Bob", 10);

Systemout. println(age);

create the name-age map shown in Figure 13.15 using autabéamint to I nteger. The
no-arg constructor uses a default size of 16 entries for e Mhe output is

{Bob=10, Jane=12, Fred=10, Mary=15}

and shows that the insertion order is not preserved b¥iabeMap implementation. If you change
the implementation tai nkedHashMap then the output is

{Jane=12, Fred=10, Mary=15, Bob=10}

which is in the order of insertion into the map. Finally, ifyeahange the implementation to
Tr eeMap then the output is

13.11 Map implementations and examples 775

{Bob=10, Fred=10, Jane=12, Mary=15}

which is sorted in increasing order of the names (keys). n

m|ExampLE 13.20 (Finding the age of a given person)The statements

String name = "Mary";
int a = age.get(name);
Systemout.printin("Age of " + name + " is " + a);

return the age of Mary. []

m|ExampPLE 13.21] (Using get if name is not in the map) The statements

String name = "Gord";
int a = age. get(name);

throw aNul | Poi nt er Except i on. Since Gord is not in the maget returnsnul | which cannot be
unboxed to amnt so the exception is thrown. This only happens with the pimitypes. Without
the auto unboxing the statements

String nanme = "CGord";
Integer a = age. get(nanme);
Systemout.printin("Age of " + name + " is " + a);

return anul | value fora and no exception is thrown. []

m|ExamPLE 13.23 (Checking if a map contains a key) The statements

String name = "Jill";

i f (age.containskey(nane))
Systemout.printin(nane + " was found");

el se
Systemout. printlin(name + " was not found");

show that Jill was not found in the map. []

m|ExampPLE 13.23 (Update a value given its key) The statements

String name = "Fred";
age. put (nane, 15);
Systemout.printIn("New age of " + name + " is " + age.get(nane));

update the age of Fred from 10 to 15 and display it. The staiesne

String name = "Fred";

int currentAge = age. get(nane);

age. put (nane, currentAge + 1);

Systemout.printIn("New age of " + name + " is " + age.get(nane));

776 Introduction to Data Types and Structures

add 1 year to Fred’s age and display it. n

m|ExamMPLE 13.24 (Deleting an entry given its key) The statements

String nanme = "Fred";

i f (age.containskey(nane))
age. renove(name);

Systemout. println(age);

delete Fred from the map and display the resulting map
{Bob=10, Jane=12, MNary=15}

which shows that Fred is no longer an entry in the map n

m|ExampLE 13.29 (lterating over the keys of a map) To get an iterator over the keys in a map
we first get the keys as a set and then ask this set for an itefdie statements

Set<String> keys = age. keySet ();
[terator<String> iter = keys.iterator();
while (iter.hasNext())
{
String name = iter.next();
int a = age. get(nane);
Systemout.printin(name + " -> " + a);

}

use the iterator to display the name-age pairs using anwarotation, one per line. [

m|ExAMPLE 13.24 (Iterating over the keys using a for-each loop) The statements

for (String name . age. keySet())
{

Systemout.printin(nane + " -> " + age.get(nane));

}

use the for-each loop to display the name-age pairs usingraom/” notation, one perline. m

m|ExAMPLE 13.27 (Use the for-each loop to compute average agéljhe statements

Set<String> keys = age. keySet ();
doubl e sum = 0.0;
for (String nanme . keys)

{
}

Systemout.printin("Average age is " + sum/ keys.size());

sum += age. get (nane);

compute the average age. Tdiee method is used to find the number of keys in the map. =

13.11 Map implementations and examples 777

m|ExampLE 13.29 (Use an iterator and theMap. Ent r y interface) The statements

Set <Map. Entry<String, I nteger>> entries = age.entrySet();
Iterator<Map. Entry<String, Integer>> iter = entries.iterator();
while (iter.hasNext())

{
Map. Entry<String, Integer> entry = iter.next();

Systemout.printlin(entry.getKey() + " ->" + entry.getValue());
}

iterate over the map entries. First we get¢heri es set of typeMap. Entry<Stri ng, | nt eger >
using the inner interface of théap<Stri ng, | nt eger > interface. Then we ask it for an iterator
over the entries. Each entry hget Key() andget Val ue() methods. The loop displays the entries
using arrow notation.

The for-each loop

for (Map. Entry<String,Integer> entry : age.entrySet())

{
Systemout.printin(entry.getKey() + " ->" + entry.getValue());

}

can be used as long as the mutable iterator operations arequited. [

m|ExAmPLE 13.29 (Adding 1 year to all the ages) The statements

Set <Map. Entry<String, I nteger>> entries = age.entrySet();
Iterator<Map. Entry<String, Integer>> iter = entries.iterator();
while (iter.hasNext())
{

Map. Entry<String, Integer> entry = iter.next();

entry.setVal ue(entry. getValue() + 1);
}

Systemout.printin(entries);

use theent rySet () iterator to add 1 to all the ages. [

13.11.5 Hours worked example

As a useful example of a map suppose we have a file cabbeds. t xt whose lines contain a
person’s name and the number of hours they have worked. Anmramight be

Fred: 10
Gord: 20
Fred: 30
Mary: 15
CGord: 13
Mary: 4
Mary: 6

778 Introduction to Data Types and Structures

There can be more than one entry per person and we want tayigp total hours worked by
each person in the format

indicating that Fred has worked 40 hours (10 + 30), Gord hakee33 hours (20 + 13), and Mary
has worked 25 hours (15 + 4 + 6).

We can produce this list by reading the file into a map with thmes as keys and the hours
worked as the values. Each time we read a line we check if tremgalready in the map. If itis
not we create a new entry, and if it is already in the map we tgpith@ number of hours by adding
the new value.

Before reading the file we create the following map:

Map<String, Doubl e> map = new HashMap<Stri ng, Doubl e>();

If you want the names to be ordered alphabetically then ceplashMap by Tr eeMap.
Thenifnane andhour s are the values read from the file the map is updated usingatess¢nts

if (map.containskey(nanme)) // update hours worked

{
doubl e currentHours = map. get (nanme);
map. put (nanme, currentHours + hours);
}
else // newentry
{
map. put (name, hours);
}

To read the lines of the file we can use #pt it method in theSt ri ng class, so if i ne is a line
read from the file then

String[] s = line.split(":");

will read the name and hour values as strings 8{t] ands[1], using colon as the delimiter.
Here is the complete program.

| ClassHour sWor ked |

book- proj ect/ chapt er 13/ maps

package chapter 13. maps;

inport java.io.BufferedReader;
inport java.io.File;

inport java.io.FileReader;
inport java.io.|CException;
inport java.util.HashMap;
inport java.util.Map;

13.11 Map implementations and examples

*

A map exanple: file contains names and hours worked in the format
nane: hour s

A person may appear several times in the file and we want to
determne the total hours each person has worked

Ve read this file aline at a tinme and separate the nane and hours.
The name is used as the key in a hash table and the hours is the
value if the key is new else the hours are updated. The result

is a map containing the total hours worked for each person.

If a TreeMap is used instead of a HashMap the names will be
ordered in increasing al phabetic order.

* * * * * * * * * * * * *

*|
public class HoursWrked
{

private static final File INFILE = new File("files/hours.txt");

public void processFile() throws | OException
{
Map<String, Doubl e> nap =
new HashMap<String, Doubl e>();
Buf f er edReader in =
new Buf f er edReader (new Fi |l eReader (I N_FILE));
String line;

while ((line = in.readLine()) !'= null)

{
/1 Each line of the file contains a nane and a nunber
/'l of hours worked separated by a colon which can be
Il preceded by zero or nore spaces.

String[] s = line.split(":");

String name = s[0].trim();

doubl e hours = Doubl e. parseDoubl e(s[1].trim());
/'l Echo for checking

n.on

System out. println(name + + hours);
Il put entries in map and update hours

i f (map.containsKey(nane)) // update hours worked

{
doubl e current Hours = nmap. get (name);
map. put (name, currentHours + hours);
}
else // new entry
{

map. put (name, hours);

}

779

780 Introduction to Data Types and Structures

}

in.close();
/1 Display the map, one entry per line

Systemout.printIn("Mp is");
for (String name : nmap. keySet())
{

doubl e hours = map. get (name);
Systemout.println(name + " ->" + hours);

}
}

public static void main(String[] args) throws |OException

{
Hour s\Wor ked tester = new Hour s\Wor ked();

tester.processFile();

}
}

13.11.6 Favorites map with maps as values

We now do an example of a map whose values are also maps. Emgpéxis extended in the end
of chapter exercises.

In our case we want a map structure that can record the favawitg, food, golfer, etc, asso-
ciated with each person. Thus, the key-value pairs of thmay map are names and references
to favorite maps. The key-value pairs of each favorite maptlae category names, such as food,
song and golfer, and the values are the preferences.

Using set theory notation an example of such a map of maps is

favorites = {(Bob, f1),(Fred f2), (Gord f3)}
fi = {(food,salad, (golfer,Vijay Singh), (song White Wedding}
f, = {(food,steak, (golfer, Tiger Woods, (song Satisfaction}
f3 = {(food, spaghetii, (golfer, Phil Mickelson, (songMoney)}

This example is also shown using tables in Figure 13.20.dasy to construct these maps in Java.
The favorites map is given by

Map<String, Map<String, String>> favorites =
new HashMap<String, Mp<String, String>>();

which is a map from strings to maps from strings to stringswittee favorite maps are given by

Map<String, String> f1 = new HashMap<String, String>();
fl. put("golfer", "Vijay Singh");

f1. put("song", "Wite \Wdding");

f1. put("food", "salad");

Map<String, String> f2 = new HashMap<String, String>();

13.11 Map implementations and examples 781

category preference

food salad

golfer Vijay Singh

song White Wedding
name favorite

Bob food steak
Fred golfer Tiger Woods

Gord song Satisfaction

food spaghetti

T

| golfer | Phil Mickelson

favorites song Money

Figure 13.20: A map of maps. The keys of the first map are naifesvalues are favorite maps
whose keys are the categories and values are the preferences

f2.put("golfer", "Tiger Wods");
f2.put("song", "Satisfaction");
f2.put("food", "steak");

Map<String, String> f3 = new HashMap<String, String>();
f3.put("golfer", "Phil M ckelson");

f3.put("song", "Money");

f3.put("food", "spaghetti");

Finally we associate these maps as values of the favoritps ma

favorites. put("Bob", f1);
favorites. put("Fred", f2);
favorites. put("Gord", f3)

It is easy to perform operations on this map. For exampleisjolaly Fred’s favorite map use
Systemout. printIn(favorites.get("Fred"));

To display Bob’s favorite golfer use
Systemout. println(favorites.get("Fred").get("golfer"));

To change Fred'’s favorite food to chicken use

favorites.get("Fred").put("food", "chicken");

782 Introduction to Data Types and Structures

m|ExampLE 13.30 (For-each loop for favorites map) The statements

for (String nanme . favorites. keySet())

{

System out. println(nane);
Systemout. println(favorites.get(name));

}

produce the output

Bob
{gol fer=Vijay Singh, food=sal ad, song=Vite \\eddi ng}
Fred
{gol fer=Ti ger Wods, food=steak, song=Satisfaction}
CGord

{gol fer=Phil M ckel son, food=spaghetti, song=Money}

which show the favorite maps one per line. To obtain an alptiedd order replace thidashMap
implementation bylr eeMap. n

m|ExampLE 13.31] (Nested for-each loops for favorites map)The statements

for (String nane : favorites. keySet())
{
Systemout.printin("favorites for " + name + ".");
Map<String, String> favorite = favorites. get(nane);
for (String category : favorite.keySet())
{
String preference = favorite. get(category);
Systemout. println(" " + category + ": " + preference);

}
produce the display

favorites for Bob:
food: sal ad
golfer: Vijay Singh
song: Wite Wedding
favorites for Fred:
food: steak
gol fer: Tiger Wods
song: Satisfaction
favorites for Cord:
food: spaghetti
gol fer: Phil M ckelson
song: Money

using nested for-each loops to iterate over the maps. Thes map iterates over each person and
the inner loop iterates over all categories in each favonig. n

13.12 Recursion examples using maps 783

13.12 Recursion examples using maps

Consider a sequengsn, Sm+1,Sm+2, - - -, Sn, Sn+1, - - -] With starting indexmwhich is often taken to
be 0. Such sequences are often defined by recurrence rslafiohe forms, = f(s,-1), which
is a first order recurrence relation since the calculatiog,@fepends on the previous term in the
sequence, or of the fors, = f(sh—1,5-2), which is a second-order recurrence relation since the
calculation ofs, depends on the previous two terms of the sequence. As a sexalaple, the
recurrence relatiog, = ns,_1 with sp = 1 can be solved to gt = n!.

Here we consider two recurrence relations, the Fibonacgiesgce and the Q-sequence.

13.12.1 The Fibonacci sequence

An important second-order sequence is the Fibonacci sequigfined recursively by
Fn — Fn_]_ + Fn_z, WhereFO — F]_ = 1

There is a closed form expression for the general tg{iiout it is not useful for the calculation of
terms in the sequence. An efficient non-recursive methodsgyewritten to calculate the terms in
the sequence and the following recursive method can alssdx u

public long fib(int n)
{
if (n==01]] n==1)
return 1L;
el se
return fib(n-1) + fib(n-2);
}

This method is very inefficient because each term is caledlatany times. For example, in the
calculation offsg the termfyg is calculated recursively 1046 times.

We can avoid this duplication by a technique called memumnatin our case this means that
we can use a map to remember the terms as they are calculalesh We calculate a term for the
first time we store it in a map of typdap<I nt eger, Long>. Then whenever this term is needed
again we simply look up its value in the map. Here is a classdhakeulates Fibonacci numbers
using a map:

| ClassFi bonacci |

book- pr oj ect/ chapt er 13/ maps

package chapter 13. maps;
inport java.util.Map;
inport java.util.HashMap;
inport java.util.Scanner;

public class Fibonacci

{
Map<I nt eger, Long> m

784 Introduction to Data Types and Structures

public void calculate()

{
/] Create map and initialize it
[l for fib(0)=1 and fib(1)=1

m = new HashMap<I nt eger, Long>();
m put (0, 1L);
mput (1, 1L);

Scanner input = new Scanner(Systemin);
Systemout.printIn("Enter n");
int n = input.nextint();

long startTime = System nanoTine();
Systemout.printin(fib(n));
long time = System nanoTine() - startTineg;

doubl e seconds = (double) time * le-9;
System out . println(seconds);

}

public long fib(int n)
{
if (! mcontainsKey(n))
mput(n, fib(n-1) + fib(n-2));
return mget(n);

}
public static void main(String[] args)
{
new Fi bonacci (). cal cul ate();
}

}

Note that before callingi b we construct the map and initialize it by putting the entfagdo = 1
andF; = 1into it.

Thef i b method first checks to see if the tefgis in the map. If it isn’t the recursive formula
is used to calculate it and put it in the map, otherwise itakéd up in the map and returned.

We have included statements that determine the time in gsdaken to compute a Fibonacci
number. A similar class could be written for the recursivesian without using a map. Of course
the results depend on the particular computer. In one testdltulation of46 took 538 seconds
without using a map and.&3 x 10~% seconds using a map.

13.12.2 The Q-sequence

As another more complicated example which doesn’t have plsinon-recursive algorithm con-
sider the sequence

Q(n) =Q(N—Q(n—1)) +Q(n—Q(n—2)), whereQ(1) = 1,Q(2) = 1

13.12 Recursion examples using maps 785

where we use the more readable function notafom = Q. The following recursive method can
be used to compute the terms in the sequence.

public int g(int n)

{
if (n<=2)
return 1;
el se

return g(n - q(n-1)) + q(n - q(n-2));
}

The following class uses a map to calculate the terms:

| ClassQSequence

book- pr oj ect/ chapt er 13/ maps

package chapter 13. maps;
inport java.util.Map;
inport java.util.HashMap;
inport java.util.Scanner;

public class QSequence

{
Map<I nt eger, I nteger> m

public void calculate()

{
/] Create map and initialize it
[l for gq(1) =1 and q(2) =1

m = new HashMap<I nt eger, | nt eger>();
mput (1, 1);
mput (2, 1);

Scanner input = new Scanner(Systemin);
Systemout.printIn("Enter n");

int n = input.nextint();

long startTime = System nanoTinme();
Systemout.printin(q(n));

long time = System nanoTine() - startTineg;
doubl e seconds = (double) time * le-9;
System out . println(seconds);

}

public int g(int n)
{
if (! mcontainsKey(n))
mput(n, g(n - q(n-1)) +qa(n - g(n-2)));
return mget(n);

}

786 Introduction to Data Types and Structures
public static void main(String[] args)
{

}
}

In one test the calculation Gj(45) took 758 seconds without using a map an8%3x 10~4 seconds
using a map.

new (Sequence().cal cul ate();

13.13 Col | ecti ons utility class

TheCol | ecti ons class is like thevat h class: it is a set of useful static methods such as sorting
and searching for operating on sets, lists, and maps in theTl@re are 50 methods in this class
and we summarize only a few. For a complete description seéava API documentation.

e static <T> int binarySearch(List<? extends
Conpar abl e<? super T>> list, T key))

Searchl i st of typeT for the givenkey. The list must be in the order specified by the
Conpar abl e interface implemented by the list. Returns the zero-basddx wherekey
was found or{i ndex - 1) wherei ndex is the location wher&ey could be inserted.

e static <T> int binarySearch(List<? extends T> list, T key,
Conpar at or <? super T> c)

Like the above version dbi nar ySear ch except using the specified implementation of
Conpar at or to define the order.l § st does not need to impleme@bnpar abl e in this
version).

e static <T extends Conparabl e<? super T>>
voi d sort(List<T> list)
Sort the givenl i st into increasing order using the implementation of Goapar abl e
interface provided by i st .
e static <T> void sort(List<T> I|ist,
Conpar at or <? super T> c)

Like the above version (for t except using the specified implementatiofCofrpar at or
to define the orderl (st does not need to impleme@anpar abl e in this version).

There is also arrays class injava. util that provides a similar set of static methods that
operate on arrays instead of collections.

13.13.1 Book list sorting example

In this example we consider two ways to use sbhet method in theCol | ecti ons class to sort a
list of Book objects (see page 760).

13.13Col | ect i ons utility class 787

TheBook class implementSonpar abl e<Book> which defines the natural order to be increas-
ing alphabetical order by book title. This means that we cahasbook list in this order simply by
using

Col l ections.sort(list);

wherel i st is a list of books.

If we want to use an order other than the natural order it isg®ary to write a class that imple-
ments theConpar at or <Book> interface. For example, if we want to sort in increasing alpdtic
order by author then following class can be used

ClassBook Conpar at or

book- project/chapter13/1lists

package chapter13.lists;
inport java.util.Conparator;

public class BookConparator inplenents Conparator <Book>

{
/~k~k
* Conpare this book to another book using the author.
* @aram bl the first book
* @aram b2 the second book
* @eturn negative, zero, positive results
*/
public int conpare(Book bl, Book b2)
{
return bl.get Aut hor (). conpareTo(b2. get Author());
}
}

Now we can use the statement
Col l ections.sort(list, new BookConparator());

to sort by author. Here is a class that illustrates these tring methods:

|ClassSor t BookLi st |

book- project/chapter13/1lists

package chapter13.lists;
inport java.util.Collections;
inport java.util.ArraylList;
inport java.util.List;

public class SortBookLi st
{

public void processBookLi st ()

{

788 Introduction to Data Types and Structures

[l Asinple list of books

Li st <Book> list = new ArrayLi st <Book>();

|'ist.add(new Book("Dead Souls", "lan Rankin", 25.95 ,10));
|'ist.add(new Book("Stranger House", "Reginald HII", 29.50 ,0));
|'ist.add(new Book("Not Safe After Dark", "Peter Robinson", 32.99 ,10));
l'ist.add(new Book("COriginal Sin", "P. D. Janes", 39.95 ,0));
I'ist.add(new Book("Fl eshmarket C ose", "lan Rankin", 25.00 ,0));

/1 Sort using the sort method in the Collections class
[l The order uses titles (Book inplenments Conparable)

Col I ections.sort(list);
Systemout.printin("List sorted by title:");
di spl ayLi st (list);

/1 Now use a Conparator the sorts using the author
Col I ections.sort(list, new BookConparator());

Systemout.printin("List sorted by author:");
di splayList(list);

}
public static <E> void displayList(List<E> list)
{
for (E elenent : list)
Systemout. println(el enent);
}
public static void main(String[] args)
{
Sort BookLi st books = new Sort BookList();
books. processBookLi st () ;
}

}
The output is

List sorted by title:

Book[Dead Soul s, I an Ranki n, 25. 95, 10]

Book[Fl eshmar ket O ose, I an Rankin, 25. 0, 0]

Book[Not Safe After Dark, Peter Robinson, 32.99, 10]
Book[Original Sin,P. D Janes, 39.95,0]

Book[Stranger House, Reginald Hi |1, 29.5, 0]

List sorted by author:

Book[Dead Soul s, I an Ranki n, 25. 95, 10]

Book[FI eshmar ket O ose, | an Ranki n, 25. 0, 0]

Book[Original Sin,P. D Janes, 39.95,0]

Book[Not Safe After Dark, Peter Robinson, 32.99, 10]
Book[Stranger House, Reginald Hill,29.5,0]

13.14 Programming exercises 789

13.14 Programming exercises

» Exercise 13.1 (A randonmr enove method)
Modify the Bag<E> interface on page 729 by adding a randognove method with prototype

E renove();

that removes a random element from this bag and returns ithelfbag is empty thenul |
is returned. Write the method implementation (it will be geme for bothFi xedBag<E> and
Dynam cBag<E>). You can use th@andomclass inj ava. uti| that has aext | nt method.

» Exercise 13.2 (An indexecadd method)
For theAr r ay<E> interface add a method with prototype

void add(int k, E elenent);

that adds the giveel enent atindexk. The method should throixsndexQut Of BoundsExcept i on
ifk < 0ork > size().

The element originally at positianand all following elements need to be moved up one place
to create a place for the new element. The special case kvhaa the valusi ze() corresponds
to adding the element at the end of the array.

Write the implementation of this method for tignam cArray<E> implementation of the
Array<k> interface.

» Exercise 13.3 (An indexed enpve method)
For theAr r ay<E> interface add a method with prototype

E renmove(int k);

that removes the element at indelay shifting all following elements down one place. The eleme
removed is returned.

Write the implementation of this method for tignam cArray<E> implementation of the
Array<E> interface.

» Exercise 13.4 (Ani ndexOF method)
Modify the Ar r ay<E> interface on page 738 to include amdexOf method with prototype

int indexCh(E el enent);

that returns the index of the first occurrence of the givemel®E or —1 if the element is not
found. Write the method implementation fidynanm cArr ay<E>.

» Exercise 13.5 (Generating random sets of numbers)
Using the idea in Example 13.12, write a method with protetyp

Set<Integer> randonBet(int n, int a int b, Random random;

that returns a set afintegers randomly chosen in the raregg b inclusive using th&ndomclass
injava.util.

790 Introduction to Data Types and Structures

» Exercise 13.6 (Generating Lotto 649 numbers using sets)
Using Exercise 13.5 write a class calleat t 0649 that generates sets of 6 numbers in the range
1 to 49 and displays them.

» Exercise 13.7 (Generating Lotto 649 numbers without usingess)
Without using the JCF write a class calleat t 0649NoSet s that generates n sets of 6 numbers in
the range 1 to 49 and displays them.

» Exercise 13.8 (Password generator using sets)

We want to generate a set of unique passwords. Each passsvonrdde from the lower and

upper case letters and the digits and has a specified lengthe &\Vclass to do this. The input

is the number of passwords in the set and the number of cleasanteach password (same for all
passwords in the set). Some sample output is

dérl H hX9Av Ki 4SK wDAW ol WAW TVU7Y hGDSw VZecl ga7Sy ODEi|j
7aDws TOurW MM k9 JDAHZ vRblx | Gz3q ibi uE H7nbF CB6zY EGzuX
Dhiou nLtkl Eud22 wiNoVo ilhLZ Zc73V taPFL wPJ&Z nOy9x DPx9F
| eJv3 KhngQ y23g0 ey3Kr VQugl

corresponding to a set size of 35 with 5 characters in eackwumad. Display 10 passwords per
line except possibly for the last line.

» Exercise 13.9 (Printing a collection one element per line)
The standardloSt r i ng method creates a string which, when displayed, is all on ioiee Write a
static polymorphic method with prototype

public static <E> void printCollection(Collection<E> c)

that prints the elements one per line.

» Exercise 13.10 (Removing duplicate words)

Write a class similar t®enmoveDupl i cat eWr ds on Page 753 and calléiti queWor ds that creates
two sets. The first is a set of unique words as defined irRéneveDupl i cat eWr ds class, and
the second is a set of duplicate words (words that appeareel timan once in the input file). From
these sets create a set of words that did not have any d@dicathe input. For example for the
input

abcdabe
the output should be

3 uni que words found:
[c,d, €]

2 duplicate words found:
[a, b]

» Exercise 13.11 (Adapter class version of the Bag ADT)
Write an adapter class implementatiérr ayBag<E> of the Bag<E> interface on page 729 that
adapts arvr r ayLi st <E> object. The adapter class has the following structure

13.14 Programming exercises 791

inport java.util.ArrayList;

/**

* An adapter class inplenmentation of Bag<bE>
|

public class Bag<E>

{

Il This is an adapter class version of the
/1 bag ADT that uses an Arrayli st

private Arraylist<E> bag;

public Bag() {...}
public Bag(int initialCapacity) {...}

/**

* Copy constructor.

* @aramb the bag to copy
*|

public Bag(Bag<E> b) {...}

public int size() {...}
public boolean isEmty() {...}

public bool ean add(E elenment) {...}
public bool ean renove(E elenment) {...}

public bool ean contains(E element) {...}

public String toString()
{

}

return "Bag" + bag.toString();

}

Here all methods are implemented usinglibg object instance data field of tyger ayLi st <E>.

» Exercise 13.12 (Memory tester game)
Write a class calledenor yTest er that uses th®nam cBag<I nt eger > class and the algorithm
shown in Figure 13.21.

Here is some typical output assuming that there are 5 nunbbgrsess and the numbers are in
the range 1 to 10

Bag[9, 9, 8,5, 4]

Enter guesses for the 5 nunbers in range 1 to 10
99753

You have 3 guesses correct

Enter guesses for the 5 nunbers in range 1 to 10

792 Introduction to Data Types and Structures

ALGORITHM MemoryGame()
Make a bag that can hold 5 integers.
Generate 5 random integers in the range 1 to 10
and add them to the bag.
LOOP
Make a copy of the original bag
Ask user for 5 guesses of numbers in the bag
and remove the guesses from the bag copy if possible.
IF bag copy is now emptyHEN
EXIT LOOP
END IF
Determine how many guesses are correct.
Tell user how many guesses are correct.
END LOOP
Congratulate user on winning the game.

Figure 13.21: Memory game algorithm

99855

You have 4 guesses correct

Enter guesses for the 5 nunbers in range 1 to 10
88743

You have 2 guesses correct

Enter guesses for the 5 nunbers in range 1 to 10
998514

Congratul ations all guesses are correct

Here the first line actually shows the answer so that you cankchour class. When it is working
you can remove this display.

» Exercise 13.13 (Cities and Countries map)
We start with the following text filei ti es. t xt

Tor ont 0: Canada
Chi cago: USA
Frankf ort: Ger many
Sudbury: Canada
Venice:ltaly
Acapul co: Mexi co
Ber|i n: Ger many
Bar cel ona: Spai n
Los Angel es: USA
Vancouver : Canada
Rome: I taly

13.14 Programming exercises 793

M am : USA

London: UK

Mexico City: Mexico
Madri d: Spai n
Florence:ltaly

that is a list of cities and their countries. In general eamlnt¢ry can appear several times.
We want to read this file a line at a time and produce ablent ri es. t xt having the form

Canada -> [Sudbury, Toronto, Vancouver]
Cermany -> [Berlin, Frankfort]

Italy -> [Florence, Rome, Venice]

Mexi co -> [Acapul co, Mexico City]

Spain -> [Barcel ona, Madrid]

UK -> [London]

USA -> [Chicago, Los Angeles, Man |

The output has the form of a map frd®hri ng to Li st <Stri ng>:
Map<String, Li st<String>> map = new TreeMap<String, Li st<String>>();

which will arrange the countries in sorted order.

Write a class calledi t i es to solve this problem. You can use Anr ayLi st <String> for
each list. See Section 13.11.5 for a simpler example, Tdlseltists for each country, before using
Print Witer towrite the results to a file, use the stagar t method in theCol | ecti ons class.

» Exercise 13.14 (Another version of the cities and countriesap)
Write a version of th&€i ti es class from the previous exercise calléd i es2 that produces the
same output but expects its input in the compact form

Toront 0: Canada, Chicago: USA, Frankfort: Gernmany, Sudbury: Canada
Veni ce: Italy, Acapul co: Mexico, Berlin: Gernany

Bar cel ona: Spain, Los Angel es: USA, Vancouver: Canada

Rome: Italy, Mam :USA, London: K

Mexico City: Mexico, Madrid:Spain, Florence:ltaly

that permits multiple entries per line in the input file segp@d by commas (use a nested loop with

the outer loop usingpl i t (", ") in the outer loop andplit(":") inthe inner loop.
» Exercise 13.15 (Favorites map using data file)
We want to read a text filkavori t es. t xt such as

Fred: gol fer: Tiger Wods
Bob: f ood: sal ad

Fred: f ood: st eak

Bob: song: Wi te Weddi ng
CGord: gol fer:Phil M ckel son
Fred: song: Sati sfaction

Bob: gol fer:Vijay Singh
Cor d: song: Money

Cor d: food: spaghet ti

794 Introduction to Data Types and Structures

and produce the display shown in Example 13.31 which alsgesponds to the favorites map
given in Figure 13.20.

Write a class calledravorit es that does the processing using the map structure of Sec-
tion 13.11.6. Also see Example 13.30 and Example 13.31.

» Exercise 13.16 (ArrayList version of an address book)
The purpose of this exercise is to write a GUI version of anresklbook program that uses an
ArraylLi st to hold the address book entries. Each entry is an object &onmner class called
Addr essBookEnt ry. An entry is really two strings, one called tkey for the name of the person
and another called theal ue representing the address information.

Now we need to write a class calléddr essBook that manages the address book. This class
will be used by the GUI clas&ddr essBookGUl . TheAddr essBook class has the following struc-
ture which you must complete as indicated by T@BOlines.

public class AddressBook

{
private List<AddressBookEntry> list; // the list of address book entries
private String fileNane; // name of file containing the |ist
private String fileStatus; // Status or error message or enpty

/**

* Construct an enpty address book with a given initial

* size. No attenpt is made to read an address book from
* a binary object file so this constructor is mainly

* used for debugging.
* @araminitial Size the initial address book size

*/

public AddressBook(int initialSize)

{
list = new ArrayLi st <AddressBookEntry>(initial Size);
fileName = "";
fileStatus = "";

}

/**

* Make an address book fromthe data in a binary object file,

* if the file exists, else construct a new address book. Errors
* are recorded as strings that can be retrieved using the

* fileStatus() nethod.

x|
public AddressBook(String inFileName)
{
fileName = inFileNane;
read();
}

/**

13.14 Programming exercises

*
*
*
*
*

*/

Read the address book froma binary object file. If

ab
add

Errors are recorded as strings that can be retrieved using the

fil

inary object file does not exist then create a new
ress book.

eError() nethod.

public void read()

{

/**

1
fil

Qoj
try
{

}

cat

{

}

cat

{
}

cat

{
}

fin

{

If no error then the string is enpty
eStatus = "";
ectInputStreamin = null

in = new Qbj ectlnputStream(new FilelnputStrean(fileName));
list = (List<AddressBookEntry>) in.readQbject();
fileStatus = "Address book file has been | oaded"

ch (FileNot FoundException e)

Il make a new address book if input file not found

[ist = new ArrayLi st <AddressBookEntry>();

fileStatus = "New address book |ist has been created"

ch (d assNot FoundException e)

fileStatus = "Invalid address book file";

ch (1 OException e)

fileStatus = "Unknown error reading address book file";

ally // make sure the file was closed
try
{
if (in!=null) in.close();
}
catch (1 COException e)
{
fileStatus = "Unknown error closing address book file";
}

795

796 Introduction to Data Types and Structures

* Wite the address book as a binary object file.
* Errors are recorded as strings that can be retrieved using the
* fileError() nethod.

*/
public void wite()
{
fileStatus = "Address book has been saved in file";
bj ect Qut put Stream out = nul | ;
try
{
out = new Obj ect Qut put Strean(new Fi |l eQut put Strean(fileNane));
out.witeQbject(list);
}
catch (FileNot FoundException e)
{
fileStatus = "Address book file not found";
}
catch (1 OException e)
{
fileStatus = "Unknown error witing address book file";
}
finally
{
try
{
if (out '=null) out.close();
}
catch (1 COException e)
{
fileStatus = "Unknown error closing output file";
}
}
}
/**

* Return file error or status string after a file operation.
* @eturn the status string.

x|
public String fileStatus()
{
return fileStatus;
}
/**

* Return nunber of entries in address book.
* @eturn nunber of entries in address book

13.14 Programming exercises 797

*/
public int size()
{
return list.size();
}
/**

* Return the value associated with a given key.
* @aram key the key to find
* @eturn value of key found el se null

*/
public String get(String key)
{
/1 TODO
}
/**

* Add a new entry to the address book.

* |f the entry already exists then it is an update operation
* so0 the value of the entry for this key is updated.

* @aram key the key of entry to add or update

* @aram val ue new value for the entry

*|
public void add(String key, String val ue)
{
/1 TODO
}
/**

* Delete an entry from address book given its key.
* @aram key the key of the entry

* @eturn true if entry was del eted

* else false if entry did not exist.

*|
public bool ean delete(String key)
{
/1 TODO
}
/**

* Return a string representation of this list.
* @eturn a string representation of this list.
*|

public String toString()

{
/1 TODO

798

Introduction to Data Types and Structures

/**
* An object of this class is an entry in an address book database.
* Each entry is a key-value pair. The keys and val ues are strings.
*/
private static class AddressBookEntry inplements java.io.Serializable
{

private static final long serialVersionUD = 1L;

private String key;

private String val ue;

/**

* Construct an entry given a key and a val ue.
* @param key the key for the entry.
* @aram val ue the value associated with the key.
*|
public AddressBookEntry(String key, String val ue)
{

this.key = key;

this.value = val ue;

}

/**

* Return the key for this entry.
* @eturn Return the key for this entry.

|
public String getKey()
{
return key;
}
/**

* Return the value associated with this key
* @eturn Return the value associated with this key.

|
public String getVal ue()
{
return val ue;
}
/**

* Test this object for equality with obj
* @aram obj the object to test with this object

13.14 Programming exercises 799

* @eturn true if the two objects have the same keys el se fal se
*|
public bool ean equal s(Chj ect obj)
{
if (obj == null) return false;
if (! getCass().equals(obj.getCass())) return false;
Addr essBookEntry entry = (AddressBookEntry) obj;
return key.equal s(entry. key);

}

/**

* Define a string representation of this object.
* @eturn Return the string representation of this object.

*/
public String toString()
{
return "AddressBookEntry[" + key + ", " + value + "]";
}

}

Now write theAddr essBookGUl class that uses th&ldr essBook class. This class can have a
JText Fi el d for the key, and aText Area for the value. AnothedText Area can be used to
display output and status information adBut t on objects can be used for "Save”, "Search”,
"Delete”, "Add”, and "Display All” operations.

» Exercise 13.17 (Map version of an address book)

Repeat the previous exercise using a map of the bgpeSt ri ng, St ri ng> instead of a list to
hold the address book entries. Now there is no need for thex Audlr essBookEnt ry class. The
GUI class will be the same as in the previous exercise, ojddr essBook class will change.

» Exercise 13.18 (Map version of a telephone directory)
Write a GUI version of telephone directory that uses a sartag.

BlueJ andBeanShell Edition Copyright 2002, 2005, 2007, Barry G. Adams

